当前位置:文档之家› ANSYS工程分析 基础与观念Chapter10

ANSYS工程分析 基础与观念Chapter10

ANSYS工程分析 基础与观念Chapter10
ANSYS工程分析 基础与观念Chapter10

第10章

板壳结构分析

Analysis of Plates and Shells

当一个3D实体结构的厚度不大(相对于长宽尺寸),而且变形是以翘曲为主时(亦即out-of-plane的变形),这种结构称为板壳结构(plates and shells),此时我们可以用板壳元素(shell element)来model这个问题。用shell元素(而不用solid 元素)来model板壳结构主要的优点就是节省计算时间,并且增加解答精度。这章首先在第1节介绍SHELL63元素,这是ANSYS的古典板壳元素。注意,虽然SHELL63是2D的几何形状,但是它是布置在3D的空间中,所以板壳结构分析是3D的问题而不是2D的问题。我们用两个实例来说明SHELL63的应用,在第2节中分析了一个简单的C型断面的悬臂梁,我们要用板壳元素来model整个结构。在第3节中则去模拟一个空气气囊的充气过程,我们将用板壳元素来model 它的薄膜行为。第4节里我们会介绍其它的板壳元素,但是大部分都是作为结构分析用的板壳元素。本章在第5节还是以一个简单的练习题作为结束。

板壳元素的特色是弯曲通常主宰其行为,譬如其应力通常大部份来自于弯曲应力,就如同梁结构一样。事实上,板壳元素和梁结构非常相似,主要的差异在于板壳元素承受双向弯曲,而梁元素只有单向的弯曲。诱导板壳元素的过程也和梁元素非常相似。当一片薄板承受弯曲时,原来是平面的一个断面,弯曲后还是假设维持一个平面,换句话说,剪力变形假设可以忽略的。注意,当你使用实体元素(如SOLID45)时,并没有这种「平面维持平面」的假设。

第10.1节SHELL63:板壳结构元素

SHELL63: Structural Shell Element

10.1.1 SHELL63元素描述

Figure 10-1 SHELL63 Element

SHELL63称为elastic shell,因为它只支持线性弹性的材料模式;ANSYS另有其它shell元素可以支持更广泛的材料模式[Sec. 10.4]。SHELL63有4个节点(I, J, K, L),每个节点有6个自由度:3个位移(UX, UY, UZ)及3个转角(ROTX, ROTY, ROTZ),所以一个元素共有24个自由度。若K、L两个节点重迭在一起时,它就退化成一个三角形,如Figure 10-1右图所示。I-J-K-L四个节点假设是共平面,若不共平面则以一最接近的平面来「修正」这四个节点。注意,这种「修正」当然会引进一些误差,所以对那种曲率很大的板壳结构而言,必须使用较细的元素。

SHELL63的元素坐标系统表示在Figure 10-1中,原点是在I节点上,X轴和I-J边可以有一角度差(THETA,可以透过R命令输入),X-Y平面是在I-J-K-L四个节点所定义的平面上,Z轴则由右手规则依I-J-K-L顺序决定。你如果要指定surface force时,你可以参照6个面,其编号如图所示,作用在第1、2面的力称

第10.1节SHELL63:板壳结构元素267

为out-of-plane force,作用在第3、4、5、6面(边)的力称为in-plane force。当你指定压力作用在第1个面时,力量是从下面往上(+Z方向),若是压力作用在第2个面则是由上面往下(-Z方向)。

注意,SHELL63是解3D结构的元素,PLANE42是解2D结构的元素。使用PLANE42等元素时,不允许有任何的out-of-plane的负载。如果有out-of-plane 的负载时,请使用板壳元素。

10.1.2 SHELL63输入数据

Figure 10-2 SHELL63 Input Summary

SHELL63的输入数据摘要在Figure 10-2中。Real constants 看起来好像很复杂,但大部分的情况下你只需输入第一个数据:TK(I),板壳的厚度。必要的话,你可以分别输入四个节点的厚度:TK(I)、TK(J)、TK(K)、TK(L)。EFS读成elastic foundation stiffness;当板壳结构置放在弹性基础上时,你可以输入此弹性基础的stiffness(SI单位是N/m)。譬如一块混拟土平板结构置放于土壤地面上时,则此地面对于这个平板而言可以视为弹性基础。THETA是刚才提到过,定义元素坐标系统X轴的角度。RMI读成ratio of moment of inertia(转动惯动比),是单位断面的转动惯量与TK(I)3/12的比,大部分的时候采用默认值(1.0)

