当前位置:文档之家› 摆线轮

摆线轮

摆线轮
摆线轮

摆线针轮减速器的研究现状

摆线针轮减速器国外的研究现状

上世纪在50年代到70年代间,对针摆传动的理论做大量研究主要是国外学者。前苏联科学家库德罗夫采夫,推导出了一套标准齿形受力分析理论,对针摆传动的理论发展做出了巨大的贡献。许多国内教材和工具书上描述的受力分析方法大都是这个库氏理论的引用、修正和改进。然而它也有其局限性,它仅仅使用于无齿侧间隙的理想啮合状态。波兰Manfred Chmurawa等科学家建立了理论标准齿廓的数学模型,通过有限元计算的方法对摆线轮齿面的接触力和接触变形进行了计算,但是使用的摆线轮的数学模型是理论的的齿廓,而理论齿廓和实际齿廓有一定的偏差,因此计算前提出现了一定的偏差,所以计算值和实际相比误差仍然很大。

Kuen-Bao提出了基于d'Alembert原理的K-H-V摆线机构传动效率计算、静力学分析和运动学分析的数学模型。Chang.S L利用微分和几何学,建立了外旋轮线少齿差针摆传动压力角的数学模型。

在针摆传动机构设计方面,Botsiber针对摆线传动机构的工作原理进行了研究,具有较少的分析工作。Malhotra和Parameswaran针对设计参数对摆线减速器各个构件的理论效率及作用力的影响进行了研究。虽然德国人发明了摆线少齿差传动,然而德国在这方面的研究相对缓慢;上世纪70年代末,慕尼黑工业大学的Lehmann博士曾经对摆线齿形的误差的形成、分布规律以及成型原理做了一定的探讨,还指出了法向修形产生的间隙大于径向修形所产生的间隙。并对生产的样机进行了动态测试,结果表明:由于啮合时间隙的存在,摆线轮和针齿同时啮合的齿数小于针齿数的一半,并连续发表了5篇该方面的研究论文。但以后该方向的研究并没有持续下去。德国Birkholz.H博士利用相对精密的实验设备对摆线传动装置传动时,由于不同的原因产生的转动误差进行了测量,还对其转速变化的情况进行了探讨。

Blanche和Yang开发了具有加工误差的摆线传动的分析模型并研究了加工误差对齿侧间隙的影响,并且提出了使用计算机辅助分析程序来检验针摆传动的性能。

俄国学者Litvin在共轭齿廓对的创新设计方面造诣颇深,他出版了多本关于齿轮理论的书,他基于共轭理论对各种齿轮传动共轭齿廓的形成方法进行了研究。1996年Litvin和Feng 用微分几何绘制出了摆线针摆传动的共轭齿廓对曲线族。在2001年到2002年间,Litvin同V.Daniele和D.Alberto提出了摆线齿轮泵共轭齿廓曲线族的设计和运动仿真。

近来Yan和Lai提出了用共轭曲面理论进行内摆线减速器的几何设计概念,在针摆传动机构创新设计方面做出了很大贡献。最近Li等对一种双曲柄环盘形摆轮传动进行了研究并且提出了它的设计要点和工作原理。J.H.Shin和S.M.Kwon提出了用相似坐标转换技术和瞬时速度中心的原理对摆线盘形齿轮进行几何设计的新方法,避免了齿轮传动中的干涉现象。

日本早在50-60年代对行星齿轮减速器进行了大量的理论研究。因此日本在减速器制造领域一直处于世界领先水平。80年代初,日本帝人公司开始研究开发2K-V型摆线针轮行星

齿轮减速器,这种减速器又称作RV传动(Rotary Vector)。帝人公司在1986年的时候,取得阶段性成果,并实现了2K-V型摆线针轮行星齿轮减速器的产业化。由于RV减速器性能优越,因此自RV减速器投放市场以来,受到普遍重视和好评。帝人公司生产的具有高刚度和高精度的RV减速器,现在已经形成系列产品。

自从购买了德国的发明专利后,日本住友重机械株式会社经过长期的探索和研究。为了有效地克服摆线轮齿面由于胶合破坏而失效,他们采用了齿面修行的方法。这是针摆传动从理论到实践的第一次飞跃。1969年,日本住友重机械株式会社推出了50系列摆线针轮行星传动减速器。该减速器一上市就因其具有可靠性高、承载能力强、传动比范围大和结构紧凑等特点,所以迅速占领了国际市场并且在传动领域得到了广泛的应用。

该公司所属的研究单位具有强大新产品的研发能力和理论创新能力,因此他们不断地利用新技术、新发明、新理论来改造原来的系列产品,相继推出了80系列(约1988年)、90系列(约1992年)、200系列(1998年),4000系列(1994年),5000系列(2000年)和新近推出的6000系列。

国内研究状况

在50年代初,我国开始对行星齿轮装置进行研究,在80年代到90年代期间发展较快。1990年,上海减速器厂研制成功汽车专用的2K-V型摆线针轮行星齿轮减速器。从90年代以后,我国在2K-V型摆线针轮行星齿轮传动的研究方面取得的成果:1993年,杨锡和等人对RV传动进行了简单的受力分析;1995年,毛建忠等人开始研究用变齿厚渐开线取代外摆线齿轮以实现RV传动;1996年何卫东等人对RV减速机的效率进行了分析;1997年,RV减速机研究被列入国家83高技术研究发展计划,其理论研究内容涵盖受力分析,运动学分析,传动效率计算,动力学特性研究等;2002年,姚文席等人对摆线齿轮的精度进行了分析;2004年,严细海等人对RV减速机扭转振动的一阶固有频率进行了分析;2005年,关天民等人为改善摆线轮齿面的受力状态,提出“反弓”齿廓的概念并进行了优化设计。

