当前位置:文档之家› 哈工大_控制系统实践_磁悬浮小球

哈工大_控制系统实践_磁悬浮小球

哈工大_控制系统实践_磁悬浮小球
哈工大_控制系统实践_磁悬浮小球

研究生自动控制专业实验

地点:A区主楼518房间

姓名:实验日期:年月日斑号:学号:机组编号:

同组人:成绩:教师签字:磁悬浮小球系统

实验报告

主编:钱玉恒,杨亚非

哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告

一、实验内容

1、熟悉磁悬浮球控制系统的结构和原理;

2、了解磁悬浮物理模型建模与控制器设计;

3、掌握根轨迹控制实验设计与仿真;

4、掌握频率响应控制实验与仿真;

5、掌握PID控制器设计实验与仿真;

6、实验PID控制器的实物系统调试;

二、实验设备

1、磁悬浮球控制系统一套

磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。

2、磁悬浮球控制系统计算机部分

磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等;

三、实验步骤

1、系统实验的线路连接

磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。

2、启动实验装置

通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。

3、系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID等),直到获得较理想参数为止。

四、实验要求

1、学生上机前要求

学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。

学生必须交实验报告后才能上机调试。

2、学生上机要求

上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。

五、系统建模思考题

1、系统模型线性化处理是否合理,写出推理过程?

答:磁悬浮系统的模型可描述如下

()()()()()2221d x t m F i,x mg dt i F i,x K x di U t Ri t L dt ?=+??????=? ?????=+??? (1)

又有系统平衡的边界条件如下

()0F i,x mg += (2) 由级数理论,将非线性函数展开为泰勒级数,在平衡点()00,i x 对系统进行线性化处理。对(1)式作泰勒级数展开并省略高阶项可得

0000(,)(,)(-)(-)i x F i x F i x K i i K x x =++

(3) 又由(2)式可知,对2i

F(i,x )K()x =求偏导数得

2000000320022x x i i Ki Ki K F (i ,x )K F(i ,x )x x ==-==, (4) 则由(1)式可得 22000022300

22(-)(-)i x Ki Ki d x m K i i K x x i x dt x x =+=- (5) 对(5)进行拉普拉斯变换并带入编辑方程可得系统的开环传递函数 2001x(s )-i(s )a s -b = (6)

定义系统对象的输入量为功率放大器的输入电压也即控制电压in U ,系

统对象输出量为x 所反映出来的输出电压为out U (传感器后处理电路输

出电压),则该系统控制对象的模型可写为

200out s s a in a U (s )K x(s )-(K /K )G(s )U (s )K i(s )a s -b === (7) 其中000002i i a b g x ==,。 六、根轨迹试验思考题

1、根据系统模型,采用根轨迹法设计一个控制器?分别比较超前校正和迟后超前校正的特点,用仿真结果进行说明。

答:由(7)式给出的系统的开环传递函数可知实际系统的开环传递函数为 0277.8421()0.031130.5250G s s =- (8) 其极点为3133p .=±,即系统有两个极点,并且有一个极点为正系统总是不稳定的。

以如下指标,基于根轨迹方法设计系统的控制器:调整时间

0.2(%2)s t s =; 最大超调量10%p M ≤;稳态误差2%?=:

(1) 确定闭环期望极点d s 的位置,

由最大超调量10(p M e %ζπ-=≤可以

得到:0591.ζ=(近似取06.ζ≈)。由cos()ζθ=可以得到0938.rad θ=,其中θ为位于第二象限的极点和0点的连线与实轴负方向的夹角。又有:40.2s n t s ζω=≤可以得到3383n .ω=,

于是可以得到期望的闭环极点为3383p .(cos()j sin())θθ*=-±

(2) 未校正系统的根轨迹在实轴和虚轴上,不通过闭环期望极点,因此需要对系统进行超前校正,设控制器为 111c c c c c Ts k s -z G (s )k ()Ts s -p ααα+==≤+ (9)

(3) 计算超前校正装置应提供的相角,根据(9)式和期望极点可得,设计的控制器为 237609924805c s .G (s ).s .+=+ (10)

图1 采用(10)式所示控制律的仿真结果

由仿真结果可以看出,系统有较好的稳定性,但存在一定的稳态误差,并且误差过大,为使系统瞬态响应满足要求,可以采用直接对系统增加零点和极点的方法式位于右半平面的根轨迹进入左边平面,选取适当的增益(计算结果:1.9768),可以得到一个稳定的闭环控制系统。设计的迟后超前控制器传递函数为

()()()()23761480503c s .s G (s )s .s .++=++ (11)