268 第10章板壳结构分析

即可,可是对于非矩形断面或非均匀的复合材料(譬如三明治板)时,你可以透过这个比值去修订。CTOP, CBOT这是指中性轴(neutral axis)到板壳上表面及到下表面的矩离,默认值是TK(I)/2。最后一个real constant是ADMSUA,读成additional mass per unit area,如果板壳上面有附加的质量(但是没有结构功能),可以在这里输入。注意,ADMSUA只有动力分析或计算惯性力时会用到。

KEYOPT(1)是用来修改劲度(stiffness)的计算方式,当KEYOPT(1) = 1时,忽略所有弯曲变形,只考虑in-plane的变形,所以又称为「薄膜」(membrane)元素。相反的,当KEYOPT(1) = 2时,则忽略所有in-plane变形,只考虑弯曲变形。预设的KEYOPT(1) = 0则两者都计算在内。

10.1.3 SHELL63输出数据

SHELL63应力的输出如Figure 10-3所示。板壳的应力是由弯曲应力(bending stress)和in-plane的应力迭加的结果,其中弯曲应力是沿着厚度方向成线性变化,所以板壳元素的输出应力在沿着厚度方向每一处都不相同,你必须以SHELL命令来指定要输出的应力位置(上层、下层、或中性轴位置,预设是上层,即靠近+Z 方向的那一面)。此外板壳元素通常也都会输出bending moments。Moments的方向常常会造成混淆,因为不同的教科书有不同的表示方式。以下来介绍ANSYS 对于bending moments的表示方式。在某一特定点,ANSYS会输出MX、MY、MXY(SI单位是N-m/m,亦即Moment/Length),其中X或Y是参照元素坐标系统,如Figure 10-3所示。所谓的MX是指X面(法线方向在X方向上的面)上的moment,MY是指Y面(法线方向在Y方向上的面)上的moment,而MXY 是作用在X面上而向着Y方向(或作用在Y面上而向着X方向)的twisting moment。其它输出数据请参考元素说明[Ref. 6, Table 63.2. SHELL63 Element Output Definitions]。

第10.1节SHELL63:板壳结构元素269

Figure 10-3 SHELL63 Stresses and Bending Moments

270 第10章板壳结构分析第10.2节实例:C形断面悬臂梁Example: Channel Section Cantilever Beam 10.2.1 问题描述

Figure 10-4 Channel Section Cantilever Beam

Figure 10-4是一根长36 in端点受2400 lb垂直力的悬臂梁,其断面规格是C6X8.2型钢,C代表channel断面,6代表断面的高度,8.2代表每英呎长的重量(单位lb)。其它数据可以经由任何钢结构设计或机械设计手册查到,以下就是从手册中查到的标准型钢C6X8.2的数据[Ref. 30, Page 213]:总深度d = 6.0 in,flange 总宽度b f = 1.92 in,腰厚t w = 0.20 in,flange厚度t f = 5/16 in。我们希望知道悬臂梁受力后的应力及变位,包括端点的扭曲程度。本实例取材自Ref. 22, Sec. 9.7. Case studies。

10.2.2 ANSYS Procedure

Procedure 10-1 Channel Section Cantilever Beam

第10.2节实例:C形断面悬臂梁271

272 第10章 板壳结构分析

从第6到14行是设定参数的值,它们都有适当的批注,在此不再解释。进入/PREP7(第16行)后,第18行建立ET table ,使用SHELL63。第21、22行建立R table ,使用两种厚度的SHELL63:TW 是腰部的厚度,TF 是flange 的厚度。第25至36行建立实体模型;注意,此实体模型是由areas 构成(而非volumes ),板壳元素必须在areas 上进行网格切割而产生。第37至43行对这些areas 进行网格切割,产生SHELL63元素,其中腰部和flange 指定不同的real constants (厚度)。第48、49行是将左端固定。第51、52行是作用一个集中载重在自由端点,其中ND 代表自由端点的节点编号。第54行(EPLOT )将含边界条件的分析模型画出,如Figure 10-4所示。