2006年,大连交通大学的李永华针对摆线针轮行星减速器的稳健可靠性优化设计进行了研究。他提出一种可以提高产品可靠性的稳健可靠性优化设计方法。在一般可靠性优化设计的基础之上,考虑稳健性的要求,以可靠度为约束函数的可靠性优化设计中加入灵敏度最小的附加目标函数来实现稳健性的设计方法。依此方法建立摆线针轮行星减速器稳健可靠性优化设计模型,并以实例进行优化计算。

2007年,天津工程师范学院的张春亮等人,针对基于Pro/E和ADAMS的2K-V型减速机运动学仿真进行了研究。他们所做的2K-V型摆线针轮减速机的多刚体模型由软件Pro/ENGINEER、MSC.ADAMS建立。模型将各个零部件均假设为刚性体,不考虑其弹性变形对整个系统的影响。根据零件的实际结构,在Pro/ENGINEER中建立各个零件的三维实体模型;按照实际情况建立2K-V型摆线针轮减速机的装配体模型;使用Pro/ENGINEER与MSC.ADAMS的接口MECH/Pro转变各个实体零件模型为刚体模型,根据各个组件不同的连

接方式在连接处施加约束副,将多刚体系统导人ADAMS软件中。在MSC.ADAMS/View中,对各个齿轮副、针齿摆线轮啮合副施加实体碰撞力(Solid to Solid),以仿真齿轮、针齿摆线轮啮合传动。

2008年,西北农林科技大学的孙宇等人针对农业机械中的摆线轮齿廓强度有限元分析进行了研究。他们为了得到比较准确的摆线轮的受力状态,以BW180摆线针轮减速器的修正齿形为例,以用Pro/ENGINEER软件简历摆线轮三维几何模型,导入ANSYS软件中,又对其齿廓应力进行理论分析,得出摆线轮的应力分布。

2009年,何卫东,贾兵等人针对针轮输出新型摆线针轮减速器的优化设计及其动力学性能进行了分析。他们首先针对摆线针轮减速器进行了受力分析的计算,并对主要零件进行了强度校核。然后利用Pro/E软件对其进行三维实体建模并利用ANSYS对其进行有限元分析,最后将其导入到ADAMS中对其进行动力学模型仿真计算。

RV减速器摆线轮零件加工工艺设计探讨

龙源期刊网 https://www.doczj.com/doc/0a5255990.html, RV减速器摆线轮零件加工工艺设计探讨 作者:郑红 来源:《价值工程》2015年第23期 摘要: RV减速器产品的关键零件是摆线轮,摆线轮零件加工一直是企业生产制造的难题,本文探讨了摆线轮零件加工工艺设计,通过此工艺来保证摆线轮零件的表面质量和加工精度要求。 Abstract: The key part of the RV reducer is cycloid, and cycloid parts processing is the manufacturing difficulty for enterprises. This paper discusses the processing design of cycloid part,to ensure the surface quality of cycloid parts and machining accuracy through this process. 关键词:摆线轮;加工工艺;RV减速器 Key words: cycloid;processing;RV reducer 中图分类号:TH132.41 文献标识码:A 文章编号:1006-4311(2015)23-0062-03 0 引言 近年来制造业转型升级、国家推出“机器换人”工程,把机器人、高端数控设备的应用推向了高潮,但基于机器人的RV减速器一直是个技术难题,直接影响到机器人的工作性能指标。RV减速器是一款刚度最高、振动最低的机器人用减速器,能够提高机器人工作时的动态特性,减小传动回差,而且还具有体积小重量轻、结构紧凑、传动比范围大、承载能力大、运动精度高、传动效率高等优点。RV减速传动装置不仅在机器人中使用,在数控机床行业也广泛应用,例如:数控车床(NC)主轴分度驱动;加工中心(MC)坐标轴的驱动;工厂自动化(FA)领域、柔性制造单元;精密伺服机构等。 当下中国正处于从制造大国向制造强国转型发展中,工厂自动化生产线日益增多,机器人、数控机床的使用在企业日益普及,随着我国制造业的科技进步,对驱动机器人、数控设备的RV减速器工业化市场前景广阔,社会经济效益可观。 RV减速器产品在结构上由一级渐开线齿轮传动和一级摆线针轮行星传动串联构成,渐开线齿轮传动构成第一级传动,摆线齿轮行星传动构成第二级传动。第二级针摆传动中摆线轮与针齿壳的啮合传动,在结构上采用无针齿摆线内齿廓结构,即内齿廓不采用针齿滚动,而是直接使用摆线齿廓,这种结构对于摆线轮和针齿壳的零件加工精度、表面质量、硬度、强度、动平衡要求更高。为了提高RV减速器的承载能力并使机器工作时内部受力平衡,动力由齿轮轴输入后,由两个从动齿轮分别带动两根曲轴同步驱动摆线轮工作。RV减速器第二级传动就是由曲轴驱动摆线轮作行星运动,为了载荷平衡,一般用两个摆线轮,呈180度倒置安装,摆线轮与针齿壳相啮合产生减速运动,减速运动经曲轴拨动输出盘输出。

