当前位置:文档之家› 页岩气水平井钻井技术

页岩气水平井钻井技术

页岩气水平井钻井技术
页岩气水平井钻井技术

页岩气水平井钻井技术

摘要当前我国页岩气水平井钻井施工整体表现出成本高、周期长、复杂事故多等问题。针对这些问题,本文对国内页岩气井进行了技术跟踪,归纳了当前我国页岩气水平井钻井过程中所面临的轨迹优化及控制、井壁稳定、摩阻扭矩、井眼清洁以及固井技术等难点问题。

关键词页岩气水平井轨迹控制井壁稳定摩阻

美国页岩气资源的规模化开发和商业化利用,正在改变着世界能源格局,而同为世界能源进口大国的中国,同样拥有丰富的页岩气资源。政策以及相关支持政策的陆续出台,不但表明了我国政府大力发展页岩气资源的决心,而且正在积极推进我国页岩气产业的全面、快速发展。

页岩气是指赋存于富有机质泥页岩及其夹层中,以吸附或游离状态为主要存在方式,在一定地质条件下聚集成藏并具有商业开发价值的非常规天然气。与常规天然气藏相比,页岩气储层孔隙度主体小于10%,储层孔隙为0~500nm,孔喉直径介于5~200nm,渗透率极低,一般多采用水平井并经水力压裂技术改造后进行开发。当前,公认的具备商业开采价值的页岩气藏需具备以下条件:①页岩气储集层厚度大于100ft(30m);②富有机质页岩有机质丰富,TOC > 3 %;③成熟度Ro在1.1-1.4之间;④气含量>100ft3/t;⑤产水量较少,低氢含量;⑥黏土含量小于40 %,混合层组分含量低;⑦脆性较高,低泊松比、高杨氏弹性模量;⑧围岩条件有利于水力压裂控制。页岩气藏作为典型的连续型油气聚集,往往分布在盆地内厚度大、分布广的集“生-储-聚”为一体的页岩烃源岩地层中。页岩作为粘土岩常见岩石类型之一,是由粘土物质经压实、脱水、重结晶作用后形成的,其成分复杂,除包含高岭石、蒙脱石、水云母、拜来石等粘土矿物外,还含有诸如石英、长石、云母等碎屑矿物和铁、铝、锰的氧化物与氢氧化物等自生矿物,页岩层理构造发育,多呈页状或薄片状(图1左),并沿层理发育有大量裂隙和微裂隙(图1右),脆性高、易碎,外力击打作用下易裂成碎片,且吸水膨胀性强,长时间裸露浸泡后极易引起井壁缩径、垮塌、掉块等复杂事故。例如,四川威远-长宁构造完成的3口页岩气水平井,水平井段钻进过程多次遭遇井壁垮塌、掉块等复杂,引发卡钻、报废进尺等事故,并导致3口水平井储层段40%进尺作业占总作业时间70%以上。同时,页岩气水平井井壁失稳问题频发,不但严重影响到钻井周期、钻井成本等问题,还直接导致井身质量差、固井难度大、储层污染严重等问题,这些问题都给后续开发带来极为不利的影响。据不完全统计,截止2012年初,四川威远、长宁及云南昭通页岩气产业化示范区完钻的4口水平井,平均井深3357米,平均钻井时间118天,而北美地区井深4000~5000米,水平段1500~2000米的页岩气井钻井周期通常在15~20天,水平段钻井时间仅为5~8天。由此可见,我国相对落后的页岩气水平井钻井技术,已经成为制约我国页岩气工业快速发展的重要瓶颈。

图1页岩层理构造及裂隙电镜扫描照片

1 钻完井技术重点、难点分析

(1)井眼轨迹优化设计及控制

由于页岩气储集层渗透率低,为了实现页岩气的商业化、规模化开发利用,必须钻大量的水平井,而长水平段水平井钻井过程中,如何有效降低摩阻扭矩,如何实现井眼轨迹精确控制是摆在当前尚未得到解决的问题。

图2 平台水平井

出于为了获得更好的压裂效果、沟通更多的天然裂缝以及井壁稳定的考虑,水平井眼轨迹通常设计为沿着最小水平地应力方向,同时,为了降低钻井成本,国外多采用多井平台长水平段水平井开发,即每平台6~8口水平井,最多可24口井,通常采用中长半径,造斜率10°~14°/30m之间,水平段长度通常介于1000~1500m,最长达到3000m,见图2。因此,页岩气平台水平井三维轨迹不可避免,如何实现精确导向、防碰绕障等问题也相继产生。

针对精确导向问题,虽然目前有一系列旋转导向工具,能够提供精确定向服务且能形成高质量的井眼,但是成本高,在规模开发中,普遍采用旋转导向实行轨迹控制与页岩气开发的低成本战略不相符,如何采用MWD+常规导向马达,在滑动+旋转钻进方式下实现页岩气水平井三维轨迹的精确高效控制也成为当前面临的一大难题。

(2)井壁稳定

对泥页岩井壁失稳问题的研究,自上世纪以来,先后经历了纯力学研究(弹性力学阶段,弹塑性力学阶段,多孔弹性力学阶段)、泥浆化学研究、力-化耦合研究、力-化-热力学耦合研究等多个研究阶段,取得了一系列的研究成果和较为系统的研究方法,但当前井壁失稳仍

是页岩气钻井过程中一个不可回避的问题,页岩气储层井壁失稳问题在我国页岩气开发过程中已普遍存在。如我国四川、云南页岩气示范区,钻井过程中无一避免的出现了严重井眼垮塌。例如,昭101井牛蹄塘组灰色、深灰色、灰黑色泥岩层理发育,引起井壁坍塌,同时存在破碎带,井径扩大率最高达68%;昭103井清虚洞组底部出现严重扩径现象,1900米至1975米平均井径扩大率32.33%;威201-H1井钻井中,使用密度1.22 g/cm3的油基钻井液进入龙马溪页岩储层,定向及水平段逐步调整密度至1.30~1.85g/cm3,井下出现垮塌,该井34.39天钻至完钻井深,但完井阶段处理井下复杂时,钻井液密度调整至2.30 g/cm3,多次重浆举砂,清理出垮塌物(见图3)约35m3,耗时37天;宁201-H1井在2800~3000m井段出现严重垮塌,起钻时造成钻具卡死无法处理,导致侧钻等等。

图3 威201-H1垮塌物

频频遭遇的井壁失稳问题表明,目前,不管是国内钻井公司还是国外钻井公司,不管是使用水基泥浆还是油基泥浆,都不能很好地满足当前页岩气水平井长水平段的安全钻进要求,因此,对页岩气水平井井壁失稳问题仍需进行更为精细、系统的研究,主要包括:地层构造分析、岩性分析、水平段岩石力学特性分析、地应力精确预测、泥浆类型优选、安全泥浆密度窗口等多个方面。

(3)井眼清洁

页岩气长水平段水平井,井眼清洁难度大。在水平井眼中,若井眼清洁不好,岩屑容易在30°-65°造斜段翻滚上升、沉降形成“叠片式”岩屑床。由于在该斜度下岩屑床极其不稳定,容易突然发生滑落造成阻卡。同时,由于岩屑床的存在减小了环形空间面积,很容易引起憋泵、钻具下部扶正器产生大扭矩或造成泥包扶正器。而钻具的滑动和转动,会反复碾碎岩屑,使岩屑颗粒变细,造成钻井液固相含量升高,从而导致钻速下降、起下钻抽吸压力升高、摩阻、扭矩急剧增加。

