当前位置:文档之家› 第十章共价键与分子间力

第十章共价键与分子间力

第十章共价键与分子间力
第十章共价键与分子间力

第十章 共价键与分子间力

一、是非题:

1. 非极性分子中的化学键都是非极性共价键 ( )

2. 非极性分子之间只存在色散力,极性分子之间只存在取向力 ( )

3. 直线分子一定是非极性分子 ( )

4. sp3杂化轨道是由1s轨道与3p轨道杂化而成( )

5. CHCl3分子中的C原子是以sp3不等性杂化轨道成键的,故分子的空间构型为变形四面体

( )

6. 氢键是有方向性和饱和性的一类化学键 ( )

二、选择题:

1. 下列物质中既有离子键,又有共价键的是 ( )

A. NaOH

B. H2O

C. C2H5OH

D. HF

E. KCl

2. 下列分子或离子中键角最小的是 ( )

A. SO42-

B. HgBr2

C. NF3

D. BF3

E. CS2

3. 下列分子中,C原子与H原子键合所用轨道为sp-s的是 ( )

A. CH4

B. C2H4

C. C2H2

D. C2H6

E. C3H8

4. 下列几组原子轨道沿x轴靠近时,由于对称性不匹配,不能有效地形成分子轨道的是

( )

A. p y-p x

B. p y-p y

C. s-p x

D. p x-p x

E. p z-p z

5. 下列分子中,既是非极性分子又含有π键的是( )

A. Cl2

B. C2Cl4

C. CHCl3

D. CH2Cl2

E. CH4

6. 下列各组分子间同时存在取向力、诱导力、色散力和氢键的是 ( )

A. 苯和CCl4

B. N2和N2

C. CH3F和C2H2

D. H2O和CH3OH

E. O2和N2

7. 根据价电子对互斥理论,SO32-的空间构型为( )

A. 平面三角形

B. 三角锥形

C. 正四面体形

D. “T”形

E. “V”形

8.下列化合物各自分子之间能形成最强氢键的是( )

A. NH3

B. H2S

C. HCl

D. HF

E. H2O

三、填充题:

1.在C2H6分子中,C原子间是以__________杂化轨道成键的,C-H键用的轨道是__________。

2.I2和CCl4混合液中,I2和CCl4分子间的力是__________

3.卤化氢的熔点沸点依HCl,HBr,HI顺序升高,其原因是____________________。

4.欲使液态氨沸腾,需克服的力有__________和__________力。

5.邻硝基苯酚的熔、沸点比对硝基苯酚的熔、沸点低,这是因为__________。这两者中 较易溶于水。

四、某一化合物的分子式为AB4,A属第四主族,B属第七主族。A、B的电负性值分别为 2.5

和3.0。试回答下列问题:

1.已知AB4的空间结构为正四面体,推测原子A与原子B成键时采取的轨道杂化类型。

2.A-B键的极性如何?AB4分子的极性如何?

3.AB4在常温下为液体,该化合物分子间存在什么作用力?

答案:

一.- - - - - -

二.A C C A B D B D

三.1.sp3; sp3-s

2.色散力

3.色散力随同类分子的相对质量的增大而增大

4.氢键;van der Waals力

5.邻-硝基苯酚有分子内氢键,对-硝基苯酚存在分子间氢键;

对-硝基苯酚

四.1.A采取sp3杂化与B成键

2.A-B:极性共价键;AB4分子构型为正四面体,是非极性分子。

3.色散力,诱导力,取向力。

第十章共价键与分子间力

第十章 共价键与分子间力 一、是非题: 1. 非极性分子中的化学键都是非极性共价键 ( ) 2. 非极性分子之间只存在色散力,极性分子之间只存在取向力 ( ) 3. 直线分子一定是非极性分子 ( ) 4. sp3杂化轨道是由1s轨道与3p轨道杂化而成( ) 5. CHCl3分子中的C原子是以sp3不等性杂化轨道成键的,故分子的空间构型为变形四面体 ( ) 6. 氢键是有方向性和饱和性的一类化学键 ( ) 二、选择题: 1. 下列物质中既有离子键,又有共价键的是 ( ) A. NaOH B. H2O C. C2H5OH D. HF E. KCl 2. 下列分子或离子中键角最小的是 ( ) A. SO42- B. HgBr2 C. NF3 D. BF3 E. CS2 3. 下列分子中,C原子与H原子键合所用轨道为sp-s的是 ( ) A. CH4 B. C2H4 C. C2H2 D. C2H6 E. C3H8 4. 下列几组原子轨道沿x轴靠近时,由于对称性不匹配,不能有效地形成分子轨道的是 ( ) A. p y-p x B. p y-p y C. s-p x D. p x-p x E. p z-p z 5. 下列分子中,既是非极性分子又含有π键的是( ) A. Cl2 B. C2Cl4 C. CHCl3 D. CH2Cl2 E. CH4 6. 下列各组分子间同时存在取向力、诱导力、色散力和氢键的是 ( ) A. 苯和CCl4 B. N2和N2 C. CH3F和C2H2 D. H2O和CH3OH E. O2和N2 7. 根据价电子对互斥理论,SO32-的空间构型为( ) A. 平面三角形 B. 三角锥形 C. 正四面体形 D. “T”形 E. “V”形 8.下列化合物各自分子之间能形成最强氢键的是( ) A. NH3 B. H2S C. HCl D. HF E. H2O 三、填充题:

