当前位置:文档之家› 聚晶金刚石复合片的电火花线切割机理与形貌

聚晶金刚石复合片的电火花线切割机理与形貌

聚晶金刚石复合片的电火花线切割机理与形貌聚晶金刚石复合片电火花线切割机理:

电火花线切割(EDM)是一种非接触式加工方法,它基于了局部放电

原理,利用工作电极和工件之间电火花进行加工。在切割聚晶金刚石复合

片时,由于聚晶金刚石具有高硬度、高强度、高耐磨性和高导热性等特点,因此需要选择具有高功率、高频率和高精度的电火花线切割机来实现加工。

首先,切割区域内形成了放电区,电解液和空气被电弧加热并产生等

离子体,在高能量作用下,金刚石锯片受到脆性断裂,形成热应力裂纹,

更好的去除了分子间键。放电区产生大量热,并有物质溢出现象,注入到

电极表面形成青铜颗粒,最后在切割过程中从原材料中切割出来。

聚晶金刚石复合片电火花线切割形貌:

为了保证加工效果和精度,聚晶金刚石复合片的电火花线切割必须严

格控制切割参数,如放电电压、放电电流、脉冲宽度、工作液类型和流量等。在切割过程中,需要对切割区域进行稳定、准确的控制,以避免切割

工件时发生撞击或松动等问题,同时,还需要精确测量和控制加工过程中

的各种参数,以确保加工效果的稳定性和可靠性。

切割表面主要是呈现出板状的形态,表面比较平滑,在精度提高时,

上表面的升温会对材料产生热应力,会出现明显的热裂痕和边缘剥落,看

起来并不光滑。而下表面则会出现不规则形状,出现棱角和异常凸起,这

是由于金刚石颗粒间隙小导致的。同时,在镶嵌陶瓷层的情况下,由于具

有不同的导热性和热膨胀系数,会出现表面边缘的翘曲和形变现象,在切

割过程中还需要控制切割速度和切割深度,以避免材料的局部熔化和变形。

电火花加工技术

电火花加工技术的应用及其发展 1.电火花加工技术的简介 从前苏联科学院拉扎连柯夫妇在1943年研制出世界上第一台实用化电火花加工装置以来,电火花加工技术得到了飞速的发展,电火花加工技术是历史最悠久的特种加工方法之一,在模具制造业,航空和航天,电子等众多领域得到了广泛的应用。电火花加工又称放电加工,也有称电脉冲加工,它是一种直接利用热能和电能进行加工的工艺。电火花加工与金属切削加工的原理完全不同,在加工过程中,工件和工具不接触,而是靠工具与工件之间的脉冲性火花放电,产生局部,瞬间的高温把金属材料逐步的蚀除掉。由于放电的过程产生火花所以也称电火花加工。 图1. 电火花加工的原理图 如图1的原理图所示,工件与工具分别连接到脉冲电源的两个不同的极性的电极上。当两电极加上脉冲电源后,工件和电极保持适当的距离,就会把工件和工具之间的介质击穿,形成放电通道。放电通道产生瞬间高温,使工件表面的材料融化甚至气化,同时也使工作介质气化。在放电间隙处迅速热膨胀并产生爆炸。工件表面一部分材料被蚀除掉抛出,形成微小的电蚀坑。脉冲放电结束后,经过一段时间间隔,使工作液恢复绝缘,脉冲电源反复作用于工件和工具电极上,上述过程不断重复进行,工件逐渐被加工成想要的形状。

2.电火花加工技术的应用范围 由于电火花加工有其独特的优越性,再加上数控水平和工艺技术的不断提高,其利用领域日益扩大,已经覆盖到机械、宇航、航空、电子、核能、仪器、轻工等部门,用以解决各种难加工材料、复杂形状零件等有特殊要求的零件的制造,成为常规切削、磨削加工的重要补充和发展:模具制造是电火花成型加工应用最多的领域,而且非常的典型。 2.1以下简单介绍电火花成则加工在模具制造方面的的应用 1.高硬度零件加工 对于某些要求硬度较高的模具,或者是硬度要求特别高的滑块、顶块等零件,在热处理后其表固硬度高达50HRc以上,采用机加的方式将很难加工这么高硬度的件.采用屯火花加工可以不受材料硬度的影响。 2. 型腔尖角部位加工 如锻模、热固性利热塑性翅料模、压铸模、挤压模、橡皮模等各种模具的型腔常存在着一些尖角部位,在常规切削加工中因为工具半径而无法加工到位,使用电火花加工可以完全成型。 3.模具上的筋加工 在压铸件或者塑料件上,常有各种窄长的加强筋或者散热片,这种筋在模具上表现为下凹的深而窄的槽,用机加工的方法很难将其加工成型,而使用电火花可以很便利地进行加工。 4.深腔部位的加工 由于机加工时,没有足够长度的刀具,或者这种刀具没有足够的刚性,不能加工具有足够精度的零件.此时可以用电火花进行加工。 5.小孔加工 对各种圆形小孔、异形孔的加工,如线切割的穿丝孔、喷丝板型孔等,以及长深比非常大的深孔,很难采用钻孔方法加工,如采用电火花或者专用的高速小孔加工可以完成各种深度的小孔加工。 6 表面处理 如刻制文字、花纹,对金属表面的渗碳和涂覆特殊材料的电火花强化等。另外通过选择合理加工参数,也可以直接用电火花加工出一定形状的表面蚀纹。 2.2、电火花线切割加工的应用 电火花线切割加工与电火花成型加工不同的是,它是用细小的电极丝作为电极工具,可以用来加工复杂型面、微细结构或窄缝的零件:下面是其应用实例。 1.加工模具