现有研究表明,井眼清洁与钻井液流变性、钻具转速、排量等密切相关。页岩气水平井钻井过程中,钻具无论是在旋转还是在静止状态下,始终靠近低边,高粘度的钻井液液流阻力大,很难清洗沉积在低边的岩屑床,虽然低粘度泥浆更容易清洗低边岩屑床,然而低粘度

钻井液携带岩屑上返至地面需要更高的流速,例如,在转速大于40rpm时,1m/s 上返速度就能彻底将水平井清洗干净,但返速压耗增大、ECD增高,对漏失、井壁稳定等带来十分不利的影响。此外,转速的增加,虽然可以提高井眼清洁效果,但高转速、大扭矩会导致钻具剧烈振动,在对井壁造成冲击破坏的同时,钻具自身也会受到严重的磨损。因此,合理优化水力参数,确保页岩气长水平段井眼清洁,对实现页岩气长水平段快速、安全钻进具有重要意义。

(4)摩阻扭矩

在摩阻扭矩作用下,当钻柱轴向载荷超过临界屈曲值时将会发生屈曲变形,轴向压力超过了正弦临界屈曲力,钻柱会发生正弦屈曲(蛇形,见图4左),若继续增加钻压,将导致钻柱的轴向压力继续增加,一旦超过钻柱螺旋临界屈曲力,钻柱将由正弦弯曲过渡到螺旋弯曲,即沿着井壁盘成螺旋状(见图4右),螺旋屈曲的发生,会使钻具发生自锁现象而难以给钻头提供有效的钻压和扭矩,也即无法实现正常的钻井目的。

图4 井下钻柱屈曲变形

影响摩阻扭矩的因素很多,通常认为与井眼轨迹、井眼钻具组合、井眼清洁、钻井液性能、钻头扭矩等密切相关。而在页岩气长水平段钻井过程中,钻具发生屈曲不可避免,如何合理减轻因屈曲给钻井效率带来的影响已经成为不可忽视的问题。

(5)固井技术

页岩气水平井90%以上要采用套管固井,以满足井壁稳定、后期大型分段压裂和生产的要求。鉴于页岩气储层自身的特性及当前页岩气水平井钻井工艺水平,固井面临的难点主要包括:

①套管居中度差:下套管时,斜井段套管易与井壁发生大段面积接触。当井斜超过70°时套管重量的90%将作用于井眼下侧,套管严重偏心,居中度难以达到66.7%以上;

②固井前洗井、驱替效果差:首先,岩屑床中的岩屑难以清洁干净;其次,油气层顶界埋深浅,顶替时接触时间短,不容易顶替干净;另外,井斜角大、水平位移长,套管在井眼内存在较大偏心,低边泥浆难以驱动,产生“拐点绕流”现象,难以达到洗井目的;若采用油基泥浆钻井,固井前则需要足量的特殊化学冲洗液来恢复水润性,达到润湿反转,这本身

就增加了清洗难度;最后,页岩气储集层存在大量天然裂缝,安全泥浆密度窗口窄,替浆过程中很容易引发井漏,从而影响固井质量。

此外,页岩气藏的高效开发,离不开后期压裂改造措施的实施,而大型水力压裂与分段压裂,要求水泥环具备更高的抗冲击性及封固效果的长效性,这对水泥浆胶结质量提出了更高的要求,有待进一步研究并解决。

2 结论及建议

总体看来,当前我国页岩气水平井钻井技术还处于起步阶段。目前,国内页岩气水平井施工整体表现为施工周期长、复杂事故多、固井质量难以满足后期需要、单井成本高等多个方面,难以实现商业化、规模化开发。建议开展以下关键技术研究:

(1)平台井轨迹优化设计及控制技术研究,并开展“工厂化”作业整体设计与实施研究,从根本上降低钻井成本;

(2)开展页岩气水平井井壁稳定技术研究,以实现安全钻进;

(3)水力参数优化设计研究,以实现快速钻井;

水平井钻井技术经验概述

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然 石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井) 国外定向井发展简况

(表一)

10.井眼尺寸不受限制 11.可以测井及取芯 12.从一口直井可以钻多口水平分枝井 13.可实现有选择的完井方案 (4).短曲率半径水平井的优缺点 优点缺点 1.井眼曲线段最短1.非常规的井下工具 2.侧钻容易2.非常规的完井方法 3.能够准确击中油层目标3.穿透油层段短(120—180米)4.从一口直井可以钻多口水平分枝井4.井眼尺寸受到限制

5.直井段与油层距离最小5.起下钻次数多 6.可用于浅油层6.要求使用顶部驱动系或动力水龙头 7.全井斜深最小7.井眼方位控制受到限制 8.不受地表条件的影响8.目前还不能进行电测 第三节定向井的基本术语解释 1)井深:指井口(转盘面)至测点的井 眼实际长度,人们常称为斜深。国外 称为测量深度(MeasureDepth)。 2)测深:测点的井深,是以测量装置 率是井斜角度(α)对井深(L?)的一阶导数。 dα Kα=─── dL 井斜变化率的单位常以每100米度表示。 8)井深方位变化率:实际应用中简称方位变化率,?是指井斜方位角随井深变化的快慢程度,常用KΦ表示。计算公式如下: dΦ KΦ=─── dL

水平井钻井技术及其在石油开发中的应用

水平井钻井技术及其在石油开发中的应用 经济的快速发展使人们对石油的需求急剧增加以及对环境保护意识的日益增强,如何高效,清洁,经济地开采地下能源已经成为目前继续解决的问题。在此情况下,水平井钻井技术应运而生。它是起源于20世纪80年代并在石油,天然气开发中得到广泛应用的一项综合技术。水平井钻井技术的发展对油井产量提高已经油田采收率提高都起到了只管重要的作用,水平井钻井技术的出现是石油钻井技术方面重大的突破。 水平井技术作为油气田开发的一项成熟,适用技术,在油气田开发中日益得到推广应用,近几年来,随着水平井工艺技术的突破性进展,综合钻井成本逐年下降,经济效益的显著提高,水平井在许多不同油气藏开发中逐步得到广泛应用。本文介绍了水平井的优点及应用范围,论述了水平井的施工技术,并结合钻井工程实例,详细说明了水平井钻井技术在石油开发中的应用,最后点出了水平井钻井技术的应用效果和存在的问题。并得出了相应的结论。 关键词:水平井,钻进工艺,攻关目标水平井钻井技术存在的问题,井眼轨迹控制,随钻测量。

第1章绪论 现在,随着经济的发展,人们对石油的需求越来越大,水平井钻井技术成为最重要的钻井技术之一。在此情况下,水平井钻进技术应运而生。它是起源于20世纪80年代并在石油、天然气开发中得到广泛应用的一项综合性技术。其目的主要是提高石油的产量,降低采油成本。并且随着MWD (随钻测量仪)、PDC (聚晶金刚石复合片钻头)和高效导向螺杆钻具的应用,水平井技术已日趋完善。 总的来说。21世纪水平井钻井技术发展的趋势是向自动化,智能化,轻便化和经济化的方向发展。 传统的公关领域,主要是为钻井施工提供实用心情的工艺技术和装备,目的是提高钻井速度,降低钻井成本。水平井是未来钻井队的主要作业方式,对水品经的研究和发展将成为我们今后的最重要的课题之一,一定要重视和完善。

