当前位置:文档之家› 分式、一元二次方程

分式、一元二次方程

分式、一元二次方程
分式、一元二次方程

分式、一元二次方程

1.若非零实数a,b(a≠b)满足a2﹣a﹣2007=0,b2﹣b﹣2007=0,则:=.2.若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.3.若m、n是关于x的方程x2+(p﹣2)x+1=0的两实根,则代数式(m2+mp+1)(n2+np+1)的值等于.

4.解分式方程:

(1)﹣=﹣.(2)+=+.

5.当k为何值时,关于x的方程=+1,(1)有增根;(2)解为非负数.

6.已知+=4,+=3,+=2,则x+5y+7z的值.

7.已知|ab﹣2|和|b﹣1|互为相反数,求:

(1)求a、b的值.

(2)求+++…+的值.

8.若不等实数a,b满足5(a﹣b)+(b﹣c)+(c﹣a)=0,求的

值.

9.利用+1=先对下列方程化简,然后再解方程+=+.

10.已知方程a(2x+a)=x(1﹣x)的两个实数根为x 1,x2,设.(1)当a=﹣2时,求S的值;

(2)当a取什么整数时,S的值为1;

(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.

11.已知:x2+a2x+b=0的两个实数根为x1、x2;y1、y2是方程y2+5ay+7=0的两个实数根,且x1﹣y1=x2﹣y2=2.求a、b的值.

12.阅读下列材料:求函数的最大值.

解:将原函数转化成x的一元二次方程,得.

∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.

根据材料给你的启示,求函数的最小值.

一元二次方程计算题_解法练习题(四种方法)

一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3 、9642=-x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、 x 2+4x -12=0 3、0862=+-x x 4、03072=--x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322=- 3、2 260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x

7、()02152 =--x 8、0432=-y y 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、36 31352=+x x 15、()()213=-+y y 16、)0(0)(2≠=++-a b x b a ax 17、03)19(32 =--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x

可化为一元二次方程的分式方程

可化为一元二次方程的分式方程 【知识要点】 1. 分式方程的定义 2. 一般分式方程的解法 3. 列方程解应用题 【重难点】 分式方程的判别及其解法 【经典例题】 例1.下列方程哪些是分式方程? (1)0152=-+x x (2)13222=+x x (3)10 15711=-++x x (4) z x y x z y -=-+-111 (5)5 41212-+-x x x 例2.解分式方程2132=+-x x 例3.解方程25311322=-+-x x x x 例4、k 为何值时,方程3 232 -=--x k x x 会产生增根?

例5.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台? 例6.某村计划开挖一条长为1500m 的水渠,渠道的断面为等腰梯形,渠道深0.8m ,下底宽 1.2m ,坡角为 45,实际开始挖渠道时,每天比原计划多挖土203m ,结果比原计划提前4天完工,求原计划每天挖土多少立方米. 例7、今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙 两组合做能否在规定时间内完成?(2)在实际工作中,甲、乙两组合做完成这项工程的6 5后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.

分式方程转化为一元二次方程

21.5一元二次方程的应用(5) 学习目标:1.掌握分式方程的计算方法; 2.进一步掌握列一元二次方程解应用题的方法和技能; 学习重点:分式方程转化为一元二次方程 学习难点:用换元法解分式方程 一. 学前准备 1. 分式方程的定义:_________________________________________________; 2. 解分式方程的思想是______________,步骤有__________________________ 3. 解下列分式方程 6710(1);453x x -=-+ 221(2);11x x =--- 1(3)0;22y y y y --=+- 2233(4)111x x x x +-=-+- 二. 探究活动 (一) 师生互动·合作交流 1. 某校组织学生春游,预计共需费用120元,后来又有2人参加进来,费用不变,这样每人可少分摊3元。问原来这组学生的人数是多少? 本题的等量关系是:原来这组学生每人分摊的费用-加人后该组学生每人分摊的费用=3元,由此可得方程。