第二章 共价键理论和分子结构

第二章 分子结构 一、 填空题 1、C 2+的分子轨道为_________________,键级___________________; HCl 的分子轨道为________________,键级__________ 。 2、OF, OF +, OF -三个分子中, 键级顺序为________________。 3、HBr 分子基态价层轨道上的电子排布是 _________________________ 。 4、对称元素C 2与σh 组合,得到___________________;C n 次轴与垂直它的C 2组合,得到______________。 5、有一个 AB 3分子,实验测得其偶极矩为零且有一个三重轴,则此分子所属点群是_______________________。 6、判别分子有无旋光性的标准是__________。 7、既具有偶极矩,又具有旋光性的分子必属于_________点群。 二、选择题 1、 H 2+的H ?= 21?2- a r 1 - b r 1 +R 1, 此种形式已采用了下列哪几种方法: (A) 波恩-奥本海默近似 (B) 单电子近似 (C) 原子单位制 (D) 中心力场近似 2、对于"分子轨道"的定义,下列叙述中正确的是: (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动)

(D) 原子轨道线性组合成的新轨道 3、含奇数个电子的分子或自由基在磁性上: (A) 一定是顺磁性 (B) 一定是反磁性 (C) 可为顺磁性或反磁性 (D )没有磁性 4、下列分子的键长次序正确的是 (A) OF -> OF > OF + (B) OF > OF -> OF + (C) OF +> OF > OF - (D) OF - > OF +> OF 5、若以x 轴为键轴,下列何种轨道能与p y 轨道最大重叠? (A) s (B) d xy (C) p z (D) d xz 6、Cr 与 CO 形成羰基化合物 Cr(CO)6,其分子点群为 (A) D 4h (B) T d (C) O h (D) D 6h 7、2,4,6-三硝基苯酚是平面分子,存在离域π键,它是: (A) (B) (C) (D) 1612 Π1814Π1816Π1616Π三、简答题 1、在有机化合物中,C ═O(羰基)的偶极距很大(μ=7.67×10-30C ·m),而CO 分子的偶极距却很小,解释原因。 2、SO 42-中S —O 键长为149?pm ,比共价单键半径加和值(175?pm)短,说明原因。说明SiF 62-能稳定存在而SiCl 62-不稳定的原因。 判断 NO 和 CO 哪一个的第一电离能小,原因是什么? 3、CO 是一个极性较小的分子还是极性较大的分子? 其偶极矩的方向如何?为什么? 4、写出N 2基态时的价层电子组态, 并解N 2的键长(109.8?pm)特别短、

共价键和分子间作用力习题及解析

《共价键和分子间作用力》作业参考解析 1. 下列说法错误的是 A. 按原子轨道重叠方式,共价键可分为σ键和π键 B. σ键构成分子的骨架,π键不能单独存在 C. 配位键既不是σ键,也不是π键 D. 双键或叁键中只有一个σ键 【C】按原子轨道的重叠方式不同,当其头碰头重叠时,形成“σ”键,当其肩并肩重叠时,形成“π”键;由于σ键重叠程度大,稳定性更高,因此可以单独存在,并构成分子的骨架,而π键重叠程度小,稳定性低,容易打开,因此不能单独存在,只能和σ键共存于双键或叁键中;σ键由于头碰头重叠,因此重叠部分对键轴呈圆柱形对称,可以自由旋转,但是π键对键轴呈镜面反对称,因此不能自由旋转;配位键是由一个成键原子提供孤对电子,另一个成键原子提供空轨道形成的,在配位键形成的过程中,两原子的原子轨道可能发生头碰头重叠而形成σ配位键,也可能发生肩并肩重叠而形成π配位键,因此C的说法是不正确的。 2. 下列说法正确的是 A. 若AB2分子为直线型,其中心原子A一定发生了sp杂化 B. HCN是直线型分子,也是非极性分子 C. H-O键能比H-S键能大,因此H2O熔沸点比H2S高 D. 氢键不属于化学键,但是具有饱和性和方向性

【D】A:一般对于AB2分子来说,如果中心原子发生了sp杂化,那么分子的空间构型是直线型的,但是AB2分子如果为直线型,中心原子A不一定发生了sp 杂化,典型的例子就是I3-离子,这个离子的中心原子I发生的是sp3d杂化,价层电子对的空间构型为三角双锥,由于中心原子上有3对孤对电子,分别位于三角双锥中间的三角平面上,因此分子的空间构型就是直线型了(这可以用夹层电子对互斥理论来解释);B:HCN分子是直线型分子,但是根据其分子中各原子的电负性大小的情况来看,这是一个极性分子;C:体系沸点的高低主要与分子间作用力的大小有关,因此H2O熔沸点之所以比H2S高,是因为水分子之间除了范德华力作用外,还存在很强的氢键作用;D:当一个氢原子形成一个氢键后,就不能再和其它原子之间形成第二个氢键了,这体现了氢键的饱和性,同一个氢原子形成的共价键和氢键之间需以最大角度分布,这体现了氢键的方向性,不过氢键仍然属于分子间作用力,而不属于共价键作用。所以D的说法是正确的。 3. 下列关于H3O+离子的说法,正确的是 A. O发生sp2等性杂化,空间结构为平面正三角形 B. O发生sp2不等性杂化,空间结构为平面三角形 C. O发生sp3等性杂化,空间结构为正四面体型 D. O发生sp3不等性杂化,空间结构为三角锥型 【D】我们知道H2O分子中O发生了sp3不等性杂化,在与氢原子成键后, H2O分子中有两对孤对电子。那么H3O+离子的形成可以认为是由H2O分子中的O提供一对孤对电子,H+离子提供空轨道,在两者之间形成了配位键而形成的,两者之间形成配位键时,并不会改变O原子的原子轨道杂化类型,同时O原子上仍然有1对孤对电子,因此O发生sp3不等性杂化,H3O+离子的空间结构为三角锥型。 4. 下列分子或离子中,不含有孤对电子的是