页岩气水平井钻井技术

页岩气水平井钻井技术 摘要当前我国页岩气水平井钻井施工整体表现出成本高、周期长、复杂事故多等问题。针对这些问题,本文对国内页岩气井进行了技术跟踪,归纳了当前我国页岩气水平井钻井过程中所面临的轨迹优化及控制、井壁稳定、摩阻扭矩、井眼清洁以及固井技术等难点问题。 关键词页岩气水平井轨迹控制井壁稳定摩阻 美国页岩气资源的规模化开发和商业化利用,正在改变着世界能源格局,而同为世界能源进口大国的中国,同样拥有丰富的页岩气资源。政策以及相关支持政策的陆续出台,不但表明了我国政府大力发展页岩气资源的决心,而且正在积极推进我国页岩气产业的全面、快速发展。 页岩气是指赋存于富有机质泥页岩及其夹层中,以吸附或游离状态为主要存在方式,在一定地质条件下聚集成藏并具有商业开发价值的非常规天然气。与常规天然气藏相比,页岩气储层孔隙度主体小于10%,储层孔隙为0~500nm,孔喉直径介于5~200nm,渗透率极低,一般多采用水平井并经水力压裂技术改造后进行开发。当前,公认的具备商业开采价值的页岩气藏需具备以下条件:①页岩气储集层厚度大于100ft(30m);②富有机质页岩有机质丰富,TOC > 3 %;③成熟度Ro在1.1-1.4之间;④气含量>100ft3/t;⑤产水量较少,低氢含量;⑥黏土含量小于40 %,混合层组分含量低;⑦脆性较高,低泊松比、高杨氏弹性模量;⑧围岩条件有利于水力压裂控制。页岩气藏作为典型的连续型油气聚集,往往分布在盆地内厚度大、分布广的集“生-储-聚”为一体的页岩烃源岩地层中。页岩作为粘土岩常见岩石类型之一,是由粘土物质经压实、脱水、重结晶作用后形成的,其成分复杂,除包含高岭石、蒙脱石、水云母、拜来石等粘土矿物外,还含有诸如石英、长石、云母等碎屑矿物和铁、铝、锰的氧化物与氢氧化物等自生矿物,页岩层理构造发育,多呈页状或薄片状(图1左),并沿层理发育有大量裂隙和微裂隙(图1右),脆性高、易碎,外力击打作用下易裂成碎片,且吸水膨胀性强,长时间裸露浸泡后极易引起井壁缩径、垮塌、掉块等复杂事故。例如,四川威远-长宁构造完成的3口页岩气水平井,水平井段钻进过程多次遭遇井壁垮塌、掉块等复杂,引发卡钻、报废进尺等事故,并导致3口水平井储层段40%进尺作业占总作业时间70%以上。同时,页岩气水平井井壁失稳问题频发,不但严重影响到钻井周期、钻井成本等问题,还直接导致井身质量差、固井难度大、储层污染严重等问题,这些问题都给后续开发带来极为不利的影响。据不完全统计,截止2012年初,四川威远、长宁及云南昭通页岩气产业化示范区完钻的4口水平井,平均井深3357米,平均钻井时间118天,而北美地区井深4000~5000米,水平段1500~2000米的页岩气井钻井周期通常在15~20天,水平段钻井时间仅为5~8天。由此可见,我国相对落后的页岩气水平井钻井技术,已经成为制约我国页岩气工业快速发展的重要瓶颈。

页岩气开采压裂技术分析与思考

页岩气开采压裂技术分析与思考 摘要:目前,社会进步迅速,页岩气存储于致密泥页岩地层中,页岩连续分布、区域广,含有一定量的黏土矿物,塑性强,在高应力载荷下易发生形变,页岩储 层具有低孔低渗等特性,需对页岩储层进行改造才具备商业开发价值。目前涪陵 区块和川东南区块,均已实现页岩气大规模开发,形成一套成熟的页岩气开采工艺,工艺实施需借助现场施工实现,只有严格把控施工质量,确保工艺有效实施,才能够实现对页岩气资源的高效开发。下文对此进行简要的阐述。 关键词:页岩气;开采压裂技术分析;思考 引言 伴随着油田行业的深入发展,如今能源紧缺问题已经成为了社会性现实。页 岩气储层低孔低渗,往往要投入巨大的精力对其进行压裂改造才能够保障产能稳定。水力压裂中压裂液性能带来的影响十分直观与突出。 1页岩气压裂施工质量技术现状 当前,经常使用的技术大多是多级压裂、清水、压裂、水力喷射压裂、重复 压裂与同步压裂等等,页岩气开发过程中所使用的储层改造技术还有氮气泡沫压 裂和大型水力压裂也是国内外目前的主流压裂技术。影响页岩气产量的主要原因 是裂缝的发育程度,如何得到较多的人造裂缝是压裂设计主要应该考虑的。如何 才能得到有效而又经济的压裂成果,在实行水力压裂以前,经常要实行压裂的设计。然而,压裂设计的工作确双有许多,最为主要的核心应属压裂效果的模拟, 经过压裂的模拟才可以预测裂缝发育的宽度及长度,从而知道压裂能否顺利成功。 2页岩气压裂开采中对环境的影响 页岩气压裂在开采的过程当中必定会因为一些噪声及废水废气等开采事故灾 害对环境造成一些污染影响,通常会对水资源进行大量的消耗以及地下水层进行 污染。目前,有些专家和环保人士在对页岩气压裂开采的过程也是提出了很多相 关环境污染的影响问题,同时,岩气压裂在开采过程中确实造成了较为严重的环 境污染。 2.1大量消耗水资源 页岩气压裂的开采使用的水力压裂法是压裂液最为重要的,分别由高压水、 砂以及化学添加剂而组成的。页岩气压裂的开采其用水量也是较大的,一般情况 页岩气压裂开采需消耗四至五百万加化的水资源才能使页岩断裂。 2.2污染地下水层 页岩气压裂开采过程当中,其化学物质有可能会直接通过断裂及裂缝由地下 深处慢慢转向向上移动到地表或者浅层,同时也可能页岩气压裂开采过程中由于 质量问题或者某些操作的不当导致破裂或者空洞。某些石油公司把页岩气压裂使 用过程中的的压裂液中的化学添加剂当成非常重要化学物质,然而,也因为这些 化学物质就可能会造成地下水层的污染。其中的化学物质可能会泄露到地下水层 当中,从而就污染了湖泊及蓄水池等等的地下水资源。当整个开采过程完成以后,其很大部分的压裂液又转回流向了地面,而流回地面的压裂液当中不光只有压裂 液里面某些化学物质,也还有部分地壳中原本就存在的放射性物质以及大量盐之类。当一些有毒污水再流回现场时,转而再流向污水处理厂以及回收再利用,当 遇到雨季来临时,整个过程就造成了严重的地下水层污染。 3页岩气压裂施工工艺 随着页岩气开发力度的不断增大,常规的压裂施工技术已经不能满足大规模