皮带皮带轮计算

(1)设计功率d p (kw ) d p = A K P (5-23) A K —工况系数, 载荷变动小,每天工作大于16小时,轻载启动,取A K =1.2; P — 传递的功率,P =3.0KW d p = A K P =1.2 0.3? =3.6KW (2)根据d p 和转速1n 选取普通V 带 查机械设计 (孙志礼主编)图3-12,选A 型V 带。[32] (3)传动比i 由于采用变频器控制转速,且考虑到立轴尺寸,传动比可定为i = 0.9 。 (4)带轮基准直径 查机械设计(孙志礼主编)表3-6,取d d =75 mm ,a d =80.5mm 。 (5)带速V (m/s ) 1000 601 ?= n d V d π (5-24) 代入数据,得V =13.74 m/s< m ax V (普通V 带m ax V =25~30 m/s ) (6)初定轴间距,取 0a =600mm 。 (7)所需带的基准长度0 d L (mm) d L = 2 a + () () 2 42 12 21 a d d d d d d d d -+ +π (5-25) 此时,mm d d d d 752 1 == 最后代入数据,计算得0 d L =1435.5mm 查机械设计(孙志礼主编)表3-3,取标准值d L =1400mm 。

(8)实际轴间距a a ≈0a + 2 0d d L L - ,代入数据,得a =617.75mm,取整得a=618mm 。 (9)带轮包角α( °) α = 180° (10)单根V 带的基本额定功率1P (kw) 由传动设计手册查得: 带轮基准直径d d =75mm,带轮转速1n = 3000 r/min=366.52 rad/s 时,A 型V 带单根基本额定功率为: 0P =1.07 kw (11)单根V 带的基本额定功率增量0P ? 单根V 带的基本额定功率增量 P ? = ) 11(1i w K n K - kW (5-26) K w — 弯曲影响系数,A 型V 带:K w =1.03×10-3 K i — 传动比系数,i=1.00~1.04时,K i =1.00 带入如上数据,计算得:0P ?= 0 kw (12)V 带的根数z ()L d K K P P P z α00?+= (5-27) αK —小带轮包角修正系数,查表得αK =1 ; L K —带长修正系数,查表得L K =0.96 ; 代入数据,得z =3.50,考虑到污泥的性质变化会影响载荷的波动及离心机转子较大的转动惯量,为安全起见,并取整,令z =4 。 V 带最多使用根数见表5-2。

机械零件CAD设计与带轮3D设计示例(doc 23页)

一、机械零件CAD 设计任务书 ——普通V 带传动及键设计 其它条件:传动比允许误差≤±5%;轻度冲击;两班工作制。 2、设计内容和要求 1)V 带传动的设计计算,参见教材。 2)轴径设计 取45号钢时,按下式估算:03.1110 3 min ?≥n P d ,并圆整。 3)V 带轮的结构设计 选择带轮的材料、结构形式、计算基本结构尺寸。 4)键的选择及强度校核

5)用3D软件设计零件及装配图,并标注主要的特征尺寸。 3、编写设计计算说明书 封面、题目、目录、设计内容及结果、小结、参考资料等。

二、带轮3D设计示例 (一)结构尺寸 以教材上的带传动例题中的参数为例:dd1=80,z=3,带型SPZ,查得:bd=8.5,hamin=2,hfmin=9,e12,f=8,δmin=5.5,B=(z-1)e+2f=(3-1)×12+2×8=40,da=dd+2ha=80+2×2=84,φ=34°,L=B=40。 (二)SolidWorks 小带轮3D设计步骤 1.启动SolidWorks新建零件文件→保存文件名为“小带轮.SLDPRT”到自己建立的文件夹。 2.绘制截面草图: 点击前视基准面→草图绘制→草图绘制 在该草图上绘制带轮截面,如下图: 3.生成3D 插入→凸台/基体→旋转(如下图)

点击属性窗口中的确定按钮,再按整体显示全图按钮,结果如下: 4.绘制轴孔 点击一个端面→草图绘制→草图绘制 点击“正视于”按钮

在该草图中绘制一圆,假设半径为15,如下图(还可画出键): 点击特征→拉伸切除 选择“完全贯穿”

按OK按钮,再利用旋转视图按钮调节视图: 存盘。 (三)SolidWorks 大带轮3D设计步骤 可按小带轮的设计步骤进行。下面我们介绍一种简便方法:1.打开文件:小带轮.SLDPRT,另存为:大带轮.SLDPRT 2.右击旋转下的草图→编辑草图,如下图:

摆线齿轮泵外转子加工工艺及主要工装DOC 49页.doc

摘要 本文就摆线的基本概念作了介绍,并阐述摆线齿轮泵中,外转子的加工工艺过程、工装设备以及成形拉刀的设计计算。摆线齿轮泵中以内转子为主动轮,外转子为从动轮,在设计中要求外转子精度高,同时考虑到经济成本,在设计加工工艺时,尽量采用既高精度又经济的方式。而且还介绍了在单件生产纲领下,进行摆线齿轮泵外转子曲面磨削的方法。确定了磨削参数及工艺装备。本加工方法具有传动链短,砂轮修磨简单,可稳定的保持加工精度。 关键词:摆线齿轮外转子;工艺;结构设计;工装设备;成形拉刀。

Abstract This article introduced the basic concept of cycloid and cycloid gear pump described, the outer rotor of the machining process, tooling equipment and design calculation of forming broach. Within the rotor cycloidal gear pump for the driving wheel, outer rotor to the driven wheel, the rotor in the design requirements of high precision, taking into account economic costs, in the design process, try to use the high-precision and economical way. But also introduced the program in the single production under the cycloid gear pump outer rotor surface grinding method. Determine the parameters and processes of grinding equipment. This processing method has a short transmission chain, grinding wheel simple, steady and precision Keywords: cycloidal gear outer rotor; process; structural design; tooling equipment; forming broach