图2 采用(11)式所示控制律的仿真结果

仿真结果可以看出,控制器可消除稳态误差,但超调量依旧较大。

七、频率法试验思考题

1、依系统模型,采用根频率法设计一个超前校正控制器,并说明原理? 答:由(8)式表示的系统开环传递函数绘制系统的Bode 图和Nyquist 图,可得系统的极点3133p .=±,且不稳定。

图3 磁悬浮系统的Bode 图

图4 磁悬浮系统的Nyquist 图

设计控制器()c G s ,使得系统的静态位置误差常数为2%,相位裕量为50°,增益裕量等于或大于 10dB 。根据要求,控制器设计如下:

(1) 选择控制器,由图 可以看出,给系统增加一个超前校正就可以满足设计要求,则设超前校正装置为

()1111c c c Ts k s /T G s k Ts s /T ααα++==++ (12)

(2) 根据稳态误差要求计算增益公式可得c k =0.308于是有 127784030800311305250..G (s ).s -.?= (13)

(3) 绘制修正后系统的Bode 图,可以看出,系统的相位裕量为0°,根据设计要求,系统的相位裕量为50°,因此需要增加的相位裕量为50°,因此必须对增益交界频率增加所造成的1G (s)的相位滞后增量进行补偿。假设需要的最大相位超前量m φ近似等于55°则计算可以

得0133.α=。

图51G (s) 系统的Bode 图

然后确定T ,图5可以看出,最大相位超前角m φ发生在两个转角频率的几何中心上,即T)1αω/(=,在T)1αω/(=点上,并且对应

于3269.rad /s ω=则有11192

c .T ==,18964.T α==于是校正装置确定为 1111921192752189648964c s s .s .G (s ).s s .s .ααT +++===T +++ (14)

增加校正后系统的Bode图和Nyquist图如下

图6 校正后系统Bode图

图7 校正后系统Nyquist图

2、根据设计后的频率法控制器,用程序进行仿真,并以图示分析参数变化的控制效果?

答:使用Simulink对系统进行仿真,建立的仿真模型如下

图8 磁悬浮系统频域法控制仿真模型

则可得仿真结果如下

图9 磁悬浮系统超前矫正控制设计仿真结果

从仿真结果可以看出,系统的调节时间0.06s 左右,超调量小于15%,相较于根轨迹法的控制设计表现出良好的控制性能,但依旧存在一定的稳态误差,类似于前述根轨迹法的设计思路,采用迟后超前矫正控制方法,其控制律如下

()11925752896402c s .s G s .s .s .++=?++ (15) 通过Simulink 仿真可得如下结果

图10 磁悬浮系统频迟后超前矫正控制设计仿真结果

由图10可知,此法可消除超前矫正时系统的稳态误差,调节时间0.42s 左右,超调量40%,控制效果优于根轨迹法的控制设计,但依旧需要进一步调节控制参数以减小超调量。

八、PID 试验思考题

1、采用PID 控制器建立控制系统,并编制程序进行仿真,分析P 、I 、D 各自的作用?

答:PID 控制器是一种基于“过去”,“现在”和“将来”信息估计的简单算法。P 为比例控制,表示控制器输入与输入误差信号的比例关系,I 为积分控制,用以消除稳态误差,D 为微分控制用以处理系统过渡过程中的震荡等问题,提升系统的动态品质。

由(8)式可知系统的开环传递函数,则可设计如图 下的所示的PID 控制仿真模型。

图11 磁悬浮系统PID 控制模型

整定PID 参数为 1.55,0.03,15p i d K K K ===,则可得如下仿真结果

图12 PID 控制仿真结果

由图12可知,通过整定PID 控制参数可获得良好的控制效果。

2、完成小球悬浮实物控制以后,提出实际调试过程中的问题,并分析实际试验和理论仿真之间的差别,为什么?

答:下面给出实验中不同PID参数时的实验结果

图13 PID控制实验结果1(P=0.5,I=4e-4,D=10)

图14 PID控制实验结果2(P=0.55,I=4e-4,D=10)

图15 PID控制实验结果3(P=0.57,I=4e-4,D=10)

由图13-15可知,与仿真结果相比,实验结果表现出明显的死区特性,

其产生原因是线圈充磁需要一定的时间,且外界环境的扰动会对控制精度造成影响,使实验曲线产生小幅振荡。

然后给出采用PIDZID控制方法的实验结果

图16 PID控制实验结果(P=2.7,I=2.415e-3,D=64.605)