pdc钻头分析

PDC钻头 英文:Polycrystalline Diamond Compact 聚晶金刚石复合片钻头的简称。是石油钻井行业常用的一种钻井工具。 PDC产品性能不断改进。在过去的几年间,PDC切削齿的质量和类型都发生了巨大的变化。如果将20世纪80年代的齿与当今的齿进行比较的话,差异是相当大的。由于混合工艺与制造工艺的变化,当今的切削齿的质量性能要好得多,使钻头的抗冲蚀以及抗冲击能力都大为提高。 工程师们还对碳化钨基片与人造金刚石之间的界面进行了优化,以提高切削齿的韧性。层状金刚石工艺方面的革新也被用于提高产品的抗磨蚀性和热稳定性。 除了材料和制造工艺方面的发展以外,PDC产品在齿的设计技术和布齿方面也实现了重大的突破。现在,PDC产品已可被用于以前所不能应用的地区,如更硬、磨蚀性更强和多变的地层。这种向新领域中的扩展,对金刚石(固定切削齿)钻头和牙轮钻头之间的平衡发生了很大的影响。 8-1/2TD164A 4刀翼PDC钻 头2TD194B 4刀翼PDC钻头 8-1/2TD165A 5刀翼PDC钻 头 8-1/2TD196A 6刀翼PDC钻 头9TD195A5刀翼PDC钻头 9-1/2TD166A 6刀翼PDC钻 头

最初,PDC 钻头只能被用于软页岩地层中,原因是硬的夹层会损坏钻头。但由于新技术的出现以及结构的变化,目前PDC 钻头已能够用于钻硬夹层和长段的硬岩地层了。PDC 钻头正越来越多地为人们所选用,特别是随着PDC 齿质量的不断提高,这种情况越发凸显。 由于钻头设计和齿的改进,PDC 钻头的可定向性也随之提高,这进一步削弱了过去在马达钻井中牙轮钻头的优势。目前,PDC 钻头每天都在许多地层的钻井应用中排挤掉牙轮钻头的市场。 PDC 钻头厚层砾岩钻进技术探索与实践: 为了降低海上钻井作业成本、提高作业效率,开发了PDC 钻头厚层砾岩钻进技术.在保持普通PDC 钻头快速切削性能的基础上,通过优选新型高强度PDC 切削 齿、改进钻头切削结构提高钻头的整体强度,通过采用后倾角渐变、力平衡设计、加强切削齿保护等方法提高钻头的稳定性,并且在使用中通过优化钻具组合、采用 合理的钻井参数和"中低排量-中低转速-中高钻压"的平稳钻进模式预防PDC 钻头在砾岩段的先期破坏,有效延长了钻头在砾岩钻进中的寿命.应用该技术实现 了用PDC 钻头在辽东湾一次性钻穿馆陶组和东营组上部疏松地层中垂厚近80 m 的砾岩段,有的井钻穿砾岩段后又直接钻下部中硬地层至完钻井深.采用PDC 钻头厚层砾岩钻进技术,可以大量节省海上钻井作业时间,显著降低钻井费用. PDC 钻头工程技术措施石油钻井装备: 1)、首先做好PDC 钻头的选型工作,钻头水眼、流道设计应利于排屑; 2)、下入PDC 钻头之前,应充分循环泥浆,清洗井眼,防止起钻后滞留在井眼内的钻屑继续水化分散; 3)、下钻时钻头不断刮削井壁,井壁上的泥饼或滞留于井内的钻屑会在钻头下堆积,到一定程度便会压实在钻头上,那么下钻中途进行循环,将钻头 冲洗干净也是有其必要的; 4)、下钻过程中还应适当控制速度,防止钻头突然冲入砂桥,钻进一堆烂泥中;另外如果速度恰当,PDC 钻头会顺着上一只钻头所钻的螺旋形井眼轨道行 进,而不是在井壁上划拉下大量泥饼。 5)、每次下钻到底时必须先开泵,尽量提高排量充分冲洗井底和钻头,等排量满足要求后再轻压旋转钻进0.5-1m ,这也是PDC 钻头造型的要求。 6)、下入PDC 前先短起下钻,对井壁泥饼进行刮削、挤压,将厚泥饼拉薄、压实,尽量保证井眼畅通、消除阻卡;在钻头泥包高发区,如果采用了所有方法 也无法避免PDC 钻头泥包,那么先使用牙轮通一趟井就成了必要手段 7)、尽量采用大排量钻进,保证PDC 钻头的充分清洗与冷却; 8)、在软泥岩中钻进,应尽量采用低钻压、高转速、大排量,没有必要盲目使用高钻压去追求那仅高一小点的钻速,那只是牙轮钻头的使用方式; 9)、操作要精细,送钻加压一定要均匀,不能忽大忽小。 *牙轮钻头在使用中的结构特点 牙轮钻头在使用中具有良好的结构特点,下面简单的介绍一下牙轮钻头的结构特点: 1、牙轮钻头采用浮动轴承结构,浮动元件由高强度、高弹性、高耐温性、高耐磨性特点的新材料制 成,表面经固体润滑剂处理。在降低轴承副相对线速度的同时,减少摩擦面温升,能有效提高高钻压或高转速钻井工艺条件下的轴承寿命和轴承可靠性。 2、镶齿钻头采用高强度高韧性硬质合金齿,优化设计的齿排数、齿数、露齿高度和独特的合金齿外形,充分发挥 了镶齿钻头高耐磨性和优异的切削能力。钢齿钻头齿面敷焊新型耐磨材料,在保持钢齿钻头高机械钻速的同时,提高了钻头切削齿寿命。 3、牙轮钻头中的钢球锁紧牙轮,适应高转速,能够在使用中提高工作效率。 4、采用可限制压差并防止钻井液进入润滑系统的全橡胶储油囊,为轴承系统提供了良好的润滑保证。 5、采用可耐250°C 高温、抗磨损的新型润滑脂。 6TD136A 6刀翼PDC 钻头 12-1/4TD166A 6刀翼PDC 钻头 8-1/2TD13A