页岩气钻井地质技术工作要求

页岩气资源调查评价 钻井地质技术工作要求 二○一三年二月

为确保页岩气资源调查评价项目保质保量按时完成上级下达任务,根据《页岩气勘查开发相关技术规程(试行)2012.8.》及国土资源部油气中心等有关要求,针对本项目工作具体情况,加强页岩气钻井地质技术管理,特制定以下页岩气钻井地质技术工作要求: 一、准备工作 1. 收集相关资料 页岩气钻井地质人员(岩芯编录人员,下同)应收集与本页岩气井相关的技术资料:规程或规范、井位论证报告、钻井工程及地质设计、井区及区域地质资料、其它有关技术学习资料等。 2. 工具、材料及表册 在出野外工作前,应充分准备工具或材料:照相机、罗盘、地质锤、钢卷尺、岩芯箱摄影牌(含标贴)、放大镜、盐酸;量倾角用直尺和量角器、黑中性笔、彩色标记笔、采样袋、绵纸、包装胶袋;钻探原始记录表(班报)、简易水文观测原始记录表(班报)、岩芯鉴定表、岩芯回次鉴定表、岩芯回次票、岩芯分层票、停钻通知书、岩芯处理报告书、测井通知书、封孔设计书、封孔报告书、采样登记表、送样标签、送样登记表(含测试项目)、开工报告、开孔验收书、钻探工程质量验收书等。 3. 其它准备工作 应熟悉井区地层、构造,熟练掌握井区各层位岩性、古生物化石等。 4. 钻井井场 钻塔、井场除按规定(责任、安全牌等)要求外,钻塔要求有红布标——“贵州省黔西南区××页×井”(纵幅挂),安全警戒线(附彩旗)。 岩芯用岩芯箱装,并有防水设备保护。 5. 钻井开工工作 页岩气井施工方将钻井工程设备安装、岩心箱(含岩心遮盖防温布)、安全及责任牌、场地准备就绪,地质人员接到施工方信息后,应立即把编制好的开工报告(一式四份)加盖项目承担单位、所在县国土地局、贵州省矿权储备局公章留存备案或送呈,现场验收钻井并填写开孔验收书(含签名)。 二、岩芯编录工作 钻井施工页岩气目的层的上覆地层孔深每100~200m,地质人员应及时进行现场岩芯鉴定编录,孔深至目的层之前20~50m,地质技术人员应随班钻井观察岩性及层位,孔深到达目的层时除随班钻井观察岩性及层位外,应随时跟踪泥页岩层(含砂泥岩软岩层)含气情况,及时配合现场解吸工作人员采解吸样,目的层孔深每50m应及时进行岩芯编录。 岩芯编录时,应仔细观察岩石的岩性、颜色、结构、层理、构造、节理、裂隙、结核、古生物化石等并依次记录。岩性属砂岩类还应观察记录分选性、磨圆度、胶结物,化石描述应尽量到属或种,腕足类、瓣腮类切忌混淆搞错。 岩芯编录时,凡泥页岩类岩层厚度0.5m以上应单独分层描述,若目的层厚大于100m,泥地比大于60%,0.5m以下泥页岩为其它主岩层的夹层原则上可不单独分层,但需注明井深段位置,否则应单独分层描述;凡颜色深(深灰色、灰黑色、黑色)的粉砂质泥岩、泥质粉砂岩厚度大于1m无论目的层厚度多少应单独分层描述;凡颜色深的粉砂岩、细砂岩、含泥灰岩、泥灰岩厚度大于2m无论目的层厚度厚薄应单独分层描述。 岩芯观察时若遇颜色深的碳酸盐类岩石与砂泥岩等岩石难以辨别,可借助盐

定向井(水平井)钻井技术概述

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。 早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的Rytch Farm油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平位移最大的大位移井是大港定向井公司完成的井,水平位移达到2666米,最大的丛式井组是胜利石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井

647.2-2013_页岩气水平井钻井作业技术规范_第_2_部分:钻井作业(出版稿)

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 647.2—2013 页岩气水平井钻井作业技术规范 第2部分:钻井作业 2013-12-22发布2014-01-22实施

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 钻井工程设计 (1) 4 井眼轨迹控制 (2) 5 防碰作业 (3) 6 水平段安全钻井 (3)

前言 《页岩气水平井钻井作业技术规范》分为五个部分: ——第 1 部分:丛式井组井场布置; ——第 2 部分:钻井作业; ——第 3 部分:油基钻井液; ——第 4 部分:水平段油基钻井液固井; ——第 5 部分:井控。 本部分为第 2 部分。 本标准按 GB/T 1.1-2009《标准化工作导则第 1 部分:标准的结构和编写规则》进行编写和表述。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准起草单位:川庆钻探工程有限公司钻采工程技术研究院、川庆钻探工程有限公司川东钻探公司、川庆钻探工程有限公司川西钻探公司 本标准主要起草人:张德军、赵晗、卓云、叶长文。

页岩气水平井钻井作业技术规范第2部分:钻井作业 1 范围 本标准规定了页岩气丛式井组钻井工程设计、井眼轨迹控制、防碰作业、水平段安全钻井等内容和要求。 本标准适用于川渝地区页岩气井的钻井作业。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SY/T 1296 密集丛式井上部井段防碰设计与施工技术规范 SY/T 5088-2008 钻井井身质量控制规范 SY/T 5416 定向井测量仪器测量及检验 SY/T 5435-2003 定向井井眼轨迹设计与轨迹计算 SY/T 5547 螺杆钻具使用、维修和管理 SY/T 5619 定向井下部钻具组合设计方法 SY/T 6332-2004 定向井轨迹控制 SY/T 6396 钻井井眼防碰技术要求 Q/SYCQZ 001 钻井技术操作规程 Q/SYCQZ 372-2011 丛式井井眼防碰技术规程 3 钻井工程设计 3.1 井身结构 3.1.1 表层套管应封隔地表漏层和垮塌层,相邻两井表层套管下深错开20 m以上。 3.1.2 水平井技术套管下入位置井斜应不低于60°,若井下出现严重垮塌、钻遇高压油气,可提前下入技术套管。 3.1.3 油层套管尺寸不小于 11 4.3 mm,抗内压强度与增产改造施工压力之比>1.25。 3.1.4 水平段长度宜控制在800 m ~ 1400 m。 3.2 靶区 3.2.1 靶区半径设计符合SY/T 5088-2008的规定,且满足井眼轨迹控制要求。 3.2.2 水平段井眼方向与地层最小主应力方向的夹角不小于 15°。 3.3 井眼轨道 3.3.1 每口井地下靶心与井口位置连线相互之间不宜空间交叉。