采用PIDZID方法可减小控制系统的死区,其控制性能优于PID方法。

磁悬浮小球仿真报告

磁悬浮小球控制仿真报告 一.仿真要求 采用根轨迹和频域法仿真磁悬浮小球系统 二.系统建模 磁悬浮系统方程可以由下面的方程描述: 22 d x(t)m F(i,x )mg dt =+动力学方程 2 i F(i,x )K( )x = 电学力学关联方程 (,)+=F i x mg 0 边界方程 ()()=+1 di U t Ri t L dt 电学方程 对2x i K x i F )(),(=泰勒展开: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ=== 00i 00i i x x F(i,x)F(i ,x )i ;|,δδ===00 x 00i i x x F(i,x) F (i ,x )x 对2 i F(i,x )K()x =求偏导数得: ==- 20x x 003 02Ki K F (i ,x )x ==0 i i 00202Ki K F(i ,x )x 此系统的方程式如下: x x 2Ki i x 2Ki )x -(x K )i -(i K dt x d m 30 2 02000x 0i 22-=+= 拉普拉斯变换后得:

)()()(s x mx 2Ki s i mx 2Ki s s x 3 2 2002 -= 由边界方程 )20 2 0x i K(mg -= 代入得系统的开环传递函数: 200 x(s)-1 = i(s)a s -b 定义系统对象的输入量为控制电压in U ,系统对象输出量为x 所反映出来的输出电压为out U ,则该系统控制对象的模型可写为: out s s a 2in a 00 U (s)K x(s)-(K /K ) G(s)= ==U (s)K i(s)a s -b 00000 i i a = , b =2g x 特征方程为:200a s -b =0 解得系统的开环极点为:s =取系统状态变量分别为1out 2out x =u ,x =u 系统的状态空间表示法如下: ?11in s ?2200 a 0 1 0x x =+u 2g 2g?K 0-x x x i ?K ???????? ? ? ? ? ? ? ? ??? ? ??????? ][121x x x 0 1y =??? ? ??= 代入实际参数,可以得到 in 2121U 124990x x 0098010 x x ???? ? ?+???? ?????? ??=???? ? ????.. 系统的状态方程可以写为

哈工大_控制系统实践_磁悬浮小球

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 2、磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 3、系统实验的参数调试 根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID等),直到获得较理想参数为止。 四、实验要求

1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 答:磁悬浮系统的模型可描述如下 ()()()()()2221d x t m F i,x mg dt i F i,x K x di U t Ri t L dt ?=+??????=? ?????=+??? (1) 又有系统平衡的边界条件如下 ()0F i,x mg += (2) 由级数理论,将非线性函数展开为泰勒级数,在平衡点()00,i x 对系统进行线性化处理。对(1)式作泰勒级数展开并省略高阶项可得 0000(,)(,)(-)(-)i x F i x F i x K i i K x x =++ (3) 又由(2)式可知,对2i F(i,x )K()x =求偏导数得 2000000320022x x i i Ki Ki K F (i ,x )K F(i ,x )x x ==-==, (4) 则由(1)式可得 22000022300 22(-)(-)i x Ki Ki d x m K i i K x x i x dt x x =+=- (5) 对(5)进行拉普拉斯变换并带入编辑方程可得系统的开环传递函数 2001x(s )-i(s )a s -b = (6) 定义系统对象的输入量为功率放大器的输入电压也即控制电压in U ,系

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号: 5. 参考图5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60

度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃和单位斜坡响应曲线。 + 一.人工设计过程 1.计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(() 1)(1()(2 12 1T s T s T s T s K s G c c ββ++++= 于是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++= s s s s G

首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统是不稳定的。超前滞后校正装置设计的下一步是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s ,将新的增益穿越频率仍选为2rad/s ,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s ,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值, 对于超前校正,最大的超前相角m φ由下式确定 1 1 sin +-= ββφm 因此选)79.64(20 ==m φβ,那么,对应校正装置相角滞后部分的极点的转角频率为 )/(12T βω=就是01.0=ω,于是,超前滞后校正装置的相角滞后部分的传函为 1 1001 520 01.02.0++=++s s s s 相角超前部分:由图1知dB j G 10|)4.2(|=。因此,如果超前滞后校正装置在2=ωrad/s 处提供-10dB 的增益,新的增益穿越频率就是所期望的增益穿越频率。从这一要求出发,可 以画一条斜率为-20dB 且穿过(2rad/s ,-10dB )的直线。这条直线与0dB 和-26dB 线的交点就确定了转角频率。因此,超前部分的转角频率被确定为s rad s rad /10/5.021==ωω和。 因此,超前校正装置的超前部分传函为 )1 1.01 2(201105.0++=++s s s s 综合校正装置的超前与之后部分的传函,可以得到校正装置的传递函数)(S G c 。 即) 1100)(11.0() 15)(12(01.02.0105.0)(++++=++++= s s s s s s s s s G c 校正后系统的开环传递函数为