2. 印刷一张矩形的张贴广告,如图。它的印刷面积是322 dm ,上下空白各1dm ,两边空白 各0.5dm 。当要求四周空白处的面积是182dm 时,求用来印刷这张广告的纸张的长和宽。 思路分析:根据图形知: 广告纸的面积=印刷面积+四周空白处的面积=____+____=____ 广告纸的长=印刷部分的长+____dm 广告纸的宽=印刷部分的宽+_____dm 由印刷部分和广告纸都是矩形,且面积已知。因而,可确定它们的长和宽的关系,再借助图形的面积关系就可列出方程。 (二) 步步高升·解决问题 请同学们思考一下下面的这个分式方程我 们该如何去解决呢? 221512 x x x x ++=+ 思路分析:本方程在求解时如直接去分母,就会得到一个次数高于二次的整式方程,不易求解。这时,可考虑如下面所采用的换元的方法求解:用一个未知数y 替换方程中某个含原未知数x 的式子,然后,先解出y ,再去解x,这种方法叫做换元法。 解: 三. 自我测试 1. 解方程22315132x x x x +-+=-+时,设231 x y x +=-,则原方程化成整式方程就是_____________________; 2. 方程241x x x =+的解是__________. 3. 如果用换元法解分式方程2214301x x x x +-+=+,并设21x y x +=,那么原方程可化为____________________; 4. 用换元法解方程2( )2()8011 x x x x +-=++ 5. 用换元法解方程223433x x x x +-=+

重点考点--一元二次方程的特殊解法举例

一元二次方程的特殊解法举例 解一元二次方程并不是中考单独考查的重点,但它是解题的工具,许多题目都要用到它。熟练掌握解一元二次方程的方法,做到解题快速、准确,是提高成绩必不可少的。常规的公式法等这里不再赘述,只对有些特殊方程特殊解法做一些介绍。 一、当方程含未知数的项与完全平方式相近并且系数较大时,常采用配方法解这个方程。 例1 解方程x 2-12x=9964。 分析:此题常数项绝对值较大,因数较多,采用因式分解法、公式法都不简便,应考虑配方法。 解:原方程即x 2-12x +36=10000,(x -6)2=1002。 两边开方,得x -6=±100,即x 1=106,x 2=-94。 二、若一元二次方程ax 2+bx +c=0的系数满足a ±b +c=0时,x=±1是方程的根,这时可先将方程左端分解出因式x=±1。 例2 解方程9406x 2-8289x -1117=0。 分析:这个方程各项系数的绝对值都比较大,用公式法解计算量很大。仔细观察原方程,发现各项系数的和为零,故方程有一根为1。因此方程左边可分解为(x -1)(9406x +1117),则另一根为x=-9406 1117。 解:观察可知方程有一根为1,则。 ∴ x 1=1,x 2=- 94061117。 三、当二次项系数比较复杂时,常将二次项系数化为1或化为完全平方数。 例3 解方程169x 2-39x -2=0。 分析:这个方程的二次项169x 2=(13x)2,一次项-39x=-3(13x),故可将13x 整体解出。 解:原方程即 (13x)2-3·(13x)-2=0。 解得 13x=2173+或13x=2 173-。 ∴ x 1=26173+,x 2=26 173-。 例4 解方程6x 2+19x +10=0。 解:将原方程两边同乘以6,得到 (6x)2+19·(6x)+60=0。 解得 6x=-15或6x=-4。 ∴ x 1=-25,x 2=-3 2。 四、对于广义的“一元二次方程”,可采用换元法求解。 例5 解方程x x x ++2226+62422++x x x =3。 解:令x x x ++2226=t ,则原方程转化为t +t 2=3,即t 2-3t +2=0。解得t 1=2,t 2=1。

(完整word版)100道一元二次方程计算题

(1)x 2 =64 (2)5x 2 - 5 2 =0 (3)(x+5)2=16 (4)8(3 -x )2 –72=0 (5)2y=3y 2 (6)2(2x -1)-x (1-2x=0 (7)3x(x+2)=5(x+2) (8)(1-3y )2+2(3y -1)=0 (9)x 2+ 2x + 3=0 (10)x 2+ 6x -5=0 (11) x 2-4x+ 3=0 (12) x 2 -2x -1 =0 (13) 2x 2 +3x+1=0 (14) 3x 2 +2x -1 =0 (15) 5x 2 -3x+2 =0 (16) 7x 2 -4x -3 =0 (17) x 2 -x+12 =0

x 2-6x+9 =0 0142 =-x 2、2)3(2 =-x 3、()512 =-x 4、()162812 =-x 0662 =--y y 2、x x 4232=- 3、9642=-x x 4 、0542=--x x 5、01322 =-+x x 6、07232=-+x x 0822=--x x 4、01522 =+-x x 1、x x 22= 2、0)32()1(2 2 =--+x x 3、0862 =+-x x 4、 2 2)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