进入/POST1(第59行)后,第61行(PLDISP )将变位图画出,如Figure 10-5所示,最大的变位将近1 in ,发生在集中载重的地方。第62行(PLNSOL )

将bending stress 画出来,如Figure 10-6所示,最大的应力发生在固定端。从Figure 10-5可以看出在自由端处有一些扭角,我们想知道这个扭角有多大。第64行(/VIEW )调整一下视角,第65行(PLDISP )将变位图画出来,就可以看到自由端扭角了,如Figure 10-7所示。如果你想要更精确的数值资料,可以将变位印出来(使用PRNSOL ),再计算其扭角。

Figure 10-5 Deformation

第10.2节实例:C形断面悬臂梁273

Figure 10-6 Bending Stresses

Figure 10-7 Twisting of the Cantilevel Beam

274 第10章板壳结构分析第10.3节实例:气囊之充气模拟

Example: Inflation of an Airbag

10.3.1 问题描述

Figure 10-8 Inflation of an Airbag

本例子取自Ref. 31。这个例子是模拟一个塑料薄膜做的气囊的快速充气过程。这个气囊事实上是作为新型的汽车安全气囊用的,完整的模拟过程有点复杂。Figure 10-8是使用LS-DYNA explicit dynamics模拟的结果。在本节中,我们先将问题作很多的简化,并使用ANSYS implicit dynamics来分析。

Figure 10-8的气囊,我们假设是由两片完全一样的圆形塑料薄膜,沿着圆周缝合起来的。圆形的塑料薄膜直径是50 cm,材料假设是一般塑料袋用的聚乙烯(PE,E = 2 GPa, = 0.4),厚度假设是2.5 mm(太薄的话会有计算上的困难)。充气的条件是在0.1 sec内充满到0.5 atm(约50 KPa)的压力。

第10.3节实例:安全气囊之充气模拟275 10.3.2 ANSYS Procedure

Procedure 10-2 Inflation of an Airbag

276 第10章板壳结构分析

我们打算将此气囊model成Figure 10-9的样子,我们只建立涵盖30度角的扇形区域,并利用3个对称面: = 0 o、 = 30o、及Z = 0(圆柱坐标系统)。我们将使用SI单位。充气过程需要0.1 sec,也就是气囊的压力从0增加到0.5 atm需要0.1 sec,但是我们还是计算到1 sec为止,以观察后续的动态行为。0.1 sec 的充气过程我们将它分成100个积分时间点(意即100个substeps),其余0.9 sec 也分成100个积分时间点。

第10.3节实例:安全气囊之充气模拟277

从第6到14行是设定参数的值,它们都有适当的批注,在此不再解释。第24至33行是建立分析模型;注意,我们用的是圆柱坐标系统(第24行),并且将Nodal CS转至平行于此圆柱坐标系统(第33行)。第34、35行中,CNODE 与ENODE分别是薄膜中心点与边缘某一点的节点编号,我们将追踪这两点的变位反应;我们关心CNODE的Z方向变位,及ENODE的径向变位。

Figure 10-9

第40至42行是指定 = 0 o及 = 30o两个对称面。第44至46行则是指定Z = 0为对称面。以下我们解释一下第42行和第45、46行的不同之处。第42行是指定一个平面为对称面,对SHELL63而言,相当于固定住UZ、ROTX、及ROTY 三个自由度(意即out-of-plane translation及in-plane rotations)[Ref. 3, Sec.

4.12;Ref. 5, DSYM]。在第45、46行中,我们并没有固定住ROTY的自由度,意即让此自由度自由变位(转动),如此较符合两片薄膜系「缝合」的实际情况。事实上,我们发现若固定ROTY的话,模拟出来的样子会脱离真实情况。

第49行(SFE)指定0.5 atm的压力在所有板壳元素的第1个面上。第51行(ANTYPE)是指定瞬时分析。第15行(NLGEOM)是考虑几何非线性,因为这个问题的变位量是很大的。第53行(SSTIF)是考虑stress stiffening的效应[Ref. 7, Sec. 3.3. Stress Stiffening],因为薄膜能够容纳高压气体主要是靠薄膜方向的张力所造成的侧向刚度。第54行(KBC)是将负载视为ramped load(意即从0到0.5 atm依直线增加)。第56行(TIME)是指定第一个load step结束时是0.1 sec。第57行(DELTIM)是指定每一积分时间点间距是0.001 sec。第58行(OUTRES)是在Jobname.RST档中只储存节点的数值解(以节省磁盘存取