磁悬浮系统的PID控制

磁悬浮系统的PID控制

本科毕业设计(论文)题目: 磁悬浮系统的PID控制 姓名: 学号: 专业: 指导教师: 职称: 日期: 华科学院

摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 本设计毕业设计在分析磁悬浮系统构成及工作原理的基础上,建立其数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真研究,得出较好的控制参数。最后,本文对以后研究工作的重点进行了思考,提出了自己的见解。 关键词:磁悬浮系统控制器MATLAB软件PID控制

Abstract Magnetic suspension technology, which has a series of advantages such as contact-free, no friction, no wear, no need of lubrication and long life expectancy, is widely concerned and adopted in high-tech areas such as energy, transportation, aerospace, industrial machinery and life science.On the basis of analyzing of magnetic suspension system’s structure and working principle, its system mathematical model was established, this thesis describe PID controller designed and get control scheme. It get the better control parmeters by MATLAB software simulation studies.The key research works for further study are proposed at last. Key Word:Magnetic Levitation Ball System Digital Controller MATLAB PID Control

磁悬浮小球matlab

磁悬浮系统建模及其PID控制器设计Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 设计报告内容 1. 简述磁悬浮球系统的工作原理; 2. 依据电磁等相关物理定理,列写磁悬浮系统的运动方程;

3. 根据磁悬浮系统的运动方程搭建被控对象在Simulink环境下的仿真模型; 4. 结合单位反馈控制系统的控制原理,为被控对象设计PID控制器。 5. 分析综述比例P、积分I、微分D三个调节参数对系统控制性能的影响。 设计报告正文 1. 简述磁悬浮球系统的工作原理; 磁悬浮控制系统由铁心、线圈、光位移传感器、控制器、功率放大器和被控对象(钢球)等元器件组成。它是一个典型的吸浮式悬浮系统。系统开环结构如图4所示。 图2系统开环结构图 电磁铁绕组中通以一定的电流会产生电磁力,控制电磁铁绕组中的电流,使之产生的电磁力与钢球的重力相平衡,钢球就可以悬浮于空中而处于平衡状态。但是这种平衡是一种不稳定平衡,这是由于电磁铁与钢球之间的电磁力的大小与它们之间的距离)(t x成反比,只要平衡状态稍微受到扰动(如:加在电磁铁线圈上的电压产生脉动、周围的振动、风等),就会导致钢球掉下来或被电磁铁吸住,因此必须对系统实现闭环控制。由电涡流位移传感器检测钢球与电磁铁之间的

哈工大现代控制理论复习题

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15分)考虑由下式确定的系统: 2 33 )(2+++= s s s s G 试求其状态空间实现的能 控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 能观测标准形为 对角标准形为 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 求其状态转移矩阵。 解:解法1。 容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵 A 可以对角化。矩阵A 对应于特征值2,121-=-=λλ的特征向量是 取变换矩阵 []???? ??--==-1112121ννT , 则 ? ? ????--=-21111 T 因此, ?? ? ???--==-20011 TAT D

从而, 解法2。拉普拉斯方法 由于 故 ?? ? ???+-+---=-==Φ----------t t t t t t t t At e e e e e e e e A sI L e t 222211 2222])[()( 解法3。凯莱-哈密尔顿方法 将状态转移矩阵写成 A t a I t a e At )()(10+= 系统矩阵的特征值是-1和-2,故 )(2)()()(10210t a t a e t a t a e t t -=-=-- 解以上线性方程组,可得 t t t t e e t a e e t a 2120)(2)(-----=-= 因此, ?? ? ???+-+---=+==Φ--------t t t t t t t t At e e e e e e e e A t a I t a e t 2222102222)()()( 四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=,&,是完全能观的,请画出观测器 设计的框图,并据此给出观测器方程,观测器设计方法。 解 观测器设计的框图: 观测器方程: 其中:x ~是观测器的维状态,L 是一个n ×p 维的待定观测器增益矩阵。 观测器设计方法: 由于 )](det[])(det[)](det[T T T T L C A I LC A I LC A I --=--=--λλλ 因此,可以利用极点配置的方法来确定矩阵L ,使得T T T L C A -具有给定的观测器极点。具体的方法有:直接法、变换法。 五、(15分)对于一个连续时间线性定常系统,试叙述Lyapunov 稳定性定理,并举一个二阶系统例子说明该定理的应用。 解 连续时间线性时不变系统的李雅普诺夫稳定性定理: 线性时不变系统Ax x =&在平衡点0=e x 处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q ,李雅普诺夫矩阵方程Q PA P A T -=+有惟一的对称正定解P 。