1、()()513+=-x x x x 2、x x 5322 =- 3、2 260x y -+= 4、01072 =+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x 7、()02152 =--x 8、0432=-y y 9、03072 =--x x 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 17、()()213=-+y y 20、012 =--x x 21、02932 =+-x x 23、 x 2+4x -12=0 25、01752 =+-x x 26、1852 -=-x x

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解 【考纲要求】 1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】 【考点梳理】 考点一、一元二次方程 1.一元二次方程的定义 只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为2 0ax bx c ++=(a ≠0). 2.一元二次方程的解法 (1)直接开平方法:把方程变成2 x m =的形式,当m >0时,方程的解为x m =m =0时, 方程的解1,20x =;当m <0时,方程没有实数解.

(2)配方法:通过配方把一元二次方程2 0ax bx c ++=变形为2 22 424b b ac x a a -? ?+= ?? ?的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程2 0ax bx c ++=,当2 40b ac -≥时,它的解为 x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释: 直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元 二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. 3.一元二次方程根的判别式 一元二次方程根的判别式为ac 4b 2 -=?. △>0?方程有两个不相等的实数根; △=0?方程有两个相等的实数根; △<0?方程没有实数根. 上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释: △≥0?方程有实数根. 4.一元二次方程根与系数的关系 如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2121=?-=+,. 要点诠释: (1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法. (3)一元二次方程0c bx ax 2 =++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题. (4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

巧用换元法求解极限

万方数据

巧用换元法求解极限 作者:林群 作者单位:韩山师范学院数学与信息技术系 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009,""(6) 被引用次数:0次 参考文献(3条) 1.华中理工大学教学系高等数学 2.同济大学教学系高等数学 2007 3.吉艳霞用等价无穷小量代换求极限的探讨[期刊论文]-运城教育学院学报 2007(02) 相似文献(10条) 1.期刊论文林清华探讨洛必达法则求解极限-湖北广播电视大学学报2008,28(12) 极限作为重要的思想方法和研究工具贯穿于高等数学课程的始终.本文通过对洛必达法则求极限的深入探讨,针对不同题型归纳总结出具体的化简转化的方法;利用数列极限和函数极限的关系间接地应用洛必达法则求数列未定式,充分体现了洛必达法则应用的广泛性,给求极限提供了强有力的工具. 2.期刊论文王悦关于利用洛必达法则求极限的几点探讨-科技信息2009,""(2) <高等数学>是大学中的基础课程,极限是学生一开始就要接触的最基本的知识.其中有一类未定式的极限不能用"商的极限等于极限的商"这一法则,而要用洛必达法则.洛必达法则内容很简单,使用起来也方便,但在具体使用过程中,一旦疏忽,解题就可能出错.对于初学者来讲,若盲目使用此法则,会导致错误.本文就利用该法则解题中的几点注意作以分析与探讨,并举例说明. 3.期刊论文杨黎霞使用洛必达法则求极限的几点注意-科教文汇2008,""(25) 如果当x→a或x→∞时,两个函数∫(x)与F(x)都趋于零或都趋于无穷大,那么极限lim x→a x→∞∫(x)/F(x)可能存在,也可能不存在,洛必达法则是计算此类未定式极限行之有效的方法,然而,对于本科一年级的初学者来讲,若盲目使用此法则,会导致错误.本文就使用该法则解题过程中的几点注意作了分析与探讨. 4.期刊论文吴维峰.Wu Weifeng对等价无穷小代换与洛必达法则求极限的探讨-潍坊教育学院学报2008,21(2) 本文对用等价无穷小代换与洛必达法则求函数的极限进行了探讨. 5.期刊论文于祥洛必达法则应用误区的分析-北京电力高等专科学校学报2010,28(2) 洛必达法则是在柯西中值定理的基础之上推出的一种求不定式极限的重要定理,它的应用避免了因机械使用极限四则运算法则"商的极限等于极限的商"而产生的错误.但不可忽视的是由于对洛必达法则的使用不当,在计算不定式极限时同样得不到正确结果,究其因为主要是对洛必达法则的使用条件把握不够准确.本文结合具体例子对洛必达法则应用中易产生的误区进行了探讨和分析. 6.期刊论文夏滨利用洛必达法则求极限的方法与技巧探讨-现代企业教育2008,""(4) 本文主要通过一些典型例题介绍利用洛必达法则求极限的方法与技巧,从而更好地解决未定式问题. 7.期刊论文汤茂林.TANG Mao-lin用洛必达法则求不定式极限的技巧-职大学报2007,""(2) 本文介绍用洛必达法则求不定式极限的技巧. 8.期刊论文张波.李秀菊.赵广华关于"洛必达法则"求未定式极限的几点思考-网络财富2009,""(11) 本文通过洛必达法则的内客,给出了应用此法财的几类需要注意的情况. 9.期刊论文冯志敏.薛瑞使用洛必达法则的实质及其注意事项-中国科技信息2009,""(15) 本文主要总结了洛必达法则在求未定式极限中的应用,需要注意的问题,并深入分析了在使用洛必过法则的时候实质是对无穷小或无穷大进行降阶,从而经过有限次的使用法则将未定式转化成一般的极限问题,再利用极限的四则运算法则求出极限.另外指出在使用的时需要注意条件的满足,与其它求极限的方法如无穷小的替换的结合. 10.期刊论文刘蒲凰洛必达法则应用两则-高等数学研究2004,7(2) 指出洛必达法则在证明二重极限不存在时的一个应用,并指出了洛必达法则的一个推广 本文链接:https://www.doczj.com/doc/0a12792056.html,/Periodical_kjxx200906374.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:bac87a45-fe3a-4be7-ae02-9dcd008a87c0 下载时间:2010年8月9日