聚晶金刚石

聚晶金刚石(PCD)刀具的开发与应用 1 引言 高速切削已成为现代制造技术的一个主要发展方向。由于高速切削刀具的开发与应用直接影响高速切削的加工效率和加工质量,因此具有非常重要的意义。刀具技术的革新,除了刀具本身的几何形状、切削角度等的革新和改进外,刀具切削刃材质的开发和革新也是提高切削效率、降低切削成本的一个关键因素。 20世纪70年代中期以来,美国、德国、日本等工业发达国家先后开发聚晶金刚石(PCD)刀具并将其用于非金属材料和有色金属材料的高速切削加工,使生产效率获得大幅度提高,切削费用成倍下降,因此被广泛应用于汽车、航空、航天以建材等工业领域。 2 PCD复合片的开发 聚晶金刚石(PCD)复合片是由粒度为微米级的金刚石颗粒与Co、Ni 等金属粉末均匀混合后,在高压高温下,在碳化钨(WC)基材上烧结而成的一种刀坯新材料。 PCD 复合片不仅具有金刚石高硬度、高耐磨性、高导热性、低摩擦系数、低热膨胀系数等优越性能,同时还具有硬质合金良好的强度和韧性。PCD 复合片还具有导电性,因此可用线切割机切割成所需刀头,将刀头焊接在刀体上,经过刃 表1 公司名称国别牌号金刚石平均粒径(%26micro;m) GE 美国Compax-1600 Compax-1300 Compax-1500 Compax-1700 5 10 25 40 Element six (原De Beers) 英国 Syndite-CTC002 Syndite-CTB002 Synd ite-CTB010 Syndite-CTB025 Syndite-CTH025 2 2 10 25 25 住友电工日本DA-200 DA-150 DA-100 DA-90 0.5 5 20+0.5 50 日本韩国CF CM CC 2 10 25 东名日本TDC-FM TDC-98F2M TDC-GM TDC-SM TDC-HM TDC-SA TDC-EpM TDC-EM 1 1 3 7 10 16 20 36+16

金刚石复合片

金刚石复合片(polycrystalline diamondcompact PDC)作为一种新型复合材料,其发展历史仅有十几年,但其应用范围已发展到各行各业,广泛地应用于地质钻探、非铁金属及合金、硬质合金、石墨、塑料、橡胶、陶瓷和木材等材料的切削加工等领域。它的表层为金刚石粒度不同的粉末烧结而成的多晶金刚石,具有极高的硬度、耐磨性和较长的工作寿命;底层一般为钨钴类硬质合金,它具有较好的韧性,为表层聚晶金刚石提供良好的支撑,且容易通过钎焊焊接到各种工具上。目前国内外一般都采用超高压高温烧结的方法制造聚晶金刚石-硬质合金复合片。由于它的使用范围扩大,对其性能的要求提高,因而相应的性能检测方法也经过了一个快速的发展过程,在检测的准确性和有效性方面都趋于成熟。 1金刚石复合片的性能 金刚石复合片之所以应用如此广泛,主要是因为其具有其他材料无与伦比的优越的性能。 (1)高的硬度和耐磨性(磨耗比)。复合片的硬度高达10 000 HV左右,是目前世界上人造物质中最硬的材料,比硬质合金及工程陶瓷的硬度高得多。由于硬度极高,并且各向同性,因而具有极佳的耐磨性。一般通过磨耗比来反映复合片的耐磨性,在20世纪80~90年代中期,复合片磨耗比为4~6万(国外为8~12万); 20世纪90年代中期至现在,复合片的磨耗比为8~30万(国外10~50万)。 (2)热稳定性。复合片的热稳定性确定了其使用范围,复合片的热稳定性[2]即为耐热性,与其强度和磨耗比一样,是衡量PDC质量的重要性能指标之一。耐热稳定性是指在大气环境(有氧气存在)下加热到一定的温度,冷却以后聚晶层化学性能的稳定性(金刚石墨化的程度)、宏观力学性能的变化和对复合层界面结合牢固程度的影响。热稳定性的变化在750℃烧结以后,国内部分厂家产品表现为磨耗比上升5% ~20%,抗冲击韧性变化不大,部分厂家产品磨耗比下降,抗冲击性能下降,这与各个单位所采用的配方和工艺不同有关,国外复合片的磨耗比和抗冲击韧性烧结前后变化不大。 (3)抗冲击韧性。PDC作为切削工具,被广泛地应用于油气钻井作业中。在钻井过程中,由于轴向力和水平切削力的联合作用、钻具与孔壁的摩擦、钻杆柱的弯曲、孔底不平及残留岩粉、钻机振动等因素的影响,使得钻头上的PDC受到极大的冲击力。PDC抗冲击性能反映了复合片的韧性和粘结强度,是一综合性指标,也是决定其使用效果好坏的关键所在。在20世纪80~90年代中期,复合片的抗冲击韧性为100~200 J(国外为200~300 J); 20世纪90年代中期至现在,抗冲击韧性为200~400 J(国外大于400 J)。 2复合片的性能检测方法 2.1耐磨性 复合片的耐磨性一般是通过磨耗比这个指标来衡量的,但迄今为止国际上也没有制定统一的测试标准,几个主要的PDC生产国均有其自己的测试方法。美国的GE公司采用的方法是用PDC来车削一种结构均匀的花岗岩棒,切削速度为180 m/min,切深为1 mm,进给量为0. 28 mm/r。车削时用测力计测PDC的受力大小。车削一定数量的花岗岩后,观察PDC 的磨损量。磨损量是用投影显微镜测量被磨损部位的长宽尺寸,然后用计算机算出其体积,进行比较。英国De Beers公司的方法与GE公司类似。前苏联对PDC耐磨性的测定是用