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计 专业班级电气工程及其自动化 11**班 学号 201110710247 学生姓名 ** 指导教师 ** 学院名称电气信息工程学院 完成日期: 2014 年 5 月 7 日

磁悬浮系统建模及其PID控制器设计 Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真

一、磁悬浮技术简介 1.概述: 磁悬浮是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早期模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。 1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。 在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。 1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。 1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 2009年时,国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 2. 磁悬浮技术的应用及展望 20世纪60年代,世界上出现了3个载人的气垫车试验系统,它是最早对磁悬浮列车进行研究的系统。随着技术的发展,特别是固体电子学的出现,使原来十分庞大的控制设备变得十分轻巧,这就给磁悬浮列车技术提供了实现的可能。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车模型,以后命名为TR01型,该车在1km 轨道上的时速达165km,这是磁悬浮列车发展的第一个里程碑。在制造磁悬浮列车的

控制系统课程设计__哈工大_倒立摆

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系:航天学院自动化专业 班级: 设计者: 学号: 指导教师: 设计时间: 09.08.31 ——09.09.18 工业大学

目录 1.任务书 -----------------------------------------------------------2 2.理论模型建立和分析 -----------------------------------------4 3.PID控制器设计与调节 --------------------------------------9 4.状态空间极点配置控制器设计 ----------------------------15 5.问题的进一步讨论 -------------------------------------------24 6.设计结论与心得体会 ----------------------------------------25

*注:此任务书由课程设计指导教师填写。 第一章 理论模型的建立及分析 1.1直线一阶倒立摆数学模型的推导 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等容。机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统部的输入-状态关系。 对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动力学方程。下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统. 下图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆水平和垂直方向的分量。 b p I θ x 图1-1(a )小车隔离受力图 (b )摆杆隔离受力图 本系统相关参数定义如下: M : 小车质量 m :摆杆质量 b :小车摩擦系数 l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力 x :小车位置 φ:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 应用牛顿方法来建立系统的动力学方程过程如下: 分析小车水平方向受到的合力,可以得到下面等式: Mx F bx N =--&&& (1-1) 由摆杆水平方向的受力进行分析可以得到下面等式: () 2 2sin d N m x l dt θ=+ (1-2)

磁悬浮实验报告

开放性试验: 《磁悬浮原理实验仪制作及PID控制》 试验报告 实验内容:学生通过磁悬浮有关知识的学习,根据已有的试验模型,设计出磁悬浮实验仪器,并进行制作,进而在计算机上用PID技术进行调节和控制。 难点:PID控制程序的编写及调试。 创新点:该实验以机械学院数控所得科研成果为依托,以一种新颖的方式,用磁悬浮小球直观的展示了PID控制理论的应用。该仪器构造简单,成本低廉。此实验综合应用了电磁场、计算机、机械控制等相关知识,具有一定的研究创新性特点。该仪器有望成为中学物理实验仪器,和高校PID 控制实验仪器。 关键问题 1.悬浮线圈的优化设计 2.磁悬浮小球系统模型 3.磁悬浮小球的PID控制 电磁绕组优化设计 小球质量:钢 小球质量:15~20g 小球直径:15mm 悬浮高度:3mm 要求:根据悬浮高度、小球大小、小球重量设计悬浮绕组

绕组铁芯尺寸、线圈匝数、额定电流、线径。 电磁绕组优化设计: 由磁路的基尔霍夫定律、毕奥-萨格尔定律和能量守恒定律,可得电磁吸力为: 式中:μ0——空气磁导率,4πX10-7H/m ; A ——铁芯的极面积,单位m2; N ——电磁铁线圈匝数; z ——小球质心到电磁铁磁极表面的瞬时气隙,单位m ; i ——电磁铁绕组中的瞬时电流,单位A 。 功率放大器中放大元器件的最大允许电压为15V 。为了降低功率放大器件上的压力差,减少功率放大器件的发热,设定悬浮绕组线圈电压该值为12V 。 约束条件:U =12V 电流、电压与电阻的关系 电阻: L ——漆包线的总长度/m S ——漆包线的横截面积/m2 d ——线径的大小/m ε是漆包线线的电阻率,查表可知: ε=1.5*1.75*e-8,单位:Ω*m 根据线圈的结构,可以得出漆包线的总长度为: 2 202??? ??-=z i AN F μU i R =L R S ε=2 14S d π=