278 第10章板壳结构分析

空间及时间),但是每一时间点的解都要储存。第59行(SOLVE)是解第一个load step。

第61至63行是解第二个load step。我们没有改变任何负载的值,表示在第二个load step中,负载维持不变(意即保持0.5 atm的压力)。第61行(TIME)是指定第二个load step结束时是1 sec。第62行(DELTIM)是指定每一积分时间点间距改为0.01 sec。第63行(SOLVE)是解第二个load step。注意,没有变更的参数表示维持不变,譬如第52、53、54、58行的设定在第二个load step 中仍然有效。

Figure 10-10 Maximal Deformation in Height Direction

Figure 10-11 Maximal Deformation in Radial Direction

这个问题可能需要花一点时间来计算。解完以后我们进入/POST1(第66行)。准备进行后处理。第68行(SET)先去读最后一组的解(意即时间是1 sec时的反应),然后将视角改成向着X-Z平面(第69、70行),以观察薄膜高度的变化。第71行(PLDISP)把变位画出来,如Figure 10-10所示。最大的高度变化大概

第10.3节实例:安全气囊之充气模拟279

有5 cm,对一个半径是25 cm的结构而言,这算是很大的变形了。第73、74行将视角改回向着X-Y平面,以观察薄膜径向的尺度变化。第75行(PLDISP)把变位画出来,如Figure 10-11所示,你可以看到薄膜的直径往内收缩。

接下来我们来观察薄膜的应力。第77行(SHELL)是指定要观察中间层的应力。对这个问题而言,因为厚度很小,弯曲的效应不大,所以上、中、下层之间应力的差异不大。Result CS采用圆柱坐标系统(第78行)。第79、80行(PLNSOL)分别画出radial stress(Figure 10-12)及hoop stress(Figure 10-13)。

Figure 10-12 Radial Stress

Figure 10-13 Hoop Stress

280 第10章板壳结构分析

接下来我们来观察气囊的动态反应。我们选择薄膜中间的点(CNODE)的Z 方向的变位,及薄膜外缘的某一点(ENODE)的R方向的变位为观察的重点。第86、88行(PLVAR)分别画出这两个点的变位图,分别如Figure 10-14及Figure 10-15所示,其中横轴是时间,纵轴分别是CNODE的Z方向变位及ENODE的R 方向变位。

Figure 10-14 Z-displacement for the Center Point

Figure 10-15 Redial Displacements for the Edge Point

第10.3节实例:安全气囊之充气模拟281

10.3.3 Simulation Results Using LS-DYNA

本节分析的问题是一个过分简化的示范问题,应力大小并不切实际,但是还是有一些行为值得讨论。Figure 10-12中,radial stress最大高达12 MPa,最小是接近0。Figure 10-13中,hoop stress在最外缘处会有最大应力,而且是压力!如果此一气囊是钢铁做的,外缘会有很大压应力是合理的,因为外缘确实往内收缩,挤压的结果当然有压力产生。但是本例子的气囊是塑料薄膜做的,无法承受压力,一有压力就会挫曲,该外缘的应力会消失(应力会重新分配)。我们的模型没有考虑塑料薄膜的挫曲现象,模拟的结果几乎不具任何意义。

事实上,Figure 10-8是以LS-DYNA模拟的结果,你可以看到这个模拟的结果要接近实际的多,主要是塑料薄膜外缘的皱折现象非常清楚地呈现在。LS-DYNA 并不在本章的讨论之内,我们只是将其模拟结果在此呈现。

我们来说明一下这个安全气曩的背景。传统汽车用的安全气曩是用nylon编织而成的布,然后缝制成气曩。为了要控制气曩的形状,里面还缝制了一些小绳索。为了在很短的时间内达到充气的目的,气囊配置了一个小「炸弹」,当加速度感测计测量到某一程度的减速运动时,这个小「炸弹」就会被引爆,利用空气急速膨胀来达到快速充气的目的。这种传统的汽车安全气曩有什么坏处呢?主要的缺点是其质量很大,爆开撞击到人时常会使人受伤。所以如果我们将它用塑料薄膜来取代(类似塑料袋)的话,质量就会轻得很多,这是基本的构想。