金刚石线切割技术简析

金刚石线切割技术简析 技术简介 以生产工艺划分,金刚石线可以分为电镀金刚石线和树脂金刚石线。金刚石切割线是通过一定的方法,将金刚石镀覆在钢线上制成,通过金刚石切割机,金刚石切割线可以与物件间形成相对的磨削运动,从而实现切割的目的。 金刚石线是用复合电镀的方法将高硬,高耐磨性的金刚石微粉固结在钢丝基体上,而制成固结磨料金刚石锯线。在切割过程中90%的抗拉强度来自钢丝线,因此钢丝线对金刚石线至关重要。 在自由磨料线锯切割过程中,研磨液由喷嘴直接喷到钢丝线与硅晶体上,由线网的钢丝线带动游离磨料对硅晶体进行切割。与游离磨料不同,金刚石线将金刚石微分固结到钢丝线上,钢丝线往复移动对硅晶体进行切割。 图:金刚石线构成轴剖面图 技术优势

传统砂浆的利用钢丝的快速运动将含磨料的液体带入到工件切缝中,产生切削作用。在切割过程中,碳化硅被冲刷下来,唯有持续进行滚动磨削,而减少切割效率。碳化硅的硬度9.5(莫氏),而金刚石硬度在10(莫氏)。金钢线切割线速度基本在15m/s,正常切割的砂浆线速度基本在9-11.5m/s。而若金钢线再做突破的话,就应该是要更硬,同时兼有更好的自锐性(多晶金刚石),更稳定的固结方式,更快的线速度。 金刚石切割线相比传统工艺有三大优势: 1)金刚石线切割漏损少,寿命长,切割速度快,切割效率高,提升产能; 2)品质受控,单片成本低,金刚石线切割造成的损伤层小于砂浆线切割,有利于切割更薄的硅片; 3)环保,金刚石线使用水基磨削液(主要是水),有利于改善作业环境,同时简化洗净等后道加工程序。 添加剂原理 随着金刚石线切割技术的发展及单多晶竞争的日益激烈,多晶硅片将全部由砂浆线切割转变为金刚石线切割。不过由于金刚石线切割多晶硅片的损伤层浅、线痕明显等问题,常规砂浆线的酸制绒难以在其表面刻蚀出有效的减反射绒面。 目前,针对金刚石线多晶硅片制绒的难题,主要解决办法包括:金刚石线直接添加剂法、干法黑硅(RIE)及湿法黑硅(MCCE)等,由于RIE和MCCE成本及工艺等原因,目前大多数企业以金刚石线直接添加剂法制备金刚石线切割多晶硅片的减反射绒面,当然由于添加剂法制备的电池转换效率低等因素,决定其只是金刚石线切割多晶硅片全面推广的一个过渡阶段。

聚晶金刚石复合片及其生产工艺简述

聚晶金刚石复合片及其生产工艺简述 (1)聚晶金刚石复合片 全部选用国产原材料,经过重新整形、提纯、净化、配料、组装等工序,在国产六面顶(液)压机上,采用先进的超高压-高温合成工艺,生产聚晶金刚石 复合片坯料 (1) Polycrystalline diamond compact (PDC) Select and use domestic raw materials, and after the procedures of re-coining, purification, purging, burdening and assembling, use advanced ultra high pressure-high temperature synthesis technology to produce polycrystalline diamond compact (PDC) billet on the domestic cubic (hydraulic) press. 聚晶金刚石复合片具体生产工艺简述: 1)根据订单和公司计划下达生产任务单; 2)原料、辅料的购置; 3)整形:对金刚石的形状进行严格控制,对所购原料进行重新整形,尽量去除长条形等不规则形状的金刚石颗粒,获得圆度好的、基本上为球形的金刚石 颗粒; Introduction of the specific production technology of polycrystalline diamond compact (PDC): 1) Assign production tasks in accordance with the orders and company plan; 2) Purchase raw materials and auxiliary materials; 3) Coining: strictly control the diamond shape, re-coin the purchased raw materials, and do the best to eliminate the diamond particles with irregular shapes such as strip ones to obtain diamond particles with good roundness and which are basically spherical. 4) 分级:将混合粉料放入烧杯中,加入超净化去离子水,搅拌混合均匀,根据不同粒度沉降时间不同的原理选取所需粒度,使用激光粒度分析仪对粒度的 分布进行精确测量; 5)净化:对金刚石微粉、钴粉及其他原料进行氢气还原处理;氢气还原处理工艺:在氢气还原炉中处理,依据材料的不同选择不同的处理温度,大致范围 为500-800℃; 4) Classification: put the mixed powder into the beaker, add super-purgative deionized water, stir and mix it evenly, select required particle size in accordance with the settling time theory of different particle sizes, and use the laser particle size analyzer to accurately measure the distribution of particle sizes; 5) Purification: perform hydrogen reductive treatment to diamond micro-powder, cobalt powder and other raw materials; hydrogen reductive treatment techniques: process it in the hydrogen reducing furnace, select different treatment temperatures in accordance with different materials, and the proximate range should be between 500-800℃; 6)配料:按照一定的比例将金刚石与钴粉、以及少量的微量元素进行混合,其中金刚石的粒