摆线齿轮传动

传动:摆线针轮传动 摆线针轮传动 由外齿轮齿廓为变态摆线﹑内齿轮轮齿为圆销的一对内嚙合齿轮和输出机构所组成的行星齿轮传动。除齿轮的齿廓外﹐其他结构与少齿差行星齿轮传动相同。摆线针轮行星减速器的传动比约为6~87﹐效率一般为0.9~0.94。图轮齿曲线的形成为轮齿曲线的形成原理。发生圆在基圆上滚动﹐若大於r1﹐M'点画出的是长幅外摆线﹔若小於r1﹐M''点画出的是短幅外摆线﹔用这些摆线中一根曲线上的任意点作为圆心﹐以针齿半径rz为半径画一系列圆﹐而后作一根与这一系列圆相切的曲线﹐得到的就是相应的长幅外摆线齿廓或短幅外摆线齿廓﹐其中短幅外摆线齿廓应用最广。用整条短幅外摆线作齿廓时﹐针轮和摆线轮的齿数差仅为1﹐而且理论上针轮有一半的齿数都与摆线轮齿同时嚙合传动。但如果用部分曲线为齿廓就可得到两齿差和三齿差的摆线针轮传动。用长幅外摆线的一部分作轮齿曲线时﹐其齿廓与圆近似﹐并与针齿半径相差不大﹐因此可用它的密切圆弧代替。摆线针轮传动的优点是传动比大﹑结构紧凑﹑效率高﹑运转平稳和寿命长。

摆线齿轮传动 cycloidal gearing 由一对摆线齿轮组成的齿轮传动。摆线齿轮的齿廓由内摆线或外摆线组成 (图中a摆线齿轮的齿廓)。滚圆S 在节圆外面滚动形成齿顶曲线 bc,在节圆内面滚动形成齿根曲线;同样,滚圆Q 在内面滚动形 成齿根曲线,在外面滚动形成齿顶曲线。这样的轮齿接触传动相当 于一对大小为和的摩擦轮互相滚动。摆线齿轮传动大多用于钟表和某 些仪器,与一般齿轮传动相比,它的特点是:①传动时一对齿廓中凹的内摆线与凸的外摆线啮合,因而接触应力小,磨损均匀;②齿廓的重合度较大,有利于弯曲强度的改善;③无根切现象,最少齿数不受限制,故结构紧凑,也可得到较大的传动比;④对啮合齿轮的中心距要求较高,若不能保证轮齿正确啮合,会影响定传动比传动;⑤这种传动的啮合线是圆弧的一部分,啮合角是变化的,故轮齿承受的是交变作用力,影响传动平稳性;⑥摆线齿轮的制造精度要求较高。 摆线齿轮传动分内外啮合和齿条啮合两种。齿条的齿顶和齿根都是滚圆在直线上滚成的摆线。这种传动还有一些变形齿廓 (图中b[摆线齿轮

同步带传动类型及及设计计算标准

同步带传动类型及及设计计算标准 (GB-T10414?2-2002同步带轮设计标准) 圆弧齿同步带轮轮齿ArctoothTimingtooth 直边齿廓尺寸Dimensionoflineartypepulley

1、同步带轮的型式 2、齿型尺寸、公差及技术参数 3、各种型号同步带轮齿面宽度尺寸表 4、订购须知 圆弧齿轮传动类型: 1)圆弧圆柱齿轮分单圆弧齿轮和双圆弧齿轮。 2)单圆弧齿轮的接触线强度比同等条件下渐开线齿轮高,但弯曲强度比渐开线低。 3)圆弧齿轮主要采用软齿面或中硬齿面,采用硬齿面时一般用矮形齿。圆弧齿轮传动设计步骤: 1)简化设计:根据齿轮传动的传动功率、输入转速、传动比等条件,确定中心距、模数等主要参数。如果中心距、模数已知,可跳过这一

步。 2)几何设计计算:设计和计算齿轮的基本参数,并进行几何尺寸计算。 3)强度校核:在基本参数确定后,进行精确的齿面接触强度和齿根弯曲强度校核。 4)如果校核不满足强度要求,可以返回 圆弧齿轮传动的特点: 1)圆弧齿轮传动试点啮合传动,值适用于斜齿轮,不能用于直齿轮。 2)相对曲率半径比渐开线大,接触强度比渐开线高。 3)对中心距变动的敏感性比渐开线大。加工时,对切齿深度要求较高,不允许径向变位切削,并严格控制装配误差。 单圆弧齿轮传动 小齿轮的凸齿工作齿廓在节圆以外,齿廓圆心在节圆上;大齿轮的凹齿工作齿廓在节圆内,齿廓圆心略偏於节圆以外(图2单圆弧齿轮传动的嚙合情况)。由於大齿轮的齿廓圆弧半径p2略大於小齿轮的齿廓半径p1,故当两齿廓转到K点,其公法线通过节点c时,齿便接触,旋即分离,但与它相邻的另一端面的齿廓随即接触,即两轮齿K1﹑K'1、K2﹑K'2﹑K3﹑K'3……各点依次沿嚙合线接触。因此,圆弧齿轮任一端面上凹﹑凸齿廓仅作瞬时嚙合。一对新圆弧齿轮在理论上是瞬时点嚙合,故圆弧齿轮传动又常称为圆弧点嚙合齿轮传动。轮齿经过磨合后,实际上齿廓能沿齿高有相当长的一段线接触。圆弧齿轮传动的特点是:(1)综合曲率半径比渐开线齿轮传动大很多,其接触强度比渐开线齿轮传动约高0.5~1.5倍;