相对于传统用nylon布编织做成的气囊,本新型的气囊称为film airbag,通常用比PE具抗张强度的PBT塑料为基本材料,利用吹气一体成形(blowing molding)。这样的基本构想下,开辟了许多设计的想象空间。举个例子。除了一层塑料薄膜外,还可以有一层cable将气曩「网住」,而由这些cables来增强抗拉能力。另一个构想的,可以做成好几个小气囊,再用cable将这些小气囊「网住」。这样的好处是您可以让每个小气囊配置一个「小炸弹」,很多小气曩爆开后对人体的威胁性就比一个大气囊小的多,所须的能量也较低,更重要的是如果某一个小气囊故障也不至于影响整体的功能,增加了气曩的可靠性。结论是,新型安全气囊的优点:较多样化、较轻、较低价位、较能大量生产、使用较低能量。

282 第10章板壳结构分析

Figure 10-16是模拟的结果之一,这个模型包括了前述的cables结构。你可以看到这些cables扮演的结构功能。此外,外缘的皱折现象也显示在图上。

Figure 10-16 Simulation of the Air Bag Using LS-DYNA

第10.4节板壳元素浏览283 第10.4节板壳元素浏览

Overview of Shell Elements

10.4.1 Elastic Shells

Figure 10-17 Elastic Shells

左边是SHELL63,是一阶的板壳元素;右边是SHELL93,是二阶的板壳元素。注意,这两个元素在材料方面只支持符合虎克定律的线性弹性材料,但是还是可以几何非线性的分析。

10.4.2 Plastic Shells

如果你的材料是塑性材料,这里就有两个plastic shells:SHELL43和SHELL143。这两者的差别是在于SHELL43使用了大应变理论(large strain theory),而SHELL143则是使用小应变理论(small strain theory)。和SHELL181比起来,SHELL 43还是比较「古典」的,所以我们鼓励你用SHELL181 [Sec. 10.4.3] 来取代这两个元素。

284 第10章板壳结构分析

Figure 10-18 Plastic Shells

10.4.3 Large Strain Shell

Figure 10-19 Large Strain Shell

这个SHELL181就是我们刚才提到的较新、功能较大的large strain板壳元素。

10.4.4 Membrane and Shear Panel

透过SHELL63的KEYOPT(1)选项,你可以将SHELL63修改成一个薄膜元素。事实上SHELL41就是一个薄膜元素(相当于将SHELL63的KEYOPT(1)设为1)。

基于ANSYS软件的电机电磁场有限元分析解读

基于ANSYS软件的电机电磁场有限元分析 发表时间:2007-9-11 作者: 黄劭刚夏永洪张景明来源: 万方数据 关键字: APDL语言同步发电机电磁场有限元 介绍了应用ANSYS自带的APDL编程语言进行软件开发,将该软件应用于同步发电机空载磁场分析中,在电机的电磁场计算中实现了电机的自动旋转、自动施加载荷的功能,使用、修改方便,并且计算速度快。通过对电磁场计算结果的后处理,得出了同步发电机的旋转磁场波形和电压波形。样机测试结果验证了分析结果的正确。 1 前言 ANSYS软件是一个功能强大、灵活的,融结构、热、流体、电磁、声学于一体的大型通用有限元分析软件。广泛用于核工业、石油化工、航空航天、机械制造、土木工程等一般工业及科学研究领域的设计分析。 在实际的电机电磁场分析中,电机的转子磁极形状、定子齿槽形状、气隙大小以及铁磁材料均已确定,但是当转子相对十定子齿槽的位置不同时一,其计算结果也不相同。为了分析电机电磁场问题,若把定、转子相对位置固定不变进行求解,再对电磁场计算结果进行傅立叶级数分解来计算电机绕组的电势则误差太大。为此,需要对定、转子不同位置时一分别进行计算,然后通过电磁场的计算结果求出电机何个定子齿部磁通随转角变化的关系,然后根据磁通的变化率求出电机基波绕组的电势。ANSYS软件是目前应用最为广泛、使用最方便的通用有限元分析软件之一,应用ANSYS软件来分析电机电磁场是非常有效的。但是当采用ANSYS软件的图形用户界面( GUI)操作方式时,每次定、转子之间的旋转、网格剖分、施加载荷进行求解、查看计算结果等都需要人工进行重复操作,使用起来非常繁琐,并且效率低。为此,木文采用ANSYS软件的APDL语言编写的软件对同步发电机的空载磁场进行研究,实现了电机定、转子之间的自动旋转,自动网格剖分,自动施加载荷以及自动求解的功能。整个电磁场分析过程无需人工进行干预,使用方便,便于修改,并且大大提高了计算速度。通过对同步发电机电磁场计算结果进行后处理,得出了同步发电机的旋转磁场波形和电压波形。 2 软件实现 ANSYS软件提供了图形用户界面与命令流两种方式来分析电机电磁场问题。在电机电磁场计算中,命令流方式和图形用户界面方式相比,具有以下优点:(1)通用性好,对于同系列、同型号的电机电磁场计算只要对电机的尺寸参数进行修改即可,而采用ANSYS的图形用户界面方式进行电机电磁场计算,每次计算都要重新输入图形,没有通用性;(2)通过合理应用ANSYS的APDL语言编写一个两重循环程序就可实现转子自动旋转和自动施加励磁电流的功能,与ANSYS 的图形用户界面方式相比,减少了人机交互的次数,缩短了计算时间。 2.1软件编写