PDC钻头工作原理及相关特点剖析

第二章 PDC 钻头工作原理及相关特点 PDC 钻头是依靠安装在钻头体上的切削齿切削地层的,这些切削齿有复合片切削齿和齿柱式两种结构,它们的结构以及在钻头上的安装方式如图1-2所示。复合片式切削齿是将复合片直接焊接在钻头体上预留的凹槽内而形成的。它一般用于胎体钻头;齿柱式切削齿是将复合片焊接在碳化钨齿柱上而形成的,安装时将其齿柱镶嵌或焊接在钻头体上的齿空内,它一般用于钢体钻头,也有用于胎体钻头的。 复合片(即聚晶金刚石复合片)是切削齿的核心。复合片一般为圆片状,其结构如图1-3所示,它是由人造聚晶金刚石薄层及碳化钨底层组成,具有高强度、高 硬度及高耐磨性,可耐温度750℃。 人们早就从实验中发现,岩石的诸力学强度中,抗拉强度最低,剪切强度次之,而抗压强度最高,抗压强度往往比剪切强度高数倍至十多倍。显然采用剪切方式破碎岩石比用压碎方式要容易而有效的多。PDC 钻头的复合片切削结构正是利用了岩石这一力学特性,采用高效的剪切方式来破碎岩石,从而达到了快速钻井的(a) 复合片式切削齿 (b)齿柱式切削齿 图1-2 切削齿在钻头上的安装方式 图1-3 复合片的结构 图1-4 PDC 钻头的切削方式

目的。当PDC钻头在软到中等级硬度地层进时,复合片切削齿在钻压和扭矩作用下克服地层应力吃入地层并向前滑动,岩石在切削齿作用下沿其剪切方向破碎并产生塑性流动,切削所产生的岩削呈大块片状,这一切削过程与刀具切削金属材料非常相似(见图1-4)。被剪切下来的岩屑,再由喷嘴射出泥浆带走至钻头与井壁间的环空运至井外。 PDC钻头因使用了聚晶金刚石复合片作切削元件而使得切削齿有很高的硬度和耐磨性。PDC齿的缺点是热稳定性差,当温度超过700℃时,金刚石层内的粘结金属将失效而导致切削齿破坏,因此PDC齿不能直接烧结在胎体上而只能采用低温钎焊方式将其固定在钻头体上。在工作中,切削齿底部磨损面在压力作用下一直与岩石表面滑动摩擦要产生大量的摩擦热,当切削齿清洗冷却条件不好,局部温度较高时,就有可能导致切削齿的热摩损(350-700℃时,切削齿的磨损速度很快,这一现象称为切削齿的热磨损)而影响钻头正常工作,所以钻头要避免热磨损出现就必须有很好的水力清洗冷却,润滑作用配合工作,这就是要求泥浆从喷嘴流出后水力分布要合理,能有效地保护切削齿,这即是对钻头水力计的基本要求之一。另外PDC钻头应避免在高硬度,高研磨性的地层中高转速钻进,以免造成局部摩擦温度过高。 §2.1 PDC钻头及钻进主要影响因素 §2.1.1 PDC钻头结构介绍 聚晶金刚石复合片分柱式和片式两种,常用的形状有圆形、尖形及半圆形等。通常以柱式方式镶嵌在胎体上。 1. 切削齿的布置 切削齿的布置与所钻地层及钻头类型有关,它将影响到钻头的机械钻速、总进尺和磨损。切削齿布置越多,磨损越慢,钻头寿命越长,但机械钻进速度越低。切削齿的布置应使每个切削齿的切削力、所切削的岩石量、载荷、扭矩、磨损以及水力清洗等都相同,所以有等切削、等功率、等磨损设计要求。 2. 切削齿出刃与胎体

聚晶金刚石( PCD )和聚晶金刚石复合片( PDC )

聚晶金刚石(PCD)和聚晶金刚石复合片 (PDC) 与大单晶金刚石相比,作为刀具材料的聚晶金刚石(PCD)以及聚 晶金刚石复合刀片(PDC)具有以下优点:①晶粒呈无序排列,各向同性,无解理面,因此它不像大单晶金刚石那样在不同晶面上的强度、硬 度以及耐磨性有较大区分,以及因解理面的存在而呈现脆性。②具有较 高的强度,特别是PDC材料由于有硬质合金基体的支撑而有较高的抗冲 击强度,在冲击较大时只会产生小晶粒碎裂,而不会像单晶金刚石那样 大块崩缺,因而PCD或PDC刀具不仅可以用来进行精紧密削加工和一般 半精密加工,还可用作较大切削量的粗加工和断续加工(如铣削等), 这大大扩充了金刚石刀具材料的使用范围。③可以制备大块PDC金刚石 复合片刀具坯料,充足大型加工刀具如铣刀的需要。④可以制成特定形 状以适合于不同加工的需要。由于PDC刀具大型化和加工技术如电火花 和激光切割技术的提高,三角形、人字形以及其他异形刀坯均可加工成形。为适应特别切削刀具的需要还可设计成包裹式、夹心式与花卷式PDC刀具坯料。⑤可以设计或推测产品的性能,给与产品必要的特点以 适应它的特定用途。比如选择细粒度的PDC刀具材料可使刀具的刃口的 质量提高,粗粒度的PDC刀具材料能够提高刀具的耐用度,等等。 总之,随着PCD、PDC金刚石复合片刀具材料的讨论进展,其应用 已经快速扩展到很多制造工业领域,广泛应用于有色金属(铝、铝合金、铜、铜合金、镁合金、锌合金等)、硬质合金、陶瓷、非金属材料(塑料、硬质橡胶、碳棒、木材、水泥制品等)、复合材料(纤维加强塑料、金属基复合材料MMCs等)的切削加工,尤其在木材和汽车加工业,已 经成为传统硬质合金的高性能替代产品。 切削刀具用PDC、PCD材料要求:①金刚石颗粒间能广泛地形成D—D自身结合,残余粘结金属和石墨尽量少,其中粘结金属不能以聚结态或呈叶脉状分布,以保证刀具具有较高的耐磨性和较长的使用寿命。 ②溶媒金属残留量少。最好是在烧结过程中能起溶媒作用,而在烧结过 程完成后将以不起溶媒作用的合金形式充填于烧结金刚石晶粒间隙中,

聚晶金刚石复合片的设计方法和应变能的利用(doc 12页)