2021年同步带轮计算公式

各种同步带轮的计算公式 同步带轮的节圆直径计算:Dp=p×Z/∏ Dp:节径 Z :齿数 ∏:圆周率 同步带轮实际外圆直径计算:De= Dp-2δ Dp:节径 δ:节顶距 欧阳光明(2021.03.07) 同步带轮中心距及同步带节线长计算

L’ :近似皮带节线长 C :两轴的中心距 Dp :大带轮的节径 dp :小带轮节径 中心距的确定 B= L – 1.57 (Dp + dp) L:皮带节线长 HTD-8M同步带轮尺寸表(节距=8.00mm)单位(mm) 规格齿数节径 d外径 do 档边直径 df 档边内径 db 档边厚度 h 22-8M2256.0254.656145 1.5 23-8M2358.5757.26448 1.5 24-8M2461.1259.756852 1.5 25-8M2563.6662.297555 1.5 26-8M2666.2164.847555 1.5 27-8M2768.7567.387555 1.5 28-8M2871.369.938060 1.5 30-8M3076.3975.028264 1.5 32-8M3281.4980.129070 1.5 34-8M3486.5885.219878 1.5 36-8M3691.6790.39878 1.5 38-8M3896.7795.410688 1.5 40-8M40101.86100.49108.590 1.5 42-8M42106.95105.5811595 1.5 44-8M44112.05110.68123103 1.5 46-8M46117.14115.77123103 1.5 48-8M48122.23120.86131111 1.5 50-8M50127.32125.95138118 1.5

普通V带的设计计算

第二章:普通V 带的设计计算 2.1:确定计算功率ca P : 确定工作系数:由于载荷变动小,空、轻载起动,每天工作两班制,选取2.1=A K ,故 kW P K P A ca 77.914.82.1=?== 2.2:选取普通V 带的型号: 根据kW P ca 77.9=和m in /1460r n =,确定选用B 型V 带。 2.3:确定带轮基准直径1D 和2D : 取主动轮的基准直径mm D 1251=, 从动轮基准直径2D 为: mm i D D 35.36192.2125)01.01()1(112=??-=-=ε ε为滑移率,一般取(1%~2%) ,此处取0.01。 按普通V 带轮的基准直径系列,取mm D 3552=,这样使从动轮2n 增加。 从动轮转速2n : m in /94.5081460355 125 )01.01()1(1212r n D D n =??-=-=ε 转速的相对误差为: %1.8%100500 500 94.508=?- 在允许误差范围内。 2.4:验算带速V : s m V /56.91000 601460 1251000 60n D 1 1=???= ?= ππ

因为s m V /255≤≤在允许范围内,所以带速合适。 2.5:确定V 带基准长度d L 和中心距0a : 带的传动中心距为0a : )(2)(7.021021D D a D D +≤≤+ )355125(2)355125(7.00+≤≤+a 得:9603360≤≤a 初定中心距为500mm 。 计算相应带长: 2 122100 4)()(22a D D D D a L d -+ ++≈π 500 4)355125()355125(250022 ?++++?=π mm 1869= 选取带的基准长度mm L d 1950=。 传动的实际中心距a : mm L L a a d d 5.5402 1869 1950500200=-+=-+= 考虑安装调整和保持张紧力的需要,中心距的变动调整范围为: mm L a a mm L a a d d 5.558195003.050003.075.4701950015.0500015.0max min =?+=+==?-=-= 2.6:验算小带轮上的包角: a D D 3.57)(180121--≈α 500 3 .57)125355(180 --=

同步带的设计计算

一、同步带概述 同步带介绍 同步带是综合了带传动、链条传动和齿轮传动的优点而发展起来的新塑传动带。它由带齿形的一工作面与齿形带轮的齿槽啮合进行传动,其强力层是由拉伸强度高、伸长小的纤维材料或金属材料组成,以使同步带在传动过程中节线长度基本保持不变,带与带轮之间在传动过程中投有滑动,从而保证主、从动轮间呈无滑差的间步传动。 同步带传动(见图4-1)时,传动比准确,对轴作用力小,结构紧凑,耐油,耐磨性好,抗老化性能好,一般使用温度-20℃―80℃,v<50m/s,P<300kw,i<10,对于要求同步的传动也可用于低速传动。 图4-1 同步带传统 同步带传动是由一根内周表面设有等间距齿形的环行带及具有相应吻合的轮所组成。它综合了带传动、链传动和齿轮传动各自的优点。转动时,通过带齿与轮的齿槽相啮合来传递动力。同步带传动具有准确的传动比,无滑差,可获得恒定的速比,传动平稳,能吸振,噪音小,传动比范围大,一般可达1:10。允许线速度可达50M/S,传递功率从几瓦到百千瓦。传动效率高,一般可达98%,结构紧凑,适宜于多轴传动,不需润滑,无污染,因此可在不允许有污染和工作环境较为恶劣的场所下正常工作。本产品广泛用于纺织、机床、烟草、通讯电缆、轻工、化工、冶金、仪表仪器、食品、矿山、石油、汽车等各行业各种类型的机械传动中。同步带的使用,改变了带传动单纯为摩擦传动的概念,扩展了带传动的范围,从而成为带传动中具有相对独立性的研究对象,给带传动的发展开辟了新的途径。 同步带的特点 (1)、传动准确,工作时无滑动,具有恒定的传动比; (2)、传动平稳,具有缓冲、减振能力,噪声低; (3)、传动效率高,可达,节能效果明显; (4)、维护保养方便,不需润滑,维护费用低; (5)、速比范围大,一般可达10,线速度可达50m/s,具有较大的功率传递范围,可达几瓦到几百千瓦; (6)、可用于长距离传动,中心距可达10m以上。 同步带传动的主要失效形式 在同步带传动中常见的失效形式有如下几种: (1)、同步带的承载绳断裂破坏