特殊的平行四边形与一元二次方程

1.在下列命题中,正确的是( ) A .一组对边平行的四边形是平行四边形 B .有一个角是直角的四边形是矩形 C .有一组邻边相等的平行四边形是菱形 D 对角线互相垂直平分的四边形是正方形 2.顺次连接菱形各边中点所得的四边形一定是( ) A.等腰梯形 B.正方形 C.平行四边形 D.矩形 3.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当A C ⊥B D 时,它是菱形 C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正方形 4.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确... 的是( ) A .四边形AEDF 是平行四边形 B .如果90BAC ∠=,那么四边形AEDF 是矩形 C .如果A D 平分BAC ∠,那么四边形AEDF 是菱形 D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 5.(2007德州)如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A . B . C . D .8 6.(2008潍坊)如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cm B .8cm C .9cm D .10cm 7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )。 A .4 B .3 C .2 D .1 8.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0 232057 x +-= 9.下列方程中,常数项为零的是 ( ) D C B A A F C D BE B F C E D A A D

2020 中考数学压轴题破解策略专题训练 专题1《一元二次方程的特殊根》(01)

中考数学压轴题破解策略专题1《一元二次方程的特殊根》 破解策略 1.一元二次方程的有理根 关于x 的一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为有理数)存在有理根的条件 为:b 2-4ac 是一个有理数的平方. 解决一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为有理数)的有理根问题时,一般 的解题策略有: (1)利用“判别式的取值范围”解题 ①讨论二次项系数的情况,当a ≠0时,求出判别式; ②根据已知条件得待定系数的取值范围,再求出判别式的取值范围,筛选出其中为有理数的平方的数; ③求出待定系数的可能取值,并检验. (2)利用“判别式是一个有理数的平方”解题 ①讨论二次项系数的情况,当a ≠0时,将方程的系数整数化,求出判别式; ②将判别式写成△=M 2-t 的形式(M 为关于待定系数的整式,t 为整数),设M 2-t = m 2(m 为非负有理数) ③可得(M+m )(M-m)=t ,解此不定方程; ④求出待定系数的可能取值,并检验. 2.一元二次方程的整数根 对于一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为有理数)而言,方程的根为整数 且必为有理数,所以有理根存在的条件是整数根存在的必要条件. 解决方程ax 2+bx +c =0的整数根问题,除了利用“判别式的取值范围”和“判别式是 一个有理数的平方”来解题外,还可以利用“根与系数的关系”和“因式分解”来解决问题. (1)利用“根与系数的关系”解题 ①讨论二次项系数的情况,当a ≠0时,利用根与系数的关系求出两根的和与积; ②将两根的和与积的代数式写成一个整式与一个分式的和的形式(类似于分离常量); ③由分式的结果一定为整数,根据整除的性质得到分式的分母一定是分子的约数,从而求出待定系数的可能取值; (2)利用“因式分解”解题 ①讨论二次项系数的情况,当a ≠0时,将方程化为(m 1x +n 1)(m 2x +n 2)=0的形式; ②求出方程的两根,x 1=11m n -和x 2=2 2m n -; ③利用分离常量的方法,将11m n -,2 2m n -变成一个常数与一个分式的和; ④根据整除的性质,得到分式的分母一定是分子的约数,从而求出待定系数的可能取值; ⑤将待定系数的可能取值代入原方程检验并确定结果. 需要注意的是,要看清楚题中说的是方程有整数根还是方程的根为整数. 3.分离常量 在利用“根与系数的关系”解题和利用“因式分解”解题的过程中都提到了分离常量,所谓分离常量就是从分式中化出一个常数,例如: ①1 31131113112+-=+-++=+-+=+-m m m m m m m m ;