聚晶金刚石复合片(PDC)的设计方法与应变能的利用 摘要:聚晶金刚石复合片(PDC)钻头由于其高渗透率,使用寿命长和生产工艺简单等优点,已经在石油和天然气钻探领域得到了广泛的商业性认可。不过,PDC钻头应用在钻孔高抗压强度和高耐磨性岩石方面所取得的成功却很有限,原因之一就在于刀具容易发生折断。本篇论文就是试验用结构所能承受的应变能的能力来作为在动态和静态负荷条件下刀具抗折断能力的一个指标。当刀具向下钻孔时,刀具会受应力产生形变因此,钻孔时的冲击力就被刀片和PDC钻头吸收转化为应变能。刀具本身能承载的应变能越高,就能吸收越多的冲击能,使应力形变不超过金刚石的拉伸极限。PDC刀具中的各种金刚石/碳化物界面的几何形状和金刚石厚度可以用有限元分析法(FEA)来模拟。这种FEA模型包括了剩余应力负载和模拟冲击负载。应变能承载能力可以通过调整冲击负载使金刚石表面产生临界拉伸压力之后计算出来。之后对每个计算得出的设计结果进行实验室落塔冲击实验。然后将这些设计结果依计算出的承受应变能能力和落塔实验的结果排序。使用这种方法和工具,可以在工具设计时直观的在显示屏上快速的进行性能预测,而不必冒风险去实际钻一个向下钻眼,而且这种方法也可以将剩余应力和钎焊应力合并进去,因此是非常有意义的。 简介:PDC刀具面世20多年来,已经对石油和天然气钻探产业产生了巨大的影响。如今在所有钻进进尺中,使用装配了PDC刀片的钻头的比例已经很大。高渗透率、长寿命和工艺简单是PDC钻头的显著优点。但是在钻孔高抗压强度和高耐磨岩石时,PDC钻头表现一般,原因之一就是钻孔坚硬的岩石时容易折断刀具。PDC刀具的断裂韧性是钻头工作是尤其重要的一项指标。 新的PDC刀具设计时必须在工地实际应用前对其进行断裂韧性的评估。如何正确的模拟钻孔时刀具受到的冲击是已经被广泛研究的一项课题,并且已经有几种不同的方法被使用。有些是通过对带有标靶和抗冲击板的刀头进行动态冲击的严格冲击实验,还有些是在动态岩石切割实验中被更准确的检测。 本篇论文提出了一种新型的方法去评估刀具的韧性。首先将含有各种几何形状的金刚石/碳化物界面和金刚石厚度的PDC钻头用有限元分析法(FEA)进行模拟。这种FEA模型同时包括残余应力负载和模拟冲击负载。应变能承载能力可以通过调整冲击负载使金刚石表面产生临界拉伸压力之后计算出来。使这种应变能作为在动态和静态负荷条件下刀具抗折断能力的一个指标。应变能承载能力越高的PDC刀具的抗折断能力也越高。 为验证模型得到的结果,对每个计算出的设计结果进行是实验室落塔实验。从而建立计算所得的应变能承载能力与实际落塔实验的结果之间的对应关系。进而研究出其静态强度与落塔实验结果直接的对应关系。最终我们得到了一种实验室向下冲击试验的方法。 数值建模程序: 从能量角度分析可以有效地评估动力在力学负载诸多问题。在实验室冲击试验中,能量是从试验设备转移到PDC刀具。在向下钻孔的情况下,能量从PDC刀具传递到形成的坑中。动态负载下的刀具变形将取决于一般的力学参数以及应变波的波速。对应变波的影响一直被忽视此分析,由于声音在PDC的高速传播10公里/秒)[6]。这个假设可能是无效的PDC的假设,供所有加载情况。有了这个假设,动态负荷可近似为一产生相同的最大偏转的等效静负荷。在刀具形变的过程中等效静载荷所作的功相当于将应变能储存在了刀具中。 高应变能量容量的设计可以吸收更多的冲击力在失败前。举个例子,假设有两个悬臂梁结构,