(完整版)基于单片机的磁悬浮小球控制系统设计毕业设计

基于单片机的磁悬浮小球控制系统设计 摘要 随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。磁悬浮以悬浮力产生的原理分类可以分为超导磁悬浮和常导磁悬浮。磁悬浮的控制系统是一个很复杂的问题。本文 研究的重点就是这两种磁悬浮的控制问题。 超导磁悬浮是利用处于超导状态下的超导体具有斥磁力的原理产生的。超导磁悬浮的悬浮物体就是超导体本身,所以超导磁悬浮的控制重点就落在了超导体上。本文从介绍超导磁悬浮的基本应用入手,逐步深入地介绍超导体的基本物理性质,然后介绍超导磁悬浮系统的控制方法、过程和原理。 与超导磁悬浮相比,常导磁悬浮的应用就更为广泛,因为常导磁悬浮的实现过程要简单得多。常导磁悬浮可以分为应用电磁铁的磁悬

浮和引用非电磁性磁铁(稀土永磁铁、普通磁铁等)的磁悬浮。但是由于电磁铁便于控制和利用,所以利用电磁铁的磁悬浮义勇更为广泛。本文在常导磁悬浮方面的研究是从一个实例入手,分析电磁铁式磁悬浮的原理,从而进一步研究电磁铁式磁悬浮的控制方法、过程和原理。 在本文的最后,我利用在大学里所学的知识,结合本文的研究重点——磁悬浮装置的控制问题,做出了一个简单的电磁悬浮装置。这个悬浮装置的原理是利用对电磁铁电流的控制来实现一个铁球在空中的来回反复运动,达到视觉上的悬浮效果。这虽然与实际的电磁铁悬浮控制方原理不同,但是利用这简单手段也能够达到相同的目的。这个实例给了我们一个启示:简单的演示实验装置也能够说明磁悬浮列车等高新技术的工作原理,磁悬浮并不是遥不可及的。 关键词:常导磁悬浮,超导磁悬浮,磁悬浮的控制,演示实验装置,磁悬浮列车

磁悬浮小球matlab

磁悬浮系统建模及其 PID 控制器设计Magnetic levitation system based on PID controller simulation 摘要磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB^件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID 控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLA仿真 设计报告内容 1.简述磁悬浮球系统的工作原理; 2.依据电磁等相关物理定理,列写磁悬浮系统的运动方程; 3.根据磁悬浮系统的运动方程搭建被控对象在Simulink环境下的 仿真模型;

4.结合单位反馈控制系统的控制原理,为被控对象设计PID控制器。 5.分析综述比例P、积分I、微分D三个调节参数对系统控制性能的影响。 设计报告正文 1.简述磁悬浮球系统的工作原理; 磁悬浮控制系统由铁心、线圈、光位移传感器、控制器、功率放大器和被控对象(钢球)等元器件组成。它是一个典型的吸浮式悬浮系统。系统开环结构如图4所示。 图2系统开环结构图 电磁铁绕组中通以一定的电流会产生电磁力,控制电磁铁绕组中的电流,使之产生的电磁力与钢球的重力相平衡,钢球就可以悬浮于空中而处于平衡状态。但是这种平衡是一种不稳定平衡,这是由于电磁铁与钢球之间的电磁力的大小与它们之间的距离x(t)成反比,只要平衡状态稍微受到扰动(如:加在电磁铁线圈上的电压产生脉动、周围的振动、风等),就会导致钢球掉下来或被电磁铁吸住,因此必须对系统实现闭环控制。由电涡流位移传感器检测钢球与电磁铁之间的