一元二次方程200道计算题练习

一元二次方程200道计算题练习 1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+ 4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0 7、x 2 =64 8、5x 2 - 5 2=0 9、8(3 -x )2 –72=0 10、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0 13、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2 -2x -1 =0 16、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =0 19、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =0 22、(3x+2)2=(2x-3)2 23、x 2-2x-4=0 24、x 2-3=4x 25、3x 2+8 x -3=0 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-12 28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x +8=0 32、3(x-5)2 =x(5-x) 33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= 37、()()24330x x x -+-= 38、2631350x x -+= 39、()2 231210x --= 40、2223650x x -+= 41. (x -2) 2=(2x-3)2 42. 43. 3(1)33x x x +=+ 44. x 2 45. ()()0165852=+---x x 46. 47. 4(x-3)2=25 48. 24)23(2=+x 49. 25220x x -+= 50. 51. 52. 01072=+-x x 53. -x 2+11x -24=0 54. 2x (x -3)=x -3. 55. 3x 2+5(2x+1)=0 56. (x +1) 2-3 (x +1)+2=0 57. 22(21)9(3)x x +=- 58. 59.. 60. 21302x x ++= 61. 4 )2)(1(13)1(+-=-+x x x x 62. 2)2)(113(=--x x 63. x (x +1)-5x =0 .64. 3x (x -3) =2(x -1) (x +1). 65. (x+1)2﹣9=0. 042=-x x 51)12(2 12=-y 012632=--x x 2230x x --=

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

特殊的一元二次方程的解法—知识讲解.

一元二次方程及其解法(一) 特殊的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

一元二次方程100道计算题练习附答案资料26300

一元二次方程100道计算题练习 1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+ 4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0 7、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=0 10、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0

13、x2+ 6x-5=0 14、x2-4x+ 3=0 15、x2-2x-1 =0 16、2x2+3x+1=0 17、3x2+2x-1 =0 18、5x2-3x+2 =0 19、7x2-4x-3 =0 20、-x2-x+12 =0 21、x2-6x+9 =0 22、22 -=-23、x2-2x-4=0 24、x2-3=4x x x (32)(23) 25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-12

28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= 37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --= 40、2223650x x -+=

一元二次方程(含答案)

第十六期:一元二次方程 一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。题型多样,一般分值在6-9分左右。 知识点1:一元二次方程及其解法 例1:方程0232 =+-x x 的解是( ) A .11=x ,22=x B .11-=x ,22-=x C .11=x ,22-=x D .11-=x ,22=x 思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法.此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x -1)(x -2)=0,所以x -1=0或x -2=0,解得x 1=1,x 2=2.故此题选A. 例2:若2 20x x --= ) A B C D 思路点拨:本题考查整体思想,即由题意知x 2-x=2, 所以原式=3 3 23 123222= +-+,选A. 练习: 1.关于x 的一元二次方程2x 2-3x -a 2 +1=0的一个根为2,则a 的值是( ) A .1 B C . D .2.如果1-是一元二次方程2 30x bx +-=的一个根,求它的另一根. 3.用配方法解一元二次方程:x 2-2x -2=0. 答案:1.D. 2.解: 1-是230x bx +-=的一个根, 2(1)(1)30b ∴-+--=.解方程得2b =-.