页岩气钻井关键技术及难点研究

页岩气钻井关键技术及难点研究 摘要:页岩气属于非常规天然气资源,国外的页岩气开发已经积累了一定的经验。我国的页岩气开发处于初级阶段,为了更好地开发页岩气,结合我国页岩气 井钻探的实际情况,对页岩气钻井关键技术进行研究,解决钻井的难点问题,不 断提高页岩气井钻探的效率。 关键词:页岩气;钻井;关键技术;难点分析 我国页岩气资源丰富,普遍存在分布广、丰度低、易发现、难开采等特点, 是具有自生自储、低孔低渗、无气水界面、大面积连续成藏的低效型气藏资源。据在川南和滇北地区的页岩气完钻井统计显示,页岩气开发主要存在地层不确 定因素多,压力及流体性质难以预测; 泥页岩和致密砂岩易水化膨胀、易破碎, 井壁不稳定; 固井易气窜,完井困难; 储层易损害,采收率低; 钻井速度慢,钻井 周期长; 开发技术难度大,钻井成本高等问题。为获得较高的钻井收益率,需要 掌握页岩气藏地层特点,预防和克服井下复杂情况,加快页岩气优快钻井配套 技术研究,实现我国非常规油气资源开发的突破与发展。 1.页岩气钻井关键技术 1.1页岩气进入井眼途径 页岩气井中,页岩气进入井眼的过程如下:在钻井、完井压降的作用下,裂 缝系统中的页岩气流(游离气)向井眼并且基质系统中的页岩气(吸附气)在基 质表面进行解析;在浓度差的作用下,页岩气由基质系统向裂缝系统进行扩散;在流动势的作用下,页岩气通过裂缝系统流向井眼。页岩气进入井眼途径复杂, 是钻井过程中的关键之一。 1.2钻井井位部署 页岩气的吸附气含量达到25 %~85 %,同时没有远距离的运移和聚合,因此,其开采必须借助于现代化的压裂工艺,通过进一步扩充裂缝,连通相关的孔隙, 从而获得一定产能的页岩气。以前由于压裂工艺和设备的限制,导致无法获得具 有工业价值的页岩气。现代设备和技术的快速发展,是目前页岩气工业能够快速 发展的重要因素之一。 1.3浅层大位移井 大位移井是在定向井、水平井技术之后又出现的一种特殊工艺井。大位移井 的定义一般是指井的水平位移与井的垂深之比等于或大于 2 的定向井且井斜角大 于 60°,具有很大的水平位移和很长的大井斜稳斜井段。地质导向工具、旋转导 向钻井系统、闭环钻井、先进的随钻测量系统、新型钻井液、先进完井工具得到 开发和应用,促进了长水平井钻井技术的迅速发展,目前已经钻成了水平位移超 过 10 000 m,最大水平段长度已达 6 000 m 以上。目前国内浅层大位移水平井钻 井研究情况非常缺乏。 2.页岩气水平井钻完井技术的难点分析 2.1井眼轨迹优化设计及控制 由于页岩气储层渗透率低,为了实现页岩气的高效开发,必须进行大量水平 井钻井,而长水平段水平井钻井过程中,如何有效降低摩阻扭矩,如何实现井眼 轨迹精确控制则是需要解决一个难点。为了获得更好的压裂效果、沟通更多的 天然裂缝以及井壁稳定的考虑,水平井眼轨迹通常设计为沿着最小水平地应力 方向,同时,为了降低钻井成本,国外多采用多井平台长水平段水平井开发,即 每平台 6~8 口水平井,最多可达 24 口井,水平段长度通常介于 1000~1500m,

页岩气开采技术

页岩气开采技术 1 综述 页岩气是一种以游离或吸附状态藏身于页岩层或泥岩层中的非常规天然气,是一种非常重要的天然气资源,主要成分是甲烷。页岩气的形成和富集有其自身的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。如图1.1所示。页岩气一般存储在页岩局部宏观孔隙体系中、页岩微孔或者吸附在页岩的矿物质和有机质中。页岩孔隙度低而且渗透率极低,可以把页岩理解为不透水的混凝土,这也是页岩气与其他常规天然气矿藏的关键区别。可想而知,页岩气的开采过程极为艰难。根据美国能源情报署(EIA)2010年公布的数据,全球常规天然气探明储量有187.3×1012m3,然而页岩气总量却高达456×1012m3,是常规天然气储量的2.2倍。与常规天然气相比,页岩气具有开采潜力大,开采寿命长和生产周期长等优点,至少可供人类消费360年。从我国来看,中国页岩气探明储量为36×1012m3,居世界首位,在当今世界以化石能源为主要消费能源的背景下,大力发展页岩气开采技术,对我国减少原油和天然气进口,巩固我国国防安全有很重要的意义。我国页岩气主要分布在四川盆地、长江中下游、华北盆地、鄂尔多斯盆地、塔里木盆地以及准噶尔盆地,如图1.2所示。 图1.1页岩气藏地质条件图1.2中国页岩气资源分布页岩气开采是一种广分布、低丰度、易发现、难开采、自生自储连续型非常规低效气藏,气开采过程需要首先从地面钻探到页岩层,再通过开凿水平井穿越页岩层内部,并在水平井内分段进行大型水力加砂压裂,获得大量人工裂缝,还需要在同一地点,钻若干相同的水平井,对地下页岩层进行比较彻底的改造,造成大面积网状裂缝,最后获得规模产量的天然气。因此,水平井技术和水力压裂技术的页岩气成功开采的关键。 2 页岩气水平井技术 1821年,世界上第一口商业性页岩气井在美国诞生,在井深21米处,从8米厚的页岩裂缝中产出了天然气。美国也是页岩气研究开采最先进的国家,也是技术最成熟的国家。国外页岩气开采主要在美国和加拿大(因为加拿大和美国地质条件类似,因此可以承接美国的开采技术),主要得益于水平井技术、完井及压裂技术的成功应用。 2.1 开采技术 早期的页岩气开采主要运用直井技术,直井开采技术简单,开始投入成本低,但是开采

水平井工艺技术措施

水平井技术措施 1. 侧钻 1) 直井段要保证钻直,钻进至造斜点测ESS,及时计算出井身轨迹数据,以此为依据计算设计下部施工的井眼轨道; 2) 侧钻井段要选择在井径规则、钻时较快的井段,最好是砂岩段; 3) 水泥塞要保证打实,候凝48小时以上,检查水泥塞质量。检查方法:修水泥面,试钻钻压50~80千牛,钻时不高于5~8分/单根,水泥塞质量达到上述要求后钻至侧钻点井深; 4) 侧钻用直马达加弯接头,使用MWD监测井身轨迹的变化情况,判断是否侧钻成功; 5) 严格按照推荐上扣扭矩紧扣; 6) 控制起下钻速度在15柱/小时以下; 7) 开泵前要确保已安放了钻杆泥浆滤清器; 8) 钻井参数服从马达参数,轻压,根据钻进直井段时的钻时选择控制好侧钻钻时; 9) 随时注意钻进时的返砂情况,根据返砂情况及时调整钻井参数,确认新井眼与老井眼偏离2米,新砂样达90%,可确定出新井眼,方可起钻; 10) 起钻前,充分循环至振动筛上无砂子返出; 11) 起钻后采用导向系统钻进。 2. 导向钻进 1) 严格按照推荐上扣扭矩紧扣; 2) 控制起下钻速度在15柱/小时以下; 3) 若下钻遇阻,划眼时应保证工具面是钻进该井段时使用的工具面; 4) 开泵前要确保已安放了钻杆泥浆滤清器; 5) 钻井参数参考马达使用参数; 6) 如果造斜率偏高,马达角度在2度以下可考虑采用10-30转/分以下的转速启动转盘导向钻进; 7) 如果造斜率偏低,起钻换高角度马达; 8) 工具造斜率应稍高于设计造斜率,避免因造斜率不足而起钻; 9) 实际施工过程中,应使实钻轨道尽量靠近设计轨道; 10) 根据现场实际情况,分段循环,及时短起下,保证井眼清洁; 11) 钻具倒装,原则是井斜30度以深井段采用18锥度钻杆,加重钻杆