2-2-1 共价键与分子的立体结构

编号:15 第二节共价键与分子的立体结构 (第1课时) 2010年3月29日 班级__________ 姓名__________ 【学习目标】 1、理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型; 2、学会用杂化轨道原理解释常见分子的成键情况与空间构型 【学习重难点】 重点:杂化轨道类型难点:杂化轨道类型 【学案导学过程】 活动·探究原理 规律 方法 技巧(一)甲烷分子的形成及立体构型 联想质疑:1、共价键决定原子的结合方式,决定分子的空间构型吗? 2、利用电子配对理论能解释甲烷的空间构型吗 3、为了解释甲烷的空间构型鲍林提出了什么理论? 4、甲烷分子形成过程:C: 2s22p x12p y13p z 观察左 图你能 用语言 描述一 下甲烷 的空间 构型的 形成过 程吗? 思考:1原子轨道为什么可以进行杂化?(提示从共价键键能大小和体系能量 变化来分析)

2、轨道杂化后在数目,形状,能量上是否发生变化? 3、轨道杂化的结果是什么? 4、尝试解释轨道杂化 (二)常见的SP杂化过程活动探究:SP杂化: 2、sp2杂化型 直线型 (BeCl 2 ) 交流与 讨论: 用杂化 轨道理 论分析 乙炔分 子的成 键情况 平面正 三角形 (BF3) 交流与 讨论: 用杂化 轨道理 论分析 乙烯分 子的成 键情况【当堂检测】

(A)1.在外界条件的影响下,原子内部______________________________的过程叫做轨道杂化,组合后形成的新的、____________________的一组原子轨道,叫杂化轨道。2.甲烷分子中碳原子的杂化轨道是由一个__________轨道和三个__________轨道重新组合而成的,这种杂化叫_____________________。 3.乙烯分子中碳原子的原子轨道采用sp2杂化。形成乙烯分子时,两个碳原子各用__________的电子相互配对,形成一个σ键,每个碳原子的另外_____________分别与两个氢原子的_______________的电子配对形成共价键;每个碳原子剩下的一个未参与杂化的__________的未成对电子相互配对形成一个__________键。 (B)4.下列分子的中心原子形成sp2杂化轨道的是() A.H2O B.NH3 C.C2H4D.CH4 5.在乙烯分子中有5个σ键、一个π键,它们分别是() A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键 C.C-H之间是sp2形成的σ键,C-C之间是未参加杂化的2p轨道形成的π键 D.C-C之间是sp2形成的σ键,C-H之间是未参加杂化的2p轨道形成的π键

共价键及分子结构知识梳理

共价键及分子结构知识梳理】 一、共价键 1-1共价键的实质、特征和存在实质:原子间形成共用电子对特征:a.共价键的饱和性,共价键的饱和性决定共价分子的。 b共价键的方向性,共价键的方向性决定分子的。 1-2共价键的类型 b键:S-Sb键、S-p c键、p-p b键,特征:轴对称。 n键:p-p n键,特征:镜像对称 【方法引领】b键和n键的存在规律b键成单键;n键成双键、三键。 共价单键为b键;共价双键中有1个b键、1个n键;共价三键中有1个b键、2个n 键。 对于开链有机分子:b键数=原子总数-1 ; n键数=各原子成键数之和- b键数(环 状有机分子,b键数要根据环的数目确定) 原子形成共价分子时,首先形成b键,两原子之间必有且只有1个b键;b键一般比n 键牢固,n键是化学反应的积极参与者。 形成稳定的n键要求原子半径比较小,所以多数情况是在第二周期元素原子间形成。如 C02分子中碳、氧原子之间以p-p b键和p-p n键相连,而SiO2的硅、氧原子之间就没有p-p n键。 【课堂练习1】 (1)下列说法不正确的是 A .乙烷分子中的6个C —H和1个C —C键都为b键,不存在n键 B ?气体单质中,一定有b键,可能有n键 C.两个原子间共价键时,最多有一个b键 D . b键与n键重叠程度不同,形成的共价键强度不同 (2)有机物CH2= CH —CH2—C三CH分子中,C—H b键与C —C b键的数目之比为;b键与n 键的数目之比为。 二、键参数一一键能、键长与键角 2-1键能的意义和应用 a.判断共价键的强弱 b.判断分子的稳定性 c.判断物质的反应活性 d.通过键能大小比较,判断化学反应中的能量变化 【思考】 比较C —C和C= C的键能,分析为什么乙烯的化学性质比乙烷活跃,容易发生加成反 应? 2-2键长的意义和应用 键长越短,往往键能越大,表明共价越稳定。(键长的长短可以通过成键原子半径大小 来判断) 2个原子间的叁键键长v双键键长v单键键长 2-3键角的意义 键角决定分子的空间构型,是共价键具有方向性的具体表现。 【典例分析】碳、氮两种元素都能形成单键、双键和叁键。测得二者键能有如下规律: 3 E N> 2 E N =N > E N—N; -3E C V E c= c< E C—C 试分析为什么氮分子不易发生加成反应,而乙烯和乙炔容易发生加成反应?