电火花线切割加工的步骤及要求

电火花线切割加工的步骤及要求 电火花线切割加工是实现工件尺寸加工的一种技术。在一定设备条件下,合理的制定加工工艺路线是保证工件加工质量的重要环节。 电火花线切割加工模具或零件的过程,一般可分以下几个步骤。 1. 对图样进行分析和审核 分析图样对保证工件加工质量和工件的综合技术指标是有决定意义的第一步。以冲裁模为例,在消化图样时首先要挑出不能或不易用电火花线切割加工的工件图样,大致有如下几种: ⑴表面粗糙度和尺寸精度要求很高,切割后无法进行手工研磨的工件; ⑵窄缝小于电极丝直径加放电间隙的工件,或图形内拐角处不允许带有电极死板井架放电间隙所形成的圆角的工件; ⑶非导电材料; ⑷厚度超过丝架跨距的零件; ⑸加工长度超过x,y拖板的有效行程长度,且精度要求较高的工件。 在符合线切割加工工艺的条件下,应着重在表面粗糙度、尺寸精度、工件厚度、工件材料、尺寸大小、配合间隙和冲制件厚度等方面仔细考虑。 编程注意事项 1. 冲模间隙和过渡圆角半径的确定 ⑴合理确定冲模间隙。冲模间隙的合理选用,是关系到模具的寿命及冲制件毛刺大小的关键因素之一。不同材料的冲模间隙一般选择在如下范围: 软的冲裁材料,如紫铜、软铝、半硬铝、胶木板、红纸板、云母片等,凸凹模间隙可选为冲材厚度的10%—15%。 硬质冲裁材料,如铁皮、钢片、硅钢片等,凸凹模间隙可选为冲裁厚度的15%—20%。 这是一些线切割加工冲裁模的实际经验数据,比国际上流行的大间隙冲模要小一些。因为线切割加工的工件表面有一层组织脆松的熔化层,加工电参数越大,工件表面粗糙度越差,熔化层越厚。随着模具冲次的增加,这层脆松的表面会渐渐磨去,是模具间隙逐渐增大。
合理确定过渡圆半径。为了提高一般冷冲模具的使用寿命,在线线、线圆、圆圆相交处,特别是小角度的拐角上都应加过渡圆。过渡圆的大小可根据冲裁材料厚度、模具形状和要求寿命及冲制件的技术条件考虑,随着冲制件的增厚,过渡圆亦可相应增大。一般可在0.1—0.5㎜范围内选用。 对于冲件材料较薄、模具配合间隙较小、冲件又不允许加大的过渡圆,为了得到良好的凸凹模配合间隙,一般在图形拐角处也要加一个过渡圆。因为电极丝加工轨迹会在内拐角处自然加工出半径等于电极丝半径加单面放电间隙的过渡圆。 2. 计算和编写加工程序 编程时,要根据配料的情况,选择一个合理的装夹位置,同时确定一个合理的起割点和切割路线。起割点应取在图形的拐角处,或在容易将凸尖修去的部位。 切割路线主要以防止或减少模具变形为原则,一般应考虑使靠近装夹着一边的图形最后切割为易。 3. 穿制加工用的程序纸带和校对纸带 根据程序单把纸带制作完毕后,一定把程序单与制作好的纸带逐条进行校对,用校对好的纸带把程序输入控制器后才能试切样板,对简单有把握的工件可以直接加工。对尺寸精度要求高、凸凹模配合间隙小的模具,必须要用薄料试切,从事切件上可检查其精度和配合间隙。如发现不符合要求,应及时分析,找出问题,修改程序直至合格后才能正式加工模具。这一步骤是避免工件报废的一个重要环节。 根据实际情况,也可以直接由键盘输入,或从编程机直接把程序传输到控制器中。

PCD线切割加工工件表面质量分析

PCD线切割加工工件表面质量分析 线切割机以Mo丝或Cu线作为工具电极,以一定的速率通过工件,在被加工物之间施加脉冲电压,并保持一定间隙,且间隙中充满绝缘介质,使电极与被加工物之间发生火花放电,彼此间被消耗、腐蚀,从而在工件表面上电蚀出无数的小坑,使之成为符合尺寸大小及形状精度要求的产品。电火花线切割(WEDM)加工PCD复合片切口光滑,外观质量优。 影响PCD线切割加工工件表面质量的因素有以下几点: 1.开路电压 如果开路电压低到一定程度,会阻碍放电通道的顺利形成,从而影响到WEDM 的加工速率。特别对于本身就非匀质的聚晶金刚石材料,其中含有不导电的金刚石相,会阻碍放电通道的顺利形成。在一定范围内,加工速率与开路电压成正向关系。 2.峰值电流 峰值电流的增加会增加脉冲能量,从而增大了脉冲的材料蚀除量,提高了切割速率。峰值电流越小,热能损失在脉冲能量中的比例越大。当峰值电流小于一定值时热能损失随峰值电流的增大而增大;随着峰值电流的不断增大,热能损失维持在较稳定的数值,电流过大时,会导致放电区域工况恶化,降低切割速率。 3.放电脉冲宽度 放电脉冲的宽度与单个脉冲的能量有关,放电持续时间的延长意味着单脉冲的放电能量增加。随着脉冲宽度的增加,切割速率不断变大后趋于稳定,但并不是无限增大,这可能是因为放电时间的延长导致放电通道周围的工况变差,能量不集中,造成能量效率降低。 4.电极丝 随着加工时间的延长,电极丝的磨损程度加大,弹性变小,脆硬性增大,极易断丝。在加工出的工件表面上,通常可以看到明显的条纹,这是因为电极丝在上行、下行过程中及换向的瞬间受力不均匀;电极丝不能过松,过松跳动会更严重。但也不能过紧,丝的张力过大,容易断丝,且对导轮、轴承的作用力加大,引起导轮和轴承的损坏。 5.金刚石粒度 PCD复合片金刚石粒度对WEDM效率及质量也有影响。随着金刚石颗粒直径的增大,PCD复合片电火花线切割难度增大,时间延长,加工质量随之降低。 6.金刚石料层的厚度及PCD复合片的总体厚度

PCD复合片电火花线切割加工丝损分析与研究

PCD复合片电火花线切割加工丝损分析与研究 滕凯;孙涛 【摘要】The WEDM cutting method was used to test the wire cutting process of PCD composite films, and the microstructure of the electrode silk surface was observed by scanning electron microscope(SEM) with energy spectrum analysis.From the mic-roscopic point of view of PDC ultra hard material electric spark line cutting processing of wire electrode wear mechanism, explores the influence of wire wear very pulse discharge, the working fluid in quantity and electric erosion particle volume concentration and electrode wire plating and other factors. The use of attached coaxial high pressure injection system can effectively improve the cutting efficiency and reduce the wire loss. The test results show that the injection system can effectively improve the discharge conditions, the cutting efficiency can be increased by 51.6%, the wire loss is reduced by 15.2%, which provides a useful reference for the efficient, stable and low loss cutting of PCD composite films.%采用电火花线切割方法对聚晶金刚石复合片进行了线切割加工实验,利用带能谱分析的扫描电子显微镜((SEM)观察了电极丝表面的显微形貌,进行了元素成分分析.从微观角度研究了PDC超硬材料电火花线切割加工的电极丝损耗机理,探讨了极间脉冲放电、工作液有效进入量、电蚀粒子容积浓度以及电极丝镀覆等因素对丝损的影响.提出采用贴附式高压喷液系统可有效提高切割效率、降低丝损.试验结果表明,该喷液系统能够有效改善极间放电条件,可使切割效率提高51.6%,丝损降低15.2%,为PCD复合片的高效、稳定、低损切割提供了有益参考.