带轮设计计算过程

已知条件: 同步带传动所需传递的名义功率P=5.9KW; 主动带轮转速 n=3500-5000r/min; 传动比以i=6.5; 对传动中心距大概450mm; 传动的工作条件:每天工作时间不长,工作条件较好。 1.确定同步带传动的设计功率 Pd=KP=1.2*5.9KW=7.08KW 2.确定带的型号和节距 由设计功率 7.08KW 和n=3500-5000r/min,由圈2查得带的型号为H 型,对应节距P =12.700mm (见表1)。但我们的工作条件其实没那么大要求所以选L型的节距Pb=9.525mm。

3.选择小带轮齿数 由小带轮转速n=3500-5000r/min和L型带,查表2 得小带轮最小许用齿数 z1=18,则大带轮齿数z2 =i*z1=6.5*18=117 20 130 4.确定带轮节圆直径 D1=Pb*z1/π=9.525*18/π=54.57mm 80.85 D2= Pb*z2/π=9.525*117/π=354.73mm 525.52 5.确定同步带的节线长度L 中心距a=450mm L=2acosψ+π(d1+d2)/2+πψ(d2-d1)/180

?==-=465.193397.02sin 121 -a d d ? 29.61 L=1593.46mm 选择最接近计算值的标准节线长(见表4) mm L p 20.1600= 6.计算同步带齿数 168/==b p b p L z 7.传动中心距a 的计算

θ θθπθθ π-==--=-=tg inV z z z z inV z z p a b b 618396.1cos 2/)(1 2212 用逼近法求的:2716.1=θ代入上式 mm z z p a b 17.509cos 2/)(12=-=θπ 若按近似公式计算 2 122)(81??????--+=πz z p M M a b 315625.2398/)2(21=--=z z z p M b b 8.确定同步带设计功率为Pd 时所需带宽 (1)计算所选型号同步带的基准额定功率0p 1000/)(20v mv T p a -= (KW) 式中: a T ——许用工作拉力,查表1得 a T =244.46 N m ——单位长度质量,查表1可得 m=0.095 kg/m v ——线速度 (m /s)

同步带及带轮选型计算

同步带及带轮选型计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一,竖直同步带及带轮选型计算: 竖直方向设计要求:托盘及商品自重20kg (196N ),滑块运动1250mm 所需时间6s 。 1,设计功率P K P A ?=d A K 根据工作情况查表取 2,带型选择 根据w P 1.68d =和带轮转速r/min 100=n 查询表格选择5M 圆弧带 3,带轮齿数z 及节圆直径1d 根据带速,和安装尺寸允许,z 尽可能选择较大值,通过查表选择 5M 带,齿数z=26,节圆直径m m 38.411=d ,外圆直径m m 24.400=d 4,带速v 5,传动比 主动从动带轮一致,传动比i=1,主动轮与从动轮同一个型号 6,初定中心距0a 7,初定带的节线长度p 0L 及其齿数p z 8,实际中心距a 9,基准额定功率0P 可查表得w 50P 0= 10,带宽S b mm 06.10b 14.10 0S =≥P K K P b Z L d S (基准带宽9b S0=时) 11,挡圈的设置

5M 带轮,挡圈最小高度K=~ R= 挡圈厚度t=~2 挡圈弯曲处直径mm R d 24.432d 0w =+= 挡圈外径m m 24.482d f =+=K d w 竖直方向同步带轮: 带轮型5M 圆弧齿,节径,齿数26,外径,带轮总宽,挡圈外径,带轮孔10mm ,固定方式紧定螺钉(侧边紧定螺钉固定台宽7mm ,螺纹孔m3,两个成90度) 竖直方向同步带: 带型5M 圆弧带,带宽,节线长度约3418mm 二,电机输出同步带轮选型计算: 功率,转速,带轮选择与竖直方向相同 1,初定中心距0a 2,初定带的节线长度p 0L 及其齿数p z 3,实际中心距a 电机输出同步带: 带型5M 圆弧带,带宽,节线长度约426mm 三,水平同步带及带轮选型计算: 水平方向设计要求:滑块行程1350mm ,移动负载20N ,滑块运动1350mm 所需时间4s 。 1,设计功率P K P A ?=d A K 根据工作情况查表取 2,带型选择 根据w P 25.11d =和带轮转速r/min 300=n 查询表格选择3M 圆弧带

带轮计算例题

题目: 设计一带式运输机中的普通V 带传动。原动机为Y112M-4异步电动机,其额定功率P=4KW ,满载转速n1=1440/min ,从动轮转速n2=654.54r/min ,两班制工作,载荷变动较小,要求结构紧凑。 说明: 1.确定计算功率ca P 由表8-7查得工作情况系数A K =1.2,故 ca P =A K P=1.1×4kW=4.4kW 2.选择V 带的带型 根据ca P 、1n 由图8-11选用A 型。 3.确定带轮的基准直径d d 并验算带速v 1)初选小带轮的基准直径d d 。由表8-7和表8-9,取小带轮的基准直径1d d =90mm 。 2)验算带速v 。按式(8-13)验算带的速度 1000601 1?=n d v d πm/s=6.78m/s 因为5m/s