化学键与分子间作用力知识总结

化学键与分子间作用力知识点总结 知识点一化学键(离子键、共价键) 3. (1)Na2S: (2)CO2: 知识点二化学键与化学反应、物质类别的关系 1.化学键的概念:相邻原子或离子间强烈的相互作用。 2.化学键与化学反应 反应物内化学键的断裂和生成物内化学键的形成是化学反应的本质,是化学反应中能量变化的根本。 3.化学键与物质溶解或熔化的关系 (1)离子化合物的溶解或熔化过程 离子化合物溶于水或熔化后均电离成自由移动的阴、阳离子,离子键被破坏。 (2)共价化合物的溶解过程 ①有些共价化合物溶于水后,能与水反应,其分子内共价键被破坏,如CO2和SO2等。 ②有些共价化合物溶于水后,其分子内的共价键被破坏,如HCl、H2SO4等。 ③某些共价化合物溶于水后,其分子内的共价键不被破坏,如蔗糖(C12H22O11)、酒精(C2H5OH)等。 某些活泼的非金属单质溶于水后,能与水反应,其分子内的共价键被破坏,如Cl2、F2等。 4.化学键对物质性质的影响 (1)对物理性质的影响 金刚石、晶体硅、石英、金刚砂等物质硬度大、熔点高,就是因为其中的共价键很强,破坏时需消耗很多的能量。 NaCl等部分离子化合物,也有很强的离子键,故熔点也较高。 (2)对化学性质的影响 N2分子中有很强的NN,故在通常状况下,N2很稳定,H2S、HI等分子中的共价键较弱,故它们受热时易分解。 5.化学键与物质类别 (1)化学键的存在

(2)化学键与物质类别 ①只含有共价键的物质 a.同种非金属元素构成的单质,如I2、N2、P4、金刚石、晶体硅等。 b.不同非金属元素构成的共价化合物,如HCl、NH3、SiO2、CS2等。 ②只含有离子键的物质 活泼非金属元素与活泼金属元素形成的化合物,如Na2S、CsCl、K2O、NaH等。 ③既含有离子键又含有共价键的物质如Na2O2、NH4Cl、NaOH、Na2SO4等。 ④无化学键的物质:稀有气体,如氩气、氦气等。 知识点三分子间作用力和氢键 1.分子间作用力 (1)定义:把分子聚集在一起的作用力,又称范德华力。 (2)特点 ①分子间作用力比化学键弱得多,它主要影响物质的熔点、沸点等物理性质。 ②分子间作用力存在于由共价键形成的多数共价化合物和绝大多数液态、固态非金属单质分子之间。 (3)变化规律 一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点也越高。例如熔、沸点:I2>Br2>Cl2>F2。 2.氢键 (1)定义:分子间存在的一种比分子间作用力稍强的相互作用。 (2)形成条件:非金属性强、原子半径小的O、F、N原子与H原子之间,有的物质分子内也存在氢键。 (3)存在:氢键存在广泛,如蛋白质分子、H2O、NH3、HF等分子之间。分子间氢键会使物质的熔点和沸点升高。 知识点四物质熔沸点高低 (1)不同类型的晶体:一般而言,原子晶体>离子晶体>分子晶体。 如:SiO2>NaCl>S (2)对于相同类型的晶体: I、主要与半径有关的晶体 ①离子晶体:组成相似的离子晶体,离子半径越小,电荷数越多,离子键就越强,晶体的熔沸点就越高; ②原子晶体:原子半径越小,键长就会越短,键能就越大,晶体的熔沸点就越高; ③金属晶体:原子半径越小,金属键键长越短,键能越大,晶体熔沸点越高;如Na<Mg<Al II、主要与分子量有关的晶体: 分子晶体:分子间作用力越大,物质的熔沸点就越高。 a.组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的溶沸点就越高。如卤素单质I2>Br2>Cl2>F2; b.能形成氢键的分子晶体,熔沸点会反常地高,如H2O>H2Te>H2Se>H2S

高中化学 第二章 化学键与分子间作用力综合检测题(含解析)鲁科版选修3

第二章化学键与分子间作用力综合检测题(含解析)鲁科版选修3 一、选择题(每小题3分,共42分) 1.下列分子中所有原子都满足最外层8电子结构的是( ) A.光气(COCl2) B.六氟化硫 C.三氯化硼D.五氯化磷 解析光气的电子式为所有原子都满足最外层8电子结构,六氟化硫中,硫原子最外层12个电子,三氯化硼中,硼原子最外层6个电子,五氯化磷中,磷原子最外层10个电子。 答案 A 2.卤素单质从F2到I2,在常温、常压下的聚集状态由气态、液态到固态的原因是( ) A.原子间的化学键键能逐渐减小 B.范德华力逐渐增大 C.原子半径逐渐增大 D.氧化性逐渐减弱 解析F2、Cl2、Br2、I2,相对分子质量依次增大,范德华力依次增大,熔、沸点依次升高,F2和Cl2常温、常压下为气态,Br2常温常压下为液态,I2常温常压下为固态。 答案 B 3.下列各组分子中属于含极性键的非极性分子的是( ) A.CO2、H2S B.C2H4、CH4 C.Cl2、C2H2D.NH3、HCl 解析A选项中,H2S为含有极性键的极性分子;C选项中,Cl2为含非极性键的非极性分子;D中NH3和HCl都为含极性键的极性分子;B选项中两种分子都为含极性键的非极性分子。 答案 B 4.能证明AlCl3为共价化合物的方法是( ) A.AlCl3溶液容易导电 B.AlCl3水溶液呈酸性 C.熔融AlCl3不能导电 D.AlCl3溶于水可以电离出Al3+和Cl- 解析共价化合物熔化时,只破坏范德华力,不破坏化学键,不能电离产生离子,所以共价化合物的熔融态仍不能导电。