阶梯水平井钻井技术

阶梯水平井钻井技术 冯志明 颉金玲 (大港油田集团公司定向井技术服务公司,天津大港 300280) 摘要 阶梯水平井是在水平井完成第1水平靶区后,通过降斜、稳斜、增斜段的调整,进入并完成第2水平靶区井段的水平井钻井技术。该技术将水平井技术又推上了一个新的高度。使水平井的应用扩展到常规油气层,连续薄油层、断块油层等复杂油气田。文中从施工难点、优化工程设计、井眼轨迹控制3方面论述了阶梯水平井的钻井技术。列举了TZ406井、YX2P1井、LN61-H1井3口阶梯水平井的施工数据。针对TZ406井施工经过、施工要点、施工技术措施,对阶梯水平井的设计、轨道控制技术、施工难点经验、体会和认识,做了全面的论述。现场应用表明:阶梯水平井显著地增加了产量,大幅度地提高勘探开发的综合经济效益,必将成为油气田开发的重要手段之一。 主题词 水平井 导向钻井 井眼轨迹 工程设计 钻具组合 作者简介 冯志明,1966年生。1987年毕业于重庆石油学校钻井工程专业,工程师。 颉金玲,1945年生。毕业于华东石油学院,现任副经理,高级工程师。 阶梯水平井是指在一个井眼中连续完成具有一定高度差的两个或者多个水平井段,形成具有两个或多个台阶的井眼轨迹,用一个井眼开采或者勘探两个或多个层叠状油藏、断块油藏的水平井井型。利用阶梯水平井连续在这两个油层中水平延伸一定长度,节约了重复钻井的投资,增加了单井产量,可取得最佳的开发效果。 一、施工难点 1口成功的阶梯式水平井,能实现取代2口或多口水平井的开发目的,既节约投资,又能获得好的效益。常用于阶梯式水平井开发的区块具有以下特点:(1)层叠式或不整合薄油藏;(2)断块油藏;(3)上部油层断失或尖灭,存在下部可供开采的油藏。 1.目的层油层薄,区块复杂,井眼轨迹拐点多,不平滑,不利于送钻和钻压传递,控制和调整井眼轨道工作量大。着陆、阶梯过渡段控制困难。 2.对钻井装备、钻井液净化设备要求高,井眼的净化和携砂难度大,大斜度井段易形成岩屑床,造成井下复杂情况发生,需要有足够的动力,配套齐全的净化设备。 3.钻具组合、监测仪器等针对性强,技术含量高,钻柱受力复杂。 二、优化工程设计 1.优化井身剖面设计 阶梯水平井的地质设计,通常只给定AB段、CD段两个阶梯水平段的入窗窗口和目标靶区,工程设计则需要满足以下3个方面的条件。(1)满足地质对轨迹控制的要求:即中靶要求。(2)井下专用钻具、工具、仪器装备能满足设计井眼轨迹控制的要求。(3)完井电测、下套管、固井等完井工艺技术水平须满足开放要求。 阶梯式水平井,与普通水平井不同的是怎样依据地质要求,对第1水平段终点到第2水平段终点间的井身剖面进行设计。 2.优化井身结构 根据TZ406井、YX2P1井和LN61-H1井的施工技术,结合国内外其它地区阶梯水平井的施工经验、油层特点和完井方式,一般认为技套必须封固目的层以上的异常高压以及易垮塌、破碎带等不稳定地层,以保证水平井安全、快速地钻井和完井。 三、井眼轨迹控制技术 1.合理的钻具组合设计 分析近年来完成的数十口水平井资料,总结出几套适合于常规水平井和阶梯水平井施工,目前国内工艺技术和装备又能够实现的钻具组合结构。 (1)侧钻钻具组合。钻头+螺杆钻具+定向接头+无磁钻铤+MWD短节+钻铤+钻杆。该钻具组合常用于回填导眼后的侧钻井段和第1造斜井段的施工,平均造斜率达10~12(°)/30m。 (2)钻盘微转增斜钻具组合。钻头+稳定器+无磁钻铤+MWD短节+无磁钻挺+稳定器+钻铤+ 22石油钻采工艺 2000年(第22卷)第5期DOI:10.13639/j.od pt.2000.05.006

页岩气开采压裂技术

页岩气开采压裂技术 摘要:我国页岩气资源丰富但由于页岩地层渗透率很低,页岩气井完井后需要经过储层改造才能获得理想的产量,而水力压裂是页岩气开发的核心技术之一。在研究水力压裂技术开发页岩气原理的基础上,剖析了国外的应用实例,分析了各种水力压裂技术( 多级压裂、清水压裂、水力喷射压裂、重复压裂以及同步压裂技术)的特点和适用性, 探讨了天然裂缝系统和压裂液配制在水力压裂中的作用。 关键词:水力压裂页岩气开采压裂液 0 前言 自1947年美国进行第1次水力压裂以来,经过50多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。如裂缝扩展模型从二维发展到拟三维和全三维; 压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响; 压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。同时, 从开发井压裂拓宽到探井压裂,使压裂技术不但成为油气藏的增产增注手段,如今也成为评价认识储层的重要方法。 1 国内外现状 水力压裂技术自1947年在美国堪萨斯州试验成功至今近半个世纪了,作为油井的主要增产措施正日益受到世界各国石油工作者的重视和关注,其发展过程大致可分以下几个阶段: 60 年代中期以前, 以研究适应浅层的水平裂缝为主这一时期我国主要以油井解堵为目的开展了小型压裂试验。 60 年代中期以后, 随着产层加深, 以研究垂直裂缝为主。这一时期的压裂目的是解堵和增产, 通常称之为常规压裂。这一时期,我国进入工业性生产实用阶段,发展了滑套式分层压裂配套技术。 70年代,进入改造致密气层的大型水力压裂时期。这一时期,我国在分层压裂技术的基

第一章 定向井(水平井)钻井技术概述

第一章定向井(水平井)钻井技术概述 定向井、水平井的基本概念 定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的RytchFarm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平

苏里格气井水平井快速钻井配套技术

苏里格气井水平井快速钻井配套技术 摘要:随着苏里格气田的不断开发,水平井规模开发已成为苏里格开发的重点。由于苏里格气田水平井钻遇气层多为薄产层,尖灭快,地质构造复杂,地质导向预测不准等原因,钻井过程中遇到许多影响因素,对钻井提速造成很大困难。结合今年水平井现场施工情况,分析了影响钻井提速的因素,提出预防措施及改进和研究方向,达到安全、快速、高效钻进的目的。 关键词:钻井提速预防措施轨迹控制钻井液 随着水平井钻井工艺技术的不断成熟,水平井开发达到了预期的效果。但是近年来的水平井钻井施工,也遇到了各种各样的情况,严重影响了钻井的施工速度,直接影响钻井效益。因此就影响苏里格气田水平井钻井提速的一些因素进行分析,以便找到钻井提速的有效措施。 2.制约提速因素 2.1.地质因素的影响 2.1.1地层稳定性差,增斜井段增斜困难,水平段稳斜困难。 2.1.2气层位置不确定性,增加了轨迹控制难度。 2.1.3地层的特殊性,地层缺失。 2.1.4地层倾角的影响,方位漂移。 2.1.5地层压实程度差,承压能力低,易发生井漏。 2.2钻井因素的影响 2.2.1水力作用的影响