带轮设计方案

8-4 有一带式输送装置,其异步电动机与齿轮减速器之间用普通V 带传动,电动机功率P=7kW ,转速m in 9601r n =,减速 器输入轴的转速m in 3302r n =,允许误差为%5±,运输装置工作 时有轻度冲击,两班制工作,试设计此带传动。 [解] (1)确定计算功率ca P 因两班制工作时间为16h 查表8-8查得工作情况系数2.1A =K ,故 4kW .872.1A ca =?==P K P (2)选择V 带的带型 根据ca P 、1n ,由图8-11选用B 型。 (3)确定带轮的基准直径d d ,并验算带速ν ①由表8-7和8-9,初选小带轮的基准直径 m m 1601=d d ②验算带速ν 按式(8-13)验证带的速度 m 0384.81000 60960 1601000 601 1=???= ?= ππn d νd 带速合适 ∴<

①由式()()2102127.0d d d d d d a d d +≤≤+,初定中心距mm 6000=a 。 ②由式(8-22)计算带所需的基准长度 ()()()()mm 2193600 41604504501602 600242 22 2 122 100≈?-+++?=-+ ++ ≈π π a d d d d a L d d d d d 由表8-2选带的基准长度mm 2180=d L ③按式(8-23)计算实际中心距a mm 5942 2193 21806002 0=-+ =-+≈d d L L a a 考虑带轮的制造误差,带长误差,带的弹性以及因带的松弛而产生的补充张紧的需要,由式(8-24)计算中心距的变化范围 中心距的变化范围为mm 659~561。 (5)按式(8-6)验算小带轮上的包角1α () ()?≥?≈? --?=?--?=120138594 3.571606001803.57180121a d d αd d 故包角合适。 (6)计算带的根数z ①计算单根V 带的额定功率r P 由m 960 m m 16011==n d d 和,查表8-4得 2.68kW 0≈P 根据303kW .058B 9.2330 960s,m 960 01=?-===P i n 得型带,查表和 查表8-6得88.0K =α,表8-2得99.0K =L ,于是

同步带轮设计计算

同步带轮设计计算 序计算项目符单位计算参数及其选定号号 1 设定功率 P KW P=Kp P—传递的功率 00A K—载荷修正系数,查表14.1.55 A2 选定带型节p mm 3 n—小带轮转速 b1 距 3 传动比 I 小带轮齿数 z Z>=Z 带速V和安装尺寸允许时,Z应取较小的11min 见表14.1-69 值 4 小带轮节圆 zp1b直径 d mm d,11, 带轮外径 d mm i— 01 大带轮齿数 ii—转动比 n1z,iz,z Z n—大带轮转速 22112n2 5 大带轮节圆 zp2b直径 d mm d,22, 大带轮外径 d mm 02 6 节线长 L mm 初定节线长: 取150 ap02(d,d)21L,2a,1.57(d,d),00214a0 据由表4-4至4-8选取 L Lp0 dn,117 带速 v m/s v, 60,1000 Lp Z,10 带齿数 Z pb 2232()M,M,d,d21 a,16 11 实际中心距 a Mm M,4L,6.28(d,d)p21 安装量 I mm I,S由表14.1-73查得 I,1.27a,a,Imin12 调整量 S mm S,0.76a,a,Smax 13 查表发求大,根据初始条件提供的速比、中心距范围和选定的带 Z1小带轮的齿型查表4-30~表4-33得到大、小带轮的齿数、节径、

数、节径,中中心距和同步带轮的节线长。 Z2心距和节线 长 d 1 d 2 L p a 14 带长系数 K 由表4-28查取 L dd,,,21 Zent0.5Z,,13 啮合齿数 z ,,mm16a,, 14 啮合齿数系K Zm,6时,Kz=1 Z 数 Zm,6时,Kz=1-0.2(6-Zm) 1 带宽系数 K —带的基准宽度,见表4-29 bbWso1.14s按原则选择,则按计算结p,pK,()drWbso 果从表4-2中选择与计算结果对应的表准带宽b s15 基本额定功P KW 个型带的最小宽度推荐用基本额定功率p见表表14.1-69 00 率 4-34~表4-38。 额定功率 p Kw rP,K,K,K,P rLZW0 —带长系数由表14.1-72查得从表4-13中确定带轮宽度 KL16 要求带宽 b mm B—带的基本宽度由下表查得 fw 带型 3M 5M 8M 14M 20M B/mm 6 9 20 40 115 so 紧边张紧力 FN 1 F,1250P/v1d17 松边张紧力 FN 2 F,250P/v2d 18 压轴力 Q N KF—矢量相加减修正系数由图4-14求时Q,K(F, F)K,1.3F12F得 小带轮包角有以下公式计算: Q,O.77K(F,F)F1257.3:d2,d1,,,1,180:, a