基于模拟电路的磁悬浮控制系统

基于模拟电路的磁悬浮控制系统 摘要:本文首先简要地介绍磁浮轴承的发展历程和国内外研究、应用状况,接着利用电磁学、电子学和控制理论对磁悬浮的原理进行了分析,建立了系统的数学模型。对电路参数进行分析,设计了基于模拟电路的磁悬浮控制系统。该系统采用电磁永磁混合支持,提高了系统稳定性并降低了系统功耗。 关键词:混合磁悬浮,霍尔传感器 0 引言 人类希望利用磁场力对物体进行无接触支撑的想法由来已久。20世纪初,科学家首次在实验室利用电流的磁效应实现了物体在空中自由悬浮。然而由于磁悬浮技术是一门涉及多种学科的综合性技术,其发展受到了多方面的制约。随着近几十年电子技术、控制工程、信号处理元器件、电磁理论、新型电磁材料及转子动力学的发展,磁悬浮技术才得到了长足的发展。特别是进入上世纪80年代,超导技术首先应用于磁悬浮。超导技术与磁悬浮技术的结合,新材料,新工艺,新器件的出现以及现代控制技术的发展,使电磁悬浮技术趋于成熟,磁悬浮技术有精度高、非接触和消耗能量少等优点。在能源紧张的今天,研究磁悬浮系统具有重要的实际意义。磁悬浮技术不仅可以应用于磁悬浮列车,而且在磁悬浮轴承、磁悬浮飞轮储能、航天器与电磁炮的磁悬浮发射、磁悬浮精密平台、磁悬浮冶炼等方面也有广泛应用。磁悬浮技术有着广阔的商业前景,适合商业应用。例如,磁悬浮可以用于广告牌悬浮、地球仪悬浮,科技展览、沙盘展示(空中楼阁)、悬空高档礼品等。因此,磁悬浮是一种能带动众多高新技术发展的具有广泛前景的应用技术。基于模拟电路的磁悬浮控制系统可以用来研究电磁式磁悬浮固有的开环不稳定性和非线性性。 1 磁悬浮系统的组成及原理分析 磁悬浮旋转装置主要由永磁体、铁芯、线圈、磁场传感器、功率放大器和控制器等组成。其结构如图a所示

12级哈工大威海控制系统设计课程报告

课程设计(论文)任务书 指导教师签字:系(教研室)主任签字:

目录 1. 一阶倒立摆数学模型 (3) 2.倒立摆系统的PID控制算法设计 (12) 2.1设计任务 (12) 2.2 设计分析 (12) 2.2.1 PID控制原理 (12) 2.2.2 摆杆角度控制 (13) 2.3 摆杆角度控制的PID算法仿真 (15) 3. 倒立摆系统的最优控制算法设计 (20) 3.1 设计任务 (20) 3.2 最优控制MATLAB仿真 (20) 4. 工作总结及心得体会 (25)

1. 一阶倒立摆数学模型 1.1 一阶倒立摆数学模型的推导 对系统建立数学模型是系统分析、设计的前提,而一个准确又简练的数学模型将大大简化后期的工作。为了简化系统分析,在实际的模型建立过程中,要忽略空气流动阻力,以及各种次要的摩擦阻力。这样可将倒立摆抽象成小车和匀质刚性杆组成的系统,如下图所示: M m,I F Φ θL x 图1 一阶倒立摆系统 本系统内部各相关参数定义如下: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ 摆杆与垂直向上方向的夹角 θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)

下图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图,图示方向为矢量正方向。 M P F θN bx' x'' x I θ'' 图2 小车及摆杆受力分析 应用Newton 方法来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程: N x b F x M --= 由摆杆水平方向的受力进行分析可以得到下面等式: 2 2(sin ) d N m x l dt θ=+ 即: 2cos sin N mx ml ml θθθθ=+- 把这个等式代入上式中,就得到系统的第一个运动方程: F ml ml x b x m M =-+++θθθθsin cos )(2 (1-1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析可以得到下面方程: 2 2(cos ) d P mg m l dt θ-=- 即: 2sin cos P mg ml ml θθθθ-=+

PID控制器设计磁悬浮小球控制系统

MATLAB课程设计 课程名称:采用PID控制器设计磁悬浮小球控制系统 学院:电气工程学院 学号:P101813409 姓名:徐敏敏 班级:10级自动化一班 指导教师:杨成慧老师

目录 摘要........................................................1 1.引言.........................................................2 2.系统分析与设计..................................... 5 2.1系统建模及仿真..............................................5 2.2建立磁悬浮小球系统框图....................................7 2.3 PID控制系统..........................................8 2.4 仿真结果分析..............................................13 2.5 总结.....................................................13 2.6 答谢.....................................................13 3.参考文献.......................................................14

摘要: 本文通过对一个磁悬浮小球的分析,简单的描述了磁悬浮列车的原理。控制要求通过调节电流使小球的位置始终保持在平衡位置。通过对磁悬浮小球系统进行数学建模,求出它的系统传递函数,采用PID算法设计调节器,对小球的稳定性进行了分析和仿真,在MATLAB平台仿真获得适当的PID参数范围,进行频域分析,使得磁悬浮小球系统处在平衡状态,在仿真过程中对PI,PD,及PID三种方式进行了比较和分析,对其加入扰动信号,即正弦扰动信号,观察输出波形,对扰动进行分析。本文通过对磁悬浮小球系统的分析,体现了MATLAB的强大功能,突出了它在运算以及作图仿真方面的优势。 关键字: MATLAB, PID控制器, 磁悬浮小球系统,稳定性 1.引言 磁悬浮列车的原理并不深奥。它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”,亦称之为“磁垫车”。由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒

哈工大_机电系统控制基础实验_指导书

前言 《机电系统控制基础》既是一门理论性较强、又紧密联系工程实际的实践性较强的课程,本课程的重点在于培养学生对机电系统进行建模、分析与控制的能力。难点在于如何使机电类专业的学生结合工程实际,特别是结合机械工程实际,从整体分析系统的动态行为,理解和掌握略显深奥、难懂的经典控制理论,并应用经典控制论中的基本概念和基本方法来分析、研究和解决机械工程中的实际问题。 通过实验教学环节使学生验证课堂教学的理论,使学生能够建立机电系统控制的整体概念,加深对经典控制论中基本概念和基本方法的理解,并掌握其在分析、研究和解决实际机械工程控制问题中的应用。通过三方面的实验:原理性仿真实验,面向机电系统中典型物理对象/系统的特性测试与分析实验,和典型机电系统的控制三方面实验。将所学的课程内容融会贯通,培养学生分析和解决问题的能力。

1 机电系统控制基础原理性仿真实验 1.1 实验目的 通过仿真实验,掌握在典型激励作用下典型机电控制系统的时间响应特性,分析系统开环增益、系统阻尼、系统刚度、负载、无阻尼自振频率等机电参数对响应、超调量、峰值时间、调整时间、以及稳态跟踪误差的影响;掌握系统开环传递函数的各参数辨识方法,最后,学会使用matlab软件对机电系统进行仿真,加深理解系统动态响应特性与系统各参数的关系。 1.2系统典型输入的响应实验 1.2.1 实验原理 1.一阶系统的单位脉冲响应 惯性环节(一阶系统)单位脉冲响应simulink实现图,如图1-1所示 (a)可观测到输出曲线 (b)输入、输出曲线均可观测到 图1-1惯性环节(一阶系统)单位脉冲响应simulink实现图 2.一阶系统的单位阶跃响应 一阶系统的单位阶跃响应simulink实现图如图1-2所示。

磁悬浮控制系统设计——自动控制原理大作业

原题 原题图片 物理背景描述 对于上图所示的磁悬浮系统,如果钢球在参考位置附近有很小的位移时,影像探测器上的电压e(伏特)由球的位移x(米)决定,即e=100x。 作用在钢球上向上的力f(牛顿)由电流i(安培)以及位移共同决定,其近似关系为f= 0.5i+20x 功率放大器为压流转换装置,其输入输出关系为i=u+V0。 钢球质量m=20(克),地球表面的重力加速度为g=9.8(牛顿/千克)。 其中V0为恒定偏置电压,以保持钢球处于平衡状态时的位移x=0。 问题的描述 以电压u为控制信号,位移x为输出信号,建立系统的传递函数;以影像探测器输出电压e为反馈信号,并给定参考位移(输入)信号r,构成闭环负反馈系统。试设计适当的控制器,使得闭环系统满足下列性能指标: 跟踪阶跃信号的稳态误差为零,跟踪单位斜坡信号的稳态误差小于0.01; 单位阶跃响应的超调量不大于30%,过渡过程时间不大于1秒(?=2%)。

求控制器的传递函数。 问题推导 1.当x=0,r=0时: e=0,u=0; i=V0; f=0.5V0; 0.5V0?mg=m d 2x dt2 =0; mg=0.5V0 2.系统闭环传递函数: u=r?e; i=r?e+V0=r+V0?100x; f=0.5r+0.5V0?50x+20x=0.5r+0.5V0?30x; F=f?mg=0.5r+0.5V0?30x?mg=m d 2x dt2 ; m d2x dt2 +30x=0.5r+0.5V0?mg; (mg=0.5r) m d2x dt2 +30x=0.5r;取拉氏变换 G(s)=x(s) r(s)=0.5 ms2+30 ; (m=0.02kg) G(s)=25 s2+1500 3.系统开环传递函数 前向通道传递函数: F=f?mg=m d2x dt2 ; 20x+0.5i?mg=m d2x dt2 ; 20x+0.5u+0.5V0?mg=m d2x dt2 ; (mg=0.5r) m d2x dt2 ?20x=0.5r; 取拉氏变换 G(s)=x(s) r(s)=0.5 ms?20 ; (m=0.02kg) G(s)=25 s2?1000开环传递函数:

相关主题
文本预览
相关文档 最新文档