排量大,对井壁冲刷严重,井径扩大率大,影响增斜、稳斜效果。 2.2.2钻井参数的影响 钻井参数不合理达不到单弯螺杆理想的造斜率。通常钻压大,转速低增斜率高,反之,增斜率则低。 2.2.3摩阻和扭矩的影响 由于水平段长、井斜角大,钻具贴于下井壁,重力效应突出,上提、下放钻具的阻力增加,钻进加压困难;钻柱摩擦阻力大、扭矩大,下部钻具易屈曲,传递扭矩困难,机械钻速大为降低。 2.2.4钻井液的影响 钻井液是钻井施工的血液,钻井液性能的好坏与地层的适应情况对钻井施工来说至关重要,甚至说钻井液性能是决定一口井成败的关键。钻井液性能差,水力清除井底岩屑的能力也大大降低,在很多情况下因岩屑不能及时清除而导致重复破碎,甚至泥包,致使钻头的机械钻速下降。严重的易发生堵水眼、缩径、掉块、井塌、油气侵、井漏、长井段的划眼、倒划等复杂情况,引起砂卡、粘卡、键槽卡钻等事故。 2.3钻井工具、仪器的因素 2.3.1钻头寿命以及钻头选型的影响 苏里格气田水平井钻遇地层多、岩性变化大。不同钻头厂家生产的不同钻头地层适应性有所不同,选型不同,寿命不同,钻井速度大为不一样。 三牙轮钻头复合增斜比较容易,返出岩屑有利地质导向辨认地

页岩气充气泥浆钻井技术

页岩气充气泥浆钻井技术 充气泥浆钻井是将一定量的气体 (空气、氮气、天然气等)连续不断 注入泥浆内,使其呈均匀气泡分散于 泥浆中,形成充气泥浆。从井内返出 的泥浆经过地面除屑除气后再次注入 井内循环。充气泥浆的密度可根据用 用户要求在0.45g/cm3以上进行调整, 从而达到防止漏失和防止油气层污染 的目的。其主要优点为:减少钻井液 漏失造成对目的层的污染,提高机械 钻速,降低钻井成本。

充气钻井液的分散相气体可以是空气、天然气、氮气等气体; 连续相可以是各种类型的常规钻井液,也可以是淡水、清洁盐水、地层水、柴油等液体,但作为连续相的钻井液必须是易充气、易脱气且很稳定。 充气钻井液入井前通过调整气、液量来调整钻井液的密度;返出井口后经过地面除气器,气体从充气钻井液中脱离出来,以保证泵的正常上水。

?充气钻井技术优点 ⑴在0.55~1.03g/cm 3密度范围内能够通过充气进行有效地调整,从而降低静液柱压力,实现近平衡或欠平衡钻井,保护油气层; ⑵需要较高静液柱压力(而其它气体系不能产生)的油气藏,可以采用充气钻井液来钻,从而最大程度地降低地层损害; ⑶将充气钻井液应用到其它气体体系不能奏效的情况下,例如,在欠平衡钻井过程中,能够产出大量水的严重漏失地层,通过调整注气量和液量,可以在环空中获得平衡状态,从而既不漏失,也不井涌;对井塌等钻井复杂问题亦较泡沫有较强适应能力;

⑷基液可以是钻井液而不是水,因此可以在钻穿水敏性地层时,维持井眼的稳定性; ⑸减少钻具磨损和井下钻具着火的危险; ⑹钻井时效高,能大幅提高钻机作业效率; ⑺保持较高的PH值用于克服内在的腐蚀损害和对充气钻井液的破坏; ⑻消除了着火和灰尘危害,有利于保护环境;

羽状水平井钻井工艺

定向羽状水平井钻井工艺 定向羽状水平井技术适合于开采低渗透储层的煤层气,集钻井、完井与增产措施于一体。其主要机理在于多分支井眼在煤层中形成网状通道,促进微裂隙的扩展,又能连通微裂隙和裂缝系统,提高单位面积内的气液两相流的导流能力,大幅度提高了井眼波及面积,降低煤层气和游离水的渗流阻力,提高气液两相流的流动速度,进而提高煤层气产量和采出程度。 一、钻井设备: 1.钻机、钻塔、钻铤和钻具。 2.造斜工具 中、长半径造斜工具(包括P5LZ165、PSLZ197、P5LZ120三种尺寸系列、多种结构规格的固定弯壳体造斜马达)和短半径造斜工具。 3.水平井测井仪器。包括钻杆输送式、泵送式两种测井仪器和下井工具,以及湿式接头和锁紧装置等。 4.射孔工具。包括旋转弹架和旋转枪身等2种高强度定向射孔枪和传爆接头。 5.完井工具。包括金属棉筛管、新型套管扶正器及其它9种完井工具 6.铰接式钻具 羽状分支水平井的井眼轨迹是空间弯曲线,既有井斜的变化又有方位的变化,通常需要在钻铤或钻杆连接处加装一个具有柔性连接的铰接式接头。这种接头具有万向节的功能,在一定角锥度范围内可以任意方向转动,同时具有密封功能。此外,采用铰接式钻具组合,最大限度降低扭矩、摩阻和弯曲应力。 7.可回收式裸眼封隔器/斜向器

斜向器是分支井钻井的关键技术工具,对分支井的钻井起着至关重要的作用,它在分支点处引导钻头偏离原井眼按预定方向进行分支井眼的钻进。煤层气钻进中的斜向器是可回收式带裸眼封隔器的,它由斜向器和封隔器两部分组成,斜向器的斜面上开有送入和回收的孔眼,用于施工作业中送入和回收斜向器,可膨胀式封隔器用于固定和支撑斜向器。 8.井眼轨道控制 由于煤层可钻性好,钻速快,单层厚度薄(3~6m),井眼轨迹控制难度大。为将井眼轨迹控制在煤层内,可采用“LWD+泥浆动力马达”或地质导向钻井技术。实现连续控制,滑动钻进,提高轨迹控制精度,加快钻进速度。同时要避免井眼轨迹出现较大的曲率波动。钻进中尽量避免大幅度变动下部钻具组合结构、尺寸和钻进参数,并控制机械钻速在一定范围内变化,防止井眼出现小台肩现象。 9.其它工具和装备。例如专用取心工具、无磁钻挺、纺锤形稳定器等多种工具和装备。 二、材料: 钻井液:油基钻井液、水基钻井液、无土相钻井液和气基钻井液。 套管等。 三、工艺流程: 1.煤层气羽状水平井完井方法 分支井作为水平井与定向井的集成与发展,其技术难点不再是钻井工艺技术而是完井技术。同水平井及直井相比,分支井完井要复杂的多,主要是分支井根部的连接密封以及分支井眼能否再次进入的问题。目前,国外分支水平井的完井方法主要有三种:裸眼完井、割缝衬管完井和侧向回接系统完井。裸眼完井较为常见,但易出现井壁坍塌等问题。割缝衬管完井虽然能克服这一缺陷,但安装比较困难。如果水平段的岩性比较硬可用裸眼完井或割缝衬管完井,一般较软岩石可用水平井回接系统完井。实际操作中,可根据具体情况进行设计对于煤层气定向羽状分支水平井的完井方式,工艺较简单。如要采用裸眼完井,直接投产。2.钻出工艺 目前国外主要采用以下四种方法钻出分支井: 1)开窗侧钻