∴原方程为2230x x --= 分解因式,得(1)(3)0x x +-= 11x ∴=-,23x =. 3.移项,得x 2-2x=2. 配方x 2-2x+12=2+12, (x -1)2=3. 由此可得x -1=±3, x 1=1+3,x 2=1-3. 最新考题 1.(2009威海)若关于x 的一元二次方程2 (3)0x k x k +++=的一个根是2-,则另一个根是______. 2.(2009年山西省)请你写出一个有一根为1的一元二次方程: . 3.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()2 29x += D .()2 29x -= 答案:1.1; 2.答案不唯一,如2 1x = 3. B 知识点2:一元二次方程的根与系数的关系 例1:如果21,x x 是方程0122 =--x x 的两个根,那么21x x +的值为: (A )-1 (B )2 (C )21- (D )21+ 思路点拨:本题考查一元二次方程02 =++c bx ax 的根与系数关系即韦达定理,两根之和是a b - , 两根之积是a c ,易求出两根之和是2。答案:B 例2:设一元二次方程2 730x x -+=的两个实数根分别为1x 和2x , 则12x x += ,x 1、·x 2 .

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2 =b 的形式为_______,?所以方程的根为_________. 5.若x 2 +6x+m 2 是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2 -5x=2. (2)x 2 +8x=9 (3)x 2 +12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

一元二次方程分式方程应用题

一元二次方程,分式方程解应用题 1、某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券低2个百分点,到期后某人的乙种债券可兑换人民币108元,求甲种债券的年利率。 分析:利息=本金×利率×存期 本息=本金+利息 甲种债券利息×(1+乙种债券利率)×存期=108 2、某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月这户只需交10元用电费,如果超过A度,则这个 月除了仍要交10元用电费外,超过部分还要按每度 A 100 元交费。 (1)该厂某户居民2月份用电90度,超过了规定的A度,则超过部分应该交电费多少元(用A表示) (2)下表是这户居民3月、4月的用电情况和交费情况: 月份用电量(度)交电费总数(元) 3月80 25 4月45 10 根据上表的数据,求电厂规定A度为多少? 3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。若商场平均每天要盈利1200元,每件衬衫应降价多少元?

4、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元, 甲、丙两队合做5天完成全部工程的23 ,厂家需付甲、丙两队共5500元。 (1)求甲、乙、丙各队单独完成全部工程各需多少天? (2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。 5、甲、乙两车同时从A 地出发,经过C 地去B 地,已知C、B相距180千米,出发时,甲每小时比乙多行5千米,因此,乙经过C 地比甲晚半小时,为赶上甲,乙从C 地将车速每小时增加10千米,结果两车同时到达B ,求两车出发时速度? 6、某商场今年一月份销售额为60万元,二月份销售额下降10%,后改进经营管理,月销售额大幅度上升,到四月份销售额已达到96万元,求三、四月份平均每月增长的百分率是多少(精确到0.1%)? 7、小明将勤工俭学挣得的100元钱按一年定期存入少儿银行,到期后取出50元用来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入,若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存款的年利率。

100道一元二次方程计算题

(4)8(3 -x )2 –72=0 (5)2y=3y 2 (6)2(2x -1)-x (1- 2x=0 (7)3x(x+2)=5(x+2) (8)(1-3y )2+2(3y -1)=0 (9)x 2+ 2x + 3=0 ( 10)x 2+ 6x -5=0 (11) x 2-4x+ 3=0 (12) x 2-2x -1 =0 (13) 2x 2+3x+1=0 (14) 3x 2+2x -1 =0 (15) 5x 2-3x+2 =0 (16) 7x 2-4x -3 =0 (17) x 2-x+12 =0 x 2-6x+9 =0 0142=-x 2、2)3(2=-x

3、()512=-x 4、()162812 =-x 0662=--y y 2、x x 4232=- 3、9642=-x x 4 、0542=--x x 5、01322=-+x x 6、07232=-+x x 0822=--x x 4、01522 =+-x x 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、 22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x 1、()()513+=-x x x x 2、x x 5322=- 3、2 260x y -+=

4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x 7、()02152 =--x 8、0432=-y y 9、03072=--x x 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 17、()()213=-+y y 20、012=--x x 21、02932 =+-x x 23、 x 2+4x -12=0 25、01752=+-x x 26、1852 -=-x x 30、1432+=x x 32、x x 542=- 33、04522 =--x x

相关主题
文本预览
相关文档 最新文档