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

[整理]《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

ANSYS新手入门学习心得

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

ansys考试重点整理

ANSYS复习试卷 一、填空题 1.启动ANSYS有命令方式和菜单方式两种方式。 2.典型的ANSYS分析步骤有创建有限元模型(预处理阶段)、施加载荷并求解(求解阶段)、查看结果(后处理阶段)等。 3.APDL语言的参数有变量参数和数组参数,前者有数值型和字符型,后者有数值型、字符型和表。 4.ANSYS中常用的实体建模方式有自下而上建模和自上而下建模两种。 5.ANSYS中的总体坐标系有总体迪卡尔坐标系 [csys,0]、总体柱坐标系(Z)[csys,1]、总体球坐标系[csys,2]和总体柱坐标系(Y)[csys,3]。 6.ANSYS中网格划分的方法有自由网格划分、映射网格划分、扫掠网格划分、过渡网格划分等。 7.ANSYS中载荷既可以加在实体模型上,也可以加在有限元模型上。 8.ANSYS中常用的加载方式有直接加载、表格加载和函数加载。 9.在ANSYS中常用的结果显示方式有图像显示、列表显示、动画显示等。 10.在ANSYS中结果后处理主要在通用后处理器 (POST1) 和时间历程后处理器 (POST26) 里完成。 11.谐响应分析中主要的三种求解方法是完全法、缩减法、模

态叠加法 。 12.模态分析主要用于计算结构的 固有频率 和 振型(模态) 。 13. ANSYS 热分析可分为 稳态传热 、 瞬态传热 和 耦合分析 三类。 14. 用于热辐射中净热量传递的斯蒂芬-波尔兹曼方程的表达式是4411212()q A F T T εσ=-。 15. 热传递的方式有 热传导 、 热对流 、 热辐射 三种。 16. 利用ANSYS 软件进行耦合分析的方法有 直接耦合 、 间接耦合 两种。 二、 简答题 1. 有限元方法计算的思路是什么包含哪几个过程 答:(1)有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 (2)物体离散化;单元特性分析;单元组装;求解节点自由度。 2. ANSYS 都有哪几个处理器各自用途是什么 答:(1)有6个,分别是:前处理器;求解器;通用后处理器;时间历程后处理器;拓扑优化器;优化器。 (2)前处理器:创建有限元或实体模型; 求解器:施加荷载并求解; 通用后处理器:查看模型在某一时刻的结果; 时间历程后处理器:查看模型在不同时间段或子步历程上的结果; 拓扑优化器:寻求物体对材料的最佳利用; 优化器:进行传统的优化设计;

ANSYS电磁场分析指南解读

回旋加速器 在一般电磁场分析中关心的典型的物理量为: -磁通密度?能量损耗 -磁场强度?磁漏 ?磁力及磁矩? S-参数 ?阻抗?品质因子Q ?电感?回波损耗 ?涡流?本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场 1.2ANSYS 如何完成电磁场分析计算 ANSYSU Maxwell 方程组作为电磁场分析的出发点。有限元方法计算的未知 量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根 ANSY 电磁场分析指南第一章 发表时间: 2007-9-20 作者 : 安世亚太 来源 : e-works 关键字 : ANSYS 电磁场分析 CAE 教程 第一章磁场分析概述 1.1 磁场分析对象 利用ANSYS/Ema 或ANSYS/Multiphysics 模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: 电力发电机 磁带及磁盘驱动器 变压器 波导 螺线管传动器 谐振腔 电动机 连接器 磁成像系统 天线辐射 图像显示设备传感器 滤波器