答案 C 5.下列分子中的键的极性最强的是( ) A.H2O B.NH3 C.HF D.HCl 解析由于O、N、F、Cl几种原子中,F原子的电负性最大,所以H—F键的极性最强。 答案 C 6.下列叙述中错误的是( ) A.带相反电荷离子之间的相互吸引称为离子键 B.金属元素与非金属元素化合时,不一定形成离子键 C.某元素的原子最外层只有一个电子,它跟卤素原子结合时所形成的化学键不一定是离子键 D.非金属原子之间不可能形成离子键 解析相互作用包括相互吸引和相互排斥两个方面,A项错误;AlCl3、BeCl2是由金属与非金属通过共价键形成的共价化合物,B项正确;H原子和Cl原子结合成的HCl是通过共价键形成的,C项正确;NH+4是由非金属元素形成的阳离子,铵盐为离子化合物,D项错误。 答案AD 7.金属钠、金属镁、金属铝的熔点依次增高,与之直接有关的是( ) A.离子半径B.原子半径 C.离子电荷D.核电荷数 解析金属键的强弱与离子半径的大小、离子所带电荷数的多少有关。金属阳离子的半径越小,所带电荷数越多,其熔点越高。 答案AC 8.下列原子在形成不同物质时,既能形成离子键又能形成极性键和非极性键的是( ) A.Na B.Mg C.Br D.Ne 解析Br与活泼金属元素如Na之间形成离子键,与其他的非金属元素的原子间形成极性键,Br与Br之间形成非极性键。 答案 C 9.下列分子中,分子间不能形成氢键的是( ) A.NH3B.HF C.C2H5OH D.CH4 解析在氢键X—H…Y中,X原子和Y原子所属的元素通常具有很强的电负性和很小的原子半径,主要是氮原子、氧原子和氟原子,而D中CH4不符合条件。 答案 D

化学键分子间作用力(学生用)

第十七讲化学键、分子间作用力 例1.下列物质中,一定能证明某化合物中可能含离子键的是 A. 可溶于水 B. 有较高熔点 C. 水溶液能导电 D. 熔融状态能导电 例2.试利用离子键的特点说明离子化合物的以下性质: ①离子化合物通常有固定的几何外形 ②离子化合物具有较高的熔沸点 ③离子化合物固态时不导电,熔融状态下能导电 ④离子化合物MgO的熔沸点比NaCl高。 例3.关于化学键的下列叙述中,正确的是 A.离子化合物可能含共价键 B.共价化合物可能含离子键 C.离子化合物中只含离子键 D.共价化合物中不含离子键下 例4.下列共价键中极性最弱的是: A. C—F B. O—F C. N—F D. H—F 例5.下列分子中,键的极性最强的是: A. CH4 B. CO2 C. HCl D. HBr 例6.下列单质分子中,核间距最大,键能最小是 A. H2 B. Br2 C. Cl2 D. I2 例7.N—H键键能的含义是 A. 由N和H形成1mol NH3所放出的能量 B. 把1molNH3的键全部拆开所放出的能量 C. 拆开阿佛加德罗常数个N—H键所吸收的能量 D. 形成1molN—H键所放出能量 例8.下列事实能用键能大小来解释的是 A. N2的化学性质比O2稳定 B. 金刚石的熔点高于晶体硅 C. 惰性气体一般难发生化学反应 D. 通常情况下,溴呈液态,碘呈固态 例9. 下列变化中不需要破坏化学键的是 A. 加热氯化铵 B. 干冰气化 C. 金刚石熔化 D. 氯化氢溶于水例10.已知CO2、BF3、CH4、SO3都是非极性分子,NH3、H2S、H2O、SO2都是极性分子,由此可知AB n型分子是非极性分子的经验规律是 A.分子中所有原子在同一平面内 B.分子中不含氢原子 C.在AB n型分子中,A元素为最高正价 D.在AB n型分子中,A原子最外层电子都已成键 例11.下列关于化学键的叙述正确的是() A.化学键既存在于相邻的原子之间,又存在于相邻分子之间 B.两个原子之间的相互作用叫做化学键 C.化学键通常指的是相邻的两个或多个原子之间的强烈的相互作用 D.阴阳离子之间有强烈的吸引作用而没有排斥作用,所以离子键的核间距相当小 例12.下列物质中离子键最强的是() A.KCl B.CaCl2 C.MgO D.Na2O 例13.下列过程中,共价键被破坏的是()

最新大学实验化学共价键与分子间力

大学实验化学共价键与分子间力

大学实验化学共价键与分子间力 难题解析[TOP] 例10-1试用杂化轨道理论说明乙烯分子的形成及其构型。 分析根据杂化轨道理论,形成乙烯分子时,C原子的价层电子要杂化。共价键形成时,σ键在成键两原子间能单独存在,且只存在一个; 键在成键两原子间不能单独存在,但可存在多个。乙烯分子中C原子的4个价电子分别与其它原子形成三个σ键,C、C原子间的双键中有一个是π键。三个σ键决定分子构型,因此C原子有三个原子轨道参与杂化,形成三个等性杂化轨道。 解乙烯分子C2H4中有2个C原子和4个H原子,每个基态C原子的价层电子组态为2s2 2p2,在形成乙烯分子的过程中,1个2s电子被激发到2p空轨道上,然后1个2s轨道和2个2p轨道杂化形成3个等同的sp2杂化轨道,彼此间夹角为120o。每个C原子的2个sp2杂化轨道各与1个H原子的1s轨道重叠形成2个C—H σ键;2个C原子间各以1个sp2杂化轨道互相重叠,形成1个σ键。由于2个C原子的这6个sp2杂化轨道处于同一平面,未参与杂化的2p z轨道则垂直于该平面,“肩并肩” 重叠形成1个π键,构成C=C双键。 乙烯分子中6个原子在一个平面上,分子呈平面构型。 例10-2 利用价层电子对互斥理论预测- I的空间构型。 3 分析先确定中心原子的价电子对数,中心原子提供7个电子,配位提供1个电子,加上负离子的电荷数,得价层电子数的总和再除以2。然后根据价层电子对构型和孤对电子决定- I的空间构型。 3