同步带及带轮选型计算

一,竖直同步带及带轮选型计算: 竖直方向设计要求:托盘及商品自重20kg(196N ),滑块运动1250mm 所需时间6s。 1,设计功率P K P A ?=d w w s m kg N kg kw Fv P 4.45)(9 .0625.1/8.920)(103=÷??=?=-η A K 根据工作情况查表取1.5 w w P K P A 1.684.455.1d =?=?= 2,带型选择 根据w P 1.68d =和带轮转速r/min 100=n 查询表格选择5M 圆弧带 3,带轮齿数z 及节圆直径1d 根据带速,和安装尺寸允许,z尽可能选择较大值,通过查表选择 5M 带,齿数z=26,节圆直径m m 38.411=d ,外圆直径m m 24.400=d 4,带速v max 1/22.0100060v s m n d v <=?=π 5,传动比 主动从动带轮一致,传动比i=1,主动轮与从动轮同一个型号

6,初定中心距0a mm 1644a 0= 7,初定带的节线长度p 0L 及其齿数p z mm a d d d d a L p 34184)()(2202 212100=-+++≈π 8,实际中心距a mm L L op 16452a a p 0≈-+= 9,基准额定功率0P 可查表得w 50P 0= 10,带宽S b mm 06.10b 14.10 0S =≥P K K P b Z L d S (基准带宽9b S0=时) 11,挡圈的设置 5M 带轮,挡圈最小高度K=2.5~3.5 R=1.5 挡圈厚度t=1.5~2 挡圈弯曲处直径mm R d 24.432d 0w =+= 挡圈外径m m 24.482d f =+=K d w

V带轮设计说明书

机械设计基础 课程设计说明书 设计题目V带传动设计 设计组员李亚霖、吴郅君、刘玲玲、张乐、万学赟院系机电工程学院 专业电气工程及其自动化

指导教师冯原

目录 一.设计任务书 (3) 二、V带传动设计 1.确定计算功率 (3) 2.选择V带的带型 (3) 3.确定V带的基准直径并验算带速 (3) 4.确定V带的中心距和基准长度 (4) 5.验算小带轮上的包角 (4) 6.计算带的根数 (5) 7.计算带对轴的作用力 (5) 三、V带轮结构设计 1.V带轮的材料 (5) 2.V带轮的结构形式 (6) 3.V带轮的槽型 (6) 4.V带轮的尺寸 (6)

四、小带轮装配图 (6) 五、参考文献 (6) 一、设计任务书 1.题目: 设计由电动机驱动鼓风机的V带传动。 如图1所示为传动机结构简图,主动带轮1直接装在电动机轴上,从动轮2装在鼓风机轴上,两带轮中心的水平距离a约于大带轮直径d2的2倍。 图1 2.V带传动设计的原始数据如下: 作业题号鼓风机主 轴转速 n2 电动机型 号 额定功率 p/kw 满载转速 n1 主轴直径 D/mm 主轴轴长 E/mm 一天工作 时间/h

3.V 带传动设计内容 选择V 带的型号、长度、根数;V 带轮的直径、包角、带速;V 带传动的中心距,V 带对轴的作用力等。 二、V 带传动设计 设计计算及说明 1.确定计算功率c P 由参考文献[1]表6-4查得工作情况系数A 1.3K =, 故 c A P K P 1.311kW 14.3Kw ==?= 2.选择V 带的带型 根据c P 14.3kW =,1n 1460r /min =,由参考资料[1]表6-8选用B 型带。 3.确定带轮的基准直径并验算带速 1) 初选小带轮基准直径1d d 由参考资料[1]表6-5和表6-6,取小带轮的基准直径1d =140d 。 2) 验算带速v 1 11401460m/s 601000 60100010.70m/s<25m/s d d n v ππ??==??= 因为5m/s

同步带与带轮设计计算

设计任务: 设计一同步带及同步带轮,其传动比为 2.6i =,传递功率为:50~100w 。小带轮的转速为11000n RPM = ,中心距:80mm 左右。设计确定带及带轮的订购型号。(小带轮有一个5mm φ的孔) 设计计算如下所示: (1)确定同步带传动的设计功率d P 0d m P K P =? 式中:0K ——载荷修正系数。查表1 m P ——工作机上电动机功率 由下表1查得0 1.2K =。故可得: 0 1.2(50~100)60~120d m P K P w w =?=?= (2)确定带的型号和节距 可根据同步带传动的设计功率d P 和小带轮转速1n ,由同步带选型图中来确定所需采用的带的型号和节距。 其中60~120d P w =,11000n RPM =。查表2 选同步带的型号为:L ,节距为:9.525b P mm = (3)选择小带轮齿数12,z z 可根据同步带的最小许用齿数确定。查表3得。 选小带轮齿数:112z =。故大带轮齿数为: 21 2.61231.2z i z =?=?=,圆整 231z =。 故:112z =,231z = (4)确定带轮的节圆直径12,d d 小带轮节圆直径:11/9.52512/3.1436.38b d P z mm π==?≈ 大带轮节圆直径:2 2/9.52531/3.1493.99b d P z mm π==?≈

(5)验证带速v 由公式11 60000 d n v π=计算得, 11 max 1.90/40/60000 d n v m s v m s π= =<=,其中max 40/v m s =由表4查得。 (6)确定同步带的节线长度n L 利用AutoCAD 作图法求节线长度,结果如下图1所示。 图1 带轮示意图 由上图可得,p L AB AD CD BD =+++ ,其中74.634AB CD mm ==。 可以求得:弧1 138243.8123602 d AB mm π??==? , 弧()23601382182.0883602 d BD mm π-??= =? 故74.634243.812182.088375.168p L mm =?++= 经查表5,选取型号为150L 的同步带。 其节线长度381.00p L mm =,齿数40b z = (7)计算传动中心距a

相关主题
文本预览
相关文档 最新文档