页岩气开采(压裂技术)对环境、健康的影响

页岩气开采(压裂技术)对环境、健康的影响 Shale gas exploitation (Fracking)and its environmental and health impact 周睿译普红雁程浩毅校 本译文由云南省健康与发展研究会提供 来源:《世界页岩气资源:美国以外14个区域的初步评估》,美国能源信息署,2011年,https://www.doczj.com/doc/0a5961903.html, 页岩气开采也涉及到许多其他的环境和健康问题。欧盟2012年8月的一项研究表明,压裂法开采页岩气存在着较高的风险,它有可能引发一系列环境问题,例如污染地下水、地表水和空气,引发水资源安全问题,占用土地资源,影响生物多样性,产生噪声污染及交通问题。

(1)用水 页岩气开采需要大量的水,可能会(导致)对钻井所在地区造成供水压力。每一次压裂操作大约使用1500万升水,而钻井可被压裂多达10次。根据我们的计算,单独一口井所使用的水能够供大约10000欧洲人使用一年。 在水资源供应本已存在压力或是由于气候变化可能存在压力的地区,水量需求水平尤为重要。在欧洲,德国和波兰拥有有丰富的页岩气储量,但其人均可再生水资源位列欧盟国家最末。在英国,目前进行的页岩气开采的地区,其供水情况已经被认为处于“超负荷”水平。2012年美国大部分地区遭遇夏季干旱的侵袭,页岩气开采表现出这种缺水的影响,德克萨斯和堪萨斯的某些地区被迫停止了页岩气的开采,而在宾夕法尼亚州,页岩气的开采则被禁止使用河水。在其他地方,页岩气运营商试图通过收买农场主或向土地所有者支付大量金钱来获得水资源的使用权。 尽管通常认为压裂法比煤和核能用水更少,但却不太可能简单地替代上述两种能源。实际上,如果将多种装置的累积效应考虑在内时,压裂法反而可能会需要更多的水。

页岩气钻井技术新进展

网络出版时间:2017-03-01 17:44:48 网络出版地址:https://www.doczj.com/doc/0a5961903.html,/kcms/detail/13.1614.G3.20170301.1744.004.html 页岩气钻井技术新进展 李东杰,王炎,魏玉皓,张彬,于建涛,张波,廖沫然 中国石油华北油田公司 摘要:当前页岩气开发技术日益先进和成熟,水平井技术和大规模储层改造成为非常规油气开发的关键。追踪研究国外近年在页岩气水平井开发中应用的典型新技术,如在钻井工具方面有旋转导向闭环系统、电磁无线随 钻测量装置、新型裸眼侧钻斜向器、随钻成像工具等先进工具出现;在钻头和钻井液方面,贝克休斯等国外石油 公司针对页岩特性,研制推出了ONYX Ⅱ Spear和Talon 3D矢量等系列的PDC钻头,创新优化出了多种新型高 性能水基钻井液;并不断探索“井工厂”作业模式升级换代。文章结合国内目前技术现状,提出了未来中国页岩 气钻井技术应尽快完成核心技术和工具的国产化,继续加大低成本替代技术研究力度,开展储层地质与工程一体 化,以实现页岩气经济有效开发。 关键词:非常规油气;钻井;PDC钻头;钻井液;井工厂;作业模式;新技术 中图分类号:TE24文献标识码:A 21世纪以来,美国通过以水平井钻井和多级水力压裂为代表的开发技术,掀起了“页岩气革命”,很快这股浪潮席卷全球,目前有约30个国家加入了页岩气勘探开发行列。我国也相继在四川长宁、威远,重庆涪陵、彭水,云南昭通等地开展了页岩气开发,并于2014年在重庆涪陵实现了页岩气商 业化开发,但整体而言仍处于初级阶段[1,2]。 目前页岩气在钻井技术方面仍面临许多挑战,如页岩地层的强水敏性和地应力变化,引起井壁失稳严重;三维长水平段水平井摩阻扭矩大,托压严重,轨迹控制困难;储层预测难度大,优质储 层钻遇率制约单井产量再上水平;低油价环境下,降低投资成本急迫,倒逼现有提速技术手段和高 效作业模式亟待优化升级等[3,4]。为解决上述挑战,近年来国外在页岩气等非常规油气的钻井方面取 得了不少新进展,从一定程度上代表了今后非常规油气乃至常规油气钻井的发展方向[5-7]。 1钻井工具 水平井能降低费用、最大限度钻遇油气层,可使井数减少50%~80%,是页岩气开发的主力井型。近年来在水平井钻井方面出现了以下几种代表性新工具。 1.1旋转导向闭环系统(RCLS) 目前国外页岩气水平井轨迹控制多采用三维旋转导向闭环系统,其核心为旋转导向工具,结合随钻地质参数测量系统、地面井下双向信息传输系统和地面监控系统组成的智能闭环钻井系统[8,9]。 旋转导向工具具有独立电动液压模块和控制系统,可通过精确控制3个转向臂与井壁的连续作用力实现导向,同时利用闭环控制系统每秒自动测量套筒位置,及时修正摩擦与振动引起的套筒非 正常转动,确保导向矢量方向准确。最终实现在钻柱旋转的同时完成钻进、监测和导向作业,从而 解决了非常规油气水平井在水平段滑动钻井时间过长、控制井眼轨迹难度大、摩阻和扭矩高,以及 钻完井周期长、投资成本高的问题,实现了在变化的钻井环境中保持相容性和一致性,保证井眼质 量,实现高效钻井。 目前在北美页岩气水平井中,常规旋转导向工具让单一井段“一趟钻”渐成常态,而高造斜率旋转导向工具(15°~18°/30m)则实现了双井段甚至三井段的“一趟钻”(图1)。国内方面,由于国 产旋转导向工具还处于试验阶段,为控制成本多采用“优化井眼轨迹+常规导向动力钻具+减摩减阻 工具”的方式,其中减摩减阻工具多采用水力振荡器,但该工具压耗偏大、耐蚀损性能偏弱,同时 影响MWD、LWD等仪器的信号采集,这些也制约了水力振荡器在页岩气水平井中的推广[10]。 NM连接扣MWD探测器组合动力&遥测柔性稳定器导向机构 图1 3D旋转导向闭环钻具组合结构(高造斜率) 1.2电磁无线随钻测量装置(EM-MWD) 目前传统钻井液脉冲无线随钻测量装置(Pulser MWD),依靠钻井液压力脉冲波传递信号,无法在泡沫、充气等非液体钻井中应用,且传输速率较慢,而电磁无线随钻测量装置通过低频电磁波 将信号从地下传输至地面,通过地面天线接收信号之后解码、处理为可利用的参数[11]。该装置主要

相关主题
文本预览
相关文档 最新文档