解 -3I 中有3个I 原子,我们可将其中1个I 作为中心原子,其余2个作为配位体。中 心原子I 有7个价电子,2个配位I 原子各提供1个电子,-3I 离子的负电荷数为1,所以中 心原子的价电子对数为 (7+2+1)/2=5 。价层电子对构型为三角双锥,因配位原子数为2,说明价层电子对中有2对成键电子对和3对孤对电子,以3对孤对电子处在三角双锥的三 角形平面上排斥能最小,所以-3I 为直线型。 例10-3 试用分子轨道理论比较CO 和N 2的成键类型和键级。 分析 异核双原子分子的原子序数和≤14时,则符合分子轨道能级图10-13(b )的能级顺序;>14时,则符合分子轨道能级图10-13 (a)的能级顺序。 解 CO 分子中的电子总数为14,和N 2分子中的一样多,故CO 和N 2具有完全相同的分子轨道电子排布式、成键类型和键级。 它们的分子轨道式为 ] )(σ)(π)(π)(σ)(σ)(σ)[(σ22p 22p 22p 2* 2s 22s 2*1s 21s x z y 键级=32 410= 这样的分子称为等电子体,它们具有某些相近的性质。如N 2的熔点和沸点分别为63K 和77K ,CO 的熔点和沸点分别为74K 和81K 。 例10-4 下列说法是否正确?说明理由。 (1) 非极性分子中不含极性键。 (2) 直线型分子一定是非极性分子。 (3) 非金属单质的分子间只存在色散力。 (4) 对羟基苯甲醛的熔点比邻羟基苯甲醛的熔点高。 解 (1) 说法不正确。有的分子含极性键,但空间构型完全对称,键的极性可以相互抵消,因而是非极性分子。

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力, 体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

无机化学第10章共价键与分子结构习题全解答.doc--12-19

第10章共价键与分子结构 1.写出下列物质的Lewis结构式并说明每个原子如何达到八电子结构:HF,H2Se, H2C2O4(草酸),CH3OCH3(甲醚),H2CO3,HClO,H2SO4,H3PO4。 解: ,,,, ,,。 上述分子中的原子除H原子外,其他原子通过所形成的共价键共有电子和价电子层孤对电子共同构成8电子结构。 2、用杂化轨道理论说明下列化合物由基态原子形成分子的过程(图示法)并判断分子的空间构型和分子极性:HgCl2,BF3,SiCl4,CO2,COCl2,NCl3,H2S,PCl5。 解: ①HgCl2 HgCl2分子的中心原子为Hg原子。基态时Hg原子的价电子构型为6s2。当Hg 原子与Cl原子相遇形成HgCl2时,Hg的6s轨道中的1个电子激发到1个6p轨道,然后6s轨道和该6p轨道采用sp杂化形成2个等同的sp杂化轨道: 并分别与两个Cl原子的3p单电子轨道重叠形成2个Hg-Cl σ键。HgCl2分子构型是直线形,为非极性分子。 ②BF3 BF3分子的中心原子是B原子。基态时B原子的价电子构型为2s22p1。当B原子与F原子相遇形成BF3分子时,B原子2s轨道中的1个电子激发到1个空的2p 轨道,然后采用sp2杂化形成3个等同的sp2杂化轨道: 并分别与3个F原子2p单电子轨道重叠形成3个B-F σ键。BF3分子构型是平面三角形,为非极性分子。 ③SiCl4 Si原子为SiCl4的中心原子,基态时价电子构型为3s23p2,当Si原子与Cl原子相遇形成SiCl4分子时,Si原子3s轨道的1个电子激发到一个空的3p轨道,然后

采用sp3杂化形成4个等同的sp3杂化轨道: 并分别与4个Cl原子3p单电子轨道重叠形成4个Si-Cl σ键。SiCl4分子构型是正四面体,为非极性分子。 ④CO2 C原子为CO2的中心原子。基态时C原子价电子构型为2s22p2,当C原子与O 原子相遇形成CO2分子时,C原子2s轨道的1个电子激发到一个空的2p轨道,然后采用sp杂化形成2个等同的sp杂化轨道: 并分别与2个O原子的2p单电子轨道重叠形成2个σ键,两个O原子的一个2p 单电子轨道与C原子未参与杂化的2p轨道肩并肩重叠形成π键。CO2分子构型是直线形,为非极性分子。 ⑤COCl2 C原子为COCl2的中心原子。基态时C原子价电子构型为2s22p2,当C原子与O 原子、Cl原子相遇形成COCl2分子时,C原子2s轨道的1个电子激发到一个空的2p轨道,然后采用sp2杂化形成3个sp2杂化轨道: 其中2个sp2杂化轨道分别与2个Cl原子的3p单电子轨道重叠形成2个C-Clσ键,另一个sp2杂化轨道和O原子的2p单电子轨道形成C-Oσ键,O原子另一个2p单电子轨道与C原子未参加杂化的2p轨道肩并肩重叠形成π键。COCl2分子构型是三角形,为极性分子。 ⑥NCl3 N原子为NCl3的中心原子。基态时N原子价电子构型为2s22p3, 当N原子与Cl 原子相遇形成NCl3分子时,N原子采取sp3杂化形成4个sp3杂化轨道: 其中3个sp3杂化轨道分别与3个Cl原子的3p单电子轨道重叠形成3个C-Clσ键,另一个sp3轨道被孤对电子占据。NCl3分子构型是三角锥,为极性分子。 ⑦H2S S原子为H2S的中心原子。基态时S原子价电子构型为3s23p4, 当S原子与H 原子相遇形成H2S分子时,S原子采取sp3杂化形成4个sp3杂化轨道: 其中2个sp3杂化轨道分别与2个H原子的1s单电子轨道重叠形成2个H-Sσ键,另外2个sp3杂化轨道被孤对电子占据。H2S分子构型是V形,为极性分子。