聚晶金刚石复合片激光切割工艺研究

聚晶金刚石复合片激光切割工艺研究 郭强;贾志新;高坚强;黄金刚;刘文彪;权万龙 【摘要】Polycrystalline diamond (PCD) compact is widely used in cutting tool industry because of its high hardness,good wear resistance and other characteristics.In order to explore the PCD compact laser cutting technology characteristics,obtain the optimal cutting quality and processing efficiency,reduce the grinding allowance,cutting experiments of 1.6 mm thick PCD compact with Nd∶YAG laser were carried out.The cutting surface and cross-section of the material were observed and analyzed by using digital microscope and optical profiler.The effects of laser power,cutting speed,pulse repetition rate and defocusing amount on cutting quality were systematically studied.The process parameters were analyzed and optimized by the visual analysis and variance analysis of orthogonal experiments.The effect mechanism of laser energy on materials under different parameters was also explored.The experiment results show that the surface energy density of the material determines the quality of laser cutting.Finally,the good quality of laser cutting of PCD compact with 173.10 μm slit width,5.90° unilateral slit taper and 0.65 μm surface roughness can be obtained under the condition of laser power 80 W,cutting speed 80 mm/min,pulse repetition rate 60 Hz and zero defocus amount.%聚晶金刚石(PCD)复合片因其硬度高、耐磨性好等性能在刀具行业应用广泛,为了探究PCD复合片的激光切割工艺特性,获取最优的切割质量和加工效率,减少磨削余量,采用Nd∶YAG激光器对1.6mm厚PCD复合片进行切割工艺试验.

电火花切割原理

四、实习过程 本次实习着重在于电火花线切割加工,因此,我们可以看看电火花线切割加工的一些原理、特点、分类应用、以及有关的一些机床。 电火花线切割加工概述 电火花线切割机(Wire cut Electrical Discharge Machining简称WEDM),属电加工范畴,是由前苏联拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。线切割机也于1960年发明于前苏联,我国是第一个用于工业生产的国家 1、电火花线切割加工原理 在电火花线切割加工中,利于移动的细金属导线(铜丝或钼丝)作一个电极,工件作另一个电极,并按照预定的轨迹运动,通过不断的火花放电对工件进行放电蚀除,以切割出成型的各种二维、三维表面。及也就是自由正离子和电子在场中积累,很快形成一个被电离的导电通道。在这个阶段,两板间形成电流。导致粒子间发生无数次碰撞,形成一个等离子区,并很快升高到8000到12000度的高温,在两导体表面瞬间熔化一些材料,同时,由于电极和电介液的汽化,形成一个气泡,并且它的压力规则上升直到非常高。然后电流中断,温度突然降低,引起气泡内向爆炸,产生的动力把溶化的物质抛出弹坑,然后被腐蚀的材料在电介液中重新凝结成小的球体,并被电介液排走。然后通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。 图1电火花线切割加工示意图 1-贮丝筒2-电极丝3-丝架4-导轮5-脉冲电源6-工作台7-工作液箱 图2 电火花线切割加工原理图 2、电火花线切割加工的特点 电火花线切割加工的过程的工艺和机理与电火花穿孔成型加工既有共同性,又有特殊性。 ★电火花线切割加工与电火花穿孔成型加工的共同点 两者在加工原理、工作机理、工艺、适应材料等方面相同,具体表现为:(1)线切割加工的电压、电流波形与电火花加工的基本相似。单个脉冲也有多种形

电火花线切割加工的方法

电 火 花 线 切 割 加 工 方 法 的 研 究 江苏迅达电磁线有限公司

目录 第一章电火花线切割加工机理 1.1脉冲电源 1.2机械系统 1.3断丝机理 1.4加工控制 第二章电火花线切割加工质量 2.1电火花线切割加工精度 2.2工艺参数对加工精度的影响

第一章 电火花线切割加工机理 1.1 脉冲电源 电火花线切割的加工用的脉冲电源的作用是把工频交流电源转换成一定频率的单向脉冲电流,以供给电极放点间隙所需要的能量来蚀除金属。脉冲电源对电火花加工的生产率、表面质量、加工精度、加工过程的稳定性和工具电极损耗等技术经济指标有很大影响。电火花线切割脉冲电源的形式品种很多,如晶体管矩形波脉冲电源、高频分组脉冲电源、节能型脉冲电源等。 1.1.1 对脉冲电源的要求 对电火花线切割加工用脉冲总的要求是: (1)有较高的加工速度 不但在粗加工时要有较高的加工速度,而且在精加工 时也应具有较高的加工速度。 (2)工具电极损耗低 (3)加工过程稳定性好 在给定的各种脉冲参数下能保持稳定加工,抗干扰能 力强、不易产生电弧放电、可靠性强、操作方便。 (4)工艺范围广 不仅能适应粗、中、精加工的要求,而且要适应不同工件材 料的加工。 脉冲电源要都满足上述要求是困难的,一般来说,为了满足这些总的要求,对电火花线切割加工脉冲电源的具体要求是: 1) 所产生的脉冲应该是单向的,没有负半波或负半波很小,这样才 能最大限度的利用极性效应,不过受工件表面粗糙度和电极丝允许承载电流的限制,线切割加工脉冲电源的脉宽较窄(2~60μs ),单个脉冲能量、平均电流(1~5A )一般较小,所以线切割加工总是采用正极性加工。 2) 脉冲的主要参数,如峰值电流 e i 、脉冲宽度t i 、脉冲间隔t 0 等应能在很宽的范围内调节,以满足粗、中、精加工的要求。 3) 脉冲电源不仅要考虑工作稳定可靠、成本低、寿命长、操作维修 方便和体积小等问题,还要考虑节省电能。

相关主题
文本预览
相关文档 最新文档