据用户所选择的单元类型和单元选项的不同, ANSYS+算的自由度可以是标量磁 位、矢量磁位或边界通量。 1.3 静态、谐波、瞬态磁场分析 利用ANSY 测以完成下列磁场分析: ?2-D 静态磁场分析,分析直流电(DC )或永磁体所产生的磁场,用矢量位方 程。参见本书“二维静态磁场分析” ?2-D 谐波磁场分析,分析低频交流电流(AC )或交流电压所产生的磁场,用 矢量位方程。参见本书“二维谐波磁场分析” ?2 -D 瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包 含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ?3-D 静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。 参见本书“三维静态磁场分析(标量位方法)” ?3-D 静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。 参见本书“三维静态磁场分析(棱边元方法)” ?3-D 谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议 尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法) ?3-D 瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用 棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场 分析(棱边元方法)” 3-D 静态磁场分析,用矢量位方法。参见“基于节点方法 ?基于节点方法的3-D 谐波磁场分析,用矢量位方法。参见“基于节点方法 的 3-D 谐波磁场分析” 1.4 关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D 模型,什么时候选择3-D 模型?标量位方法和矢量位方 法有何不同?棱边元方法和基于节点的方法求解 3-D 问题又有什么区别?在下面 将进行详细比较。 1.4.12-D 分析和 3-D 分析比较 3-D 分析就是用 3-D 模型模拟被分析的结构。现实生活中大多数结构需要 3- D 模型来进行模拟。然而3-D 模型对建模的复杂度和计算的时间都有较高要求。 所以,若 ?基于节点方法的 的 3-D 静态磁场分析” ?基于节点方法的 的 3-D 瞬态磁场分析” 3-D 瞬态磁场分析, 用矢量位方法。参见“基于节点方法

ANSYS框架结构分析

有限元分析大作业报告 一、结构形式及参数 1、结构基本参数 某框架结构如下图所示,为两榀、三跨七层框架。结构由梁板柱组成,梁板柱之间刚结。材料为C35混凝土,弹性模量为3.15e10N/m2,泊松比取0.25,质量密度为2500kg/m3,梁截面为300mm×700 mm,柱截面为500mm×500mm,楼板厚度为120mm。梁和柱采用beam44 单元,板采用shell 63单元。单位采用国际单位制。 二、静力分析及结果 1、荷载详情 荷载包括自重荷载,采用命令acel,0,0,9.8施加;以及垂直板面向下的均布恒荷载0.35 kN/m2和活荷载0.15 kN/m,两者合并后采用命令*do,mm,204,245,1 sfe,mm,2,pres,,500,500,500,500 *end do施加。 2、结构变形:最大变形发生在91号节点,数值为1.573mm,方向竖直向下(-Z方向)。

3、位移云图 4、等效应力云图:最大等效应力发生在78号节点,数值为175064Pa。

5、支座反力(保留两位小数,单位如表中所示) 节点编码FX(kN) FY(kN) FZ(kN) MX(kN﹒m) MY(kN﹒m) MZ(kN﹒m) 1 -3.87 5.33 514.15 -5.19 -3.74 0.00 2 -6.36 0.09 774.5 3 -0.12 -6.13 0.00 3 -6.36 -0.09 774.53 0.12 -6.13 0.00 4 -3.87 -5.33 514.1 5 5.19 -3.74 0.00 5 0.00 8.2 6 693.8 7 -8.00 0.00 0.00 6 0.00 0.06 107.28 -0.08 0.00 0.00 7 0.00 -0.06 107.28 0.08 0.00 0.00 8 0.00 -8.26 693.87 8.00 0.00 0.00 9 3.87 5.33 514.15 -5.19 3.74 0.00 10 6.36 0.09 774.53 -0.12 6.13 0.00 11 6.36 -0.09 774.53 0.12 6.13 0.00 12 3.87 -5.33 514.15 5.19 3.74 0.00 三、模态分析结果 1、各阶振型频率及类型 振型阶次自振频率(Hz)振动形式 1 1.838 2 弯曲振型 2 1.8627 弯曲振型 3 2.2773 扭转振型 4 5.6636 弯曲振型 5 5.7097 弯曲振型