第十章共价键与分子结构

第十章共价键与分子结构(4学时) 教学重点:1.共价键的形成、特点; 2.了解物质的性质与分子结构和键参数的关系; 教学难点:1.价层电子对互斥理论; 2.杂化轨道理论。 分子结构研究的内容包括: (1)分子或晶体中直接相邻的原子或离子之间的化学键的类型及性质; (2)分子或晶体中原子或离子的排布(空间构型); (3)分子与分子之间存在的相互作用力(范德华力); (4)分子的结构与物质的物理、化学性质的关系等。 第一节现代价键理论 离子键理论虽能很好地说明离子型化合物的生成和性质,但对于由相同原 子结合形成的单质分子,例:H 2、Cl 2 、N 2 等的形成,或由性质相近的非金属原 子形成的化合物分子,例HCl、H 2 O等。其原子间的结合力和性质却不能以离 子键理论说明。因为在这类分子的形成过程中原子间并无明显的电子得失,不可能由静电引力把组成分子的原子结合在一起。共价键理论就是说明这类化学键的形成、特点及结合力的本质的理论。 1916年美国化学家路易斯为了说明分子的形成,提出了经典的价键理论。他认为分子中每个原子应具有稳定的稀有气体原子的电子层结构,但该结构不是靠电子转移,而是通过原子间共用一对或若干对电子来实现的。这种分子中原子间通过共用电子对结合形成的化学键称为共价键。例: 该理论优点:解释了相同原子或性质相近的不同原子组成的分子。例Cl 2 HCl, . 但也存在一些问题:如 1、由经典静电理论,同性电荷应该相斥,而二个电子皆带负电荷,为何不相斥,反而互相配对。 2、不能说明共价键的方向性。 3、有些化合物分子,中心原子最外层电子数虽少于8(如BF 3 )或多 于8(PCl 5 )也能稳定存在。 为解决以上问题,最终由鲍林在前人基础上,提出了现代价键理论,简称VB法(电子配对法)。

量子力学基础及化学键和分子间力的理论简述

量子力学基础及化学键和分子间力的理论简述 一、量子力学: 黑体辐射 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。黑体辐射是指由理想放射物放射出来的辐射,在特定温度及特定波长放射最大量之辐射。 斯蒂芬-玻尔兹曼定律 R=σΤ^4,σ=5.670 51×10^-8 W·m^-2·K^-4 R:发光度, 维恩位移定律 λmax=C/T λmax,最大发光度波长 C=2.898×10^-6m·K 普朗克量子论 物体中频率为v的谐振子的能量是不连续的,它的一最小值E的整数倍, E=hv,h=6.6260755×10^-34J·s 光电效应 爱因斯坦光电学说:光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应。光电效应说明了光具有粒子性。相对应的,光具有波动性最典型的例子就是光的干涉和衍射。P=mc=E/c=hv/c=h/λ 氢原子光谱 氢原子光谱是最简单的原子光谱。由A.埃斯特朗首先从氢放电管中获得,后来W.哈根斯和H.沃格耳等在拍摄恒星光谱中也发现了氢原子光谱线。到1885年已在可见光和近紫外光谱区发现了氢原子光谱的14条谱线,谱线强度和间隔都沿着短波方向递减。其中可见光区有4条,分别用Hα、Hβ、Hγ、Hδ表示,其波长的粗略值分别为656.28纳米、486.13纳米、434.05纳米和410.17纳米。氢原子光谱是氢原子内的电子在不同能级跃迁时发射或吸收不同频率的光子形成的光谱。氢原子光谱为不连续的线光谱. 电子衍射 德布罗意假设(德布罗意关系式):λ=h/p=h/(mv) 波粒二象性 微观粒子既具有粒子性,又具有波动性;在一些条件下表现粒子性,在一些条件下表现波动性。 不确定性原理 由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k 的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk 不会小于某个常数(该常数的具体形式与f(x)的形式有关)。在量子力学里,不确定性原理(Uncertainty principle)表明,粒子的位置与动量不可同时被 确定,位置的不确定性与动量的不确定性遵守不等式 量子力学基本假定

第二章共价键理论和分子结构讲解

第二章 化学键与分子结构 一、单项选择题(每小题1分) 1. σ型分子轨道的特点是( ) ① 能量最低 ② 其分布关于键轴呈圆柱形对称 ③ 无节面 ④ 由s 原子轨道组成 2. F 2+,F 2,F 2- 的键级顺序为( ) ① F 2+ > F 2 > F 2- ② F 2+ < F 2 < F 2- ③ F 2 > F 2- > F 2+ ④ F 2 < F 2- < F 2+ 3. 呋喃的分子图为 0.36 ,关于它的反应活性,下列说法正确的是( ) ① 自由基易在3位发生反应 ② 亲核基团易在1位发生反应 ③ 亲核基团易在3位发生反应 ④ 亲电试剂易在3位发生反应 4. 以下哪个分子的π电子离域能最大( ) ① 环丙稀自由基 ② 环丁二烯 ③ 环戊二烯负离子 ④ 苯分子 5. 属于下列点群的分子哪个为非极性分子( ) ① D 6h ② C s ③ C 3v ④ C ∞v 6. 分子轨道的含义是( ) ① 分子空间运动的轨迹 ② 描述分子电子运动的轨迹 ③ 描述分子空间轨道运动的状态函数 ④ 描述分子中单个电子空间运动的状态函数 7. π型分子轨道的特点是( ) ① 分布关于键轴呈圆柱形对称 ② 有一个含键轴的节面 ③ 无节面 ④ 由p 原子轨道组成 8. F 2+,F 2,F 2- 的键长顺序为( ) ① F 2+ > F 2 > F 2- ② F 2+ < F 2 < F 2- ③ F 2 > F 2- > F 2+ ④ F 2 < F 2- < F 2+ 9.CO 分子的一个成键轨道O C c c φφψ21+=,且|c 1|>|c 2|,此分子轨道中电子将有较大的几率出现在( ) ① C 核附近 ② O 核附近 ③ CO 两核连线中点 ④ CO 两核之间 10.属于下列分子点群的分子哪个偶极矩不为零( ) ① T d ② D n ③ D 4h ④ C ∞v 11.杂化轨道是由( ) ① 同一原子的原子轨道线性组合得到的 ② 两个原子中原子轨道的线性组合而得到的

化学键与分子间作用力范文整理

化学键与分子间作用力 鲁科版高二化学选修3《物质结构与性质》 第2章复习学案 一、共价键 定义: 本质: 形成元素: 写下列物质的结构式: N2 cl2co2NH3 HcloH2oo2cH4 H2o2c2H2c2H4H2S 分类 根据原子轨道重叠方式 根据成键原子吸引电子能力 特征:①,决定 ②,决定 键参数: 共价型分子中8电子稳定结构的判断: ①分子中含氢,则氢原子一定不能满足8电子结构,只能形成2电子稳定结构

最外层电子数+②分子中不含氢,如果满足|化合价| =8,则满足8电子稳定结构 分子极性的判断特别提醒:在ABn分子中A原子化合价绝对值如果等于其最外层电子数,则ABn为分子 【针对练习】 下列元素原子与氢气形成的分子中,共价键的极性最大的是 A.I B.Sc.FD.d N-H键键能的含义是 A.由N和H形成1olNH3所放出的能量 B.把1olNH3中的共价键全部拆开所吸收的能量 c.拆开约6.02×1023个N-H键所吸收的能量 D.形成约1个N-H键所放出的能量 下列分子中所有原子都满足最外层8电子结构的是 A.光气 B.天氟化硫c.二氧化氙D.三氟化硼 判断下列分子的极性 o3P4c2H6 5. 化合物中心原子杂化方式分子空间构型分子的极性键的极性键角 H2o NH3 co2

cH4 c2H4 c2H2 c2H6 BF3 Becl2 判断正误: 极性键一定比非极性牢固 非金属原子之间一定存在共价键 不同元素原子的电负性一定不同 极性分子中一定有极性键 以极性键混合的双原子分子一定是极性分子非极性分子中一定有非极性键 全部是极性键的分子一定是极性分子 全部是非极性键的分子一定是非极性分子 单质分子一定存在非极性键 二、离子键 定义: 成键微粒:①;②。 实质: 特征:①;②。

四、化学键理论与分子几何构型

170℃四、化学键理论与分子几何构型 1.NO的生物活性已引起科学家高度重视,它与O2-反应,生成A。在生理pH条件下,A 的t1/2= 1~2秒。 (1)写出A的可能的Lewis结构式,标出形式电荷。判断它们的稳定性。 (2)A与水中的CO2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示出形 式电荷,判断其稳定性。 (3)含Cu+的酶可把NO2-转化为NO,写出此反应方程式。 (4)在固定器皿中,把NO压缩到100atm,发现气体压强迅速降至略小于原压强的2/3, 写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。 2.试画出N5+离子的Lewis所有可能结构式,标出形式电荷,讨论各自稳定性,写出各氮 原子之间的键级。你认为N5+的性质如何?它应在什么溶剂中制得。 3.在地球的电离层中,可能存在下列离子:ArCl+、OF+、NO+、PS+、SCl+。请你预测哪一 种离子最稳定?哪一种离子最不稳定?说明理由。 4.硼与氮形成类似苯的化合物,俗称无机苯。它是无色液体,具有芳香性。 (1)写出其分子式,画出其结构式并标出形式电荷。 (2)写出无机苯与HCl发生加成反应的方程式 (3)无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式,并 以此判断取代物可能的结构式。 (4)硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具有 导电性。 (5)画出Ca2(B5O9)Cl·2H2O中聚硼阴离子单元的结构示意图,指明阴离子单元的电荷 与硼的哪种结构式有关。 5.用VSEPR理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。 (1)IF3(2)ClO3-(3)AsCl3(CF3)2(4)SnCl2(5)TeCl4(6)GaF63- 6.试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子 (1)画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n ) (2)估计分子中碳—氧键的键长变化规律 7.近期报导了用二聚三甲基铝[Al(CH3)3]2(A)和2, 6—二异丙基苯胺(B)为原料,通过两 步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH4 第二步:□C □D + □CH4(□中填入适当系数) 请回答下列问题: (1)分别写出两步反应配平的化学方程式(A、B、C、D要用结构简式表示 (2)写出D的结构式 (3)设在第一步反应中,A与过量B完全反应,产物中的甲烷又全部挥发,对反应后的 混合物进行元素分析,得到其质量分数如下: C (碳):73.71% ,N (氮):6.34% 试求混合物中B和C的质量分数(%) (已知相对原子量:Al:26.98、C:12.01、N:14.01、H:1.01) 8.四氨合铜(II)离子在微酸性条件下,与二氧化硫反应生成一种沉淀物(A),该沉淀物中Cu:N:S(原子个数比)=1:1:1,结构分析证实:存在一种正四面体和一种三角锥型的分

相关主题
文本预览
相关文档 最新文档