ANSYS学习心得

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

ansys分析电磁场

三维螺线管静态磁场分析 要求计算螺线管,如下图所示,衔铁所受磁力,线圈为直流激励,产生力驱动衔铁。线圈电流为6A,500匝。由于对称性,只分析1/4的模型,如图1所示: 图1螺线管制动器 在仿真分析时,空气相对磁导系数为1.0;使用智能网格划分(LVL=8);设定全部面为通量平行,这是自然边界条件,自动得到满足。因为是采用的1/4对称模型,所以磁力的计算结果要乘以4。

施加边界条件: ! /SOLU D,2,MAG,0 ! !SOLVE ! ALLSEL,ALL MAGSOLV,3,,,,,1 FINISH ! 建立的模型如下图所示:

对模型进行智能网格划分,如下图所示: 仿真分析所得磁场强度分布图为:

衔铁所受磁力分布图为: 衔铁所受磁力分布图为:

计算所得衔铁所受磁力为: SUMMARY OF FORCES BY VIRTUAL WORK Load Step Number: 2. Substep Number: 1. Time: 0.2000E+01 Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.14339E+02 0.11359E+02 -0.12846E+02 ___________________________________________________ SUMMARY OF FORCES BY MAXWELL STRESS TENSOR Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.79007E+01 0.55769E+01 -0.11511E+02 _____________________________________________________ Note: Maxwell forces are in the Global Cartesian coordinate system. Virtual work forces are in the element ESYS coordinate system.

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

ansys心得

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

ANSYS工程分析 基础与观念Chapter04

第4章 ANSYS结构分析的基本观念Basic Concepts for ANSYS Structural Analysis 这一章要介绍关于ANSYS结构分析的基本观念,熟悉这些基本观念有助于让你很快地区分你的工程问题的类别,然后依此选择适当的ANSYS分析工具。在第1节中我们会对分析领域(analysis fields)做一个介绍,如结构分析、热传分析等。第2节则对分析类别(analysis types)作一介绍,如静力分析、模态分析、或是瞬时分析等。第3节解释何谓线性分析,何谓非线性分析。第4节要对结构材料模式(material models)作一个讨论并作有系统的分类。第5节讨论结构材料破坏准则。第6、7节分别举两个实例,一个是结构动力分析,一个是非线性分析来总合前面的讨论。这两个例子再加上第3章介绍过的静力分析例子,这三个例子可以说是用来做为正式介绍ANSYS命令(第5、6、7章)之前的准备工作。最后(第8节)我们以两个简单的练习题做本章的结束。

第4.1节学科领域与元素类型 Disciplines and Element Types 4.1.1 学科领域(Disciplines) 我们之前提过,ANSYS提供了五大学科领域的分析能力:结傋分析、热传分析、流场分析、电场分析、磁场分析(电场分析及磁场分析可统称为电磁场分析),此外ANSYS也提供了偶合场分析(coupled-field analysis)的能力。为了能分析横跨多学科领域的偶合场,ANSYS提供了一些偶合场元素(coupled-field elements),但是这些元素还是无法涵盖所有偶合的可能性(举例来说,ANSYS 并没有流场与结构的偶合场元素)。但是在ANSYS的操作环境下,再加上利用APDL [Ref. 20],理论上可以进行各种偶合场分析(但是计算时间及收敛性常是问题所在)。下一小节将举几个例子来解说偶合场分析的含义,更详细的偶合场分析步骤你必须参阅Ref. 15。 4.1.2 偶合场分析 以下我们举三个例子来说明何谓偶合场分析。 第一个例子是热应力的计算,这是最常会遇到的问题之一。当你进行热应力分析时,通常分成两个阶段:先做热传分析解出温度分布后,再以温度分布作为结构负载来进行结构分析,而解出应力值。在第一个阶段,热边界条件(thermal boundary conditions)是热传分析的负载,我们希望知道在此热边界条件之下,温度是怎么分布的。因为不均匀的温度分布会造成结构的翘曲变形,所以第二个阶段是希望知道在这些温度分布下结构的变形及应力。这是一个很典型的偶合场分析问题,因为结构怎么变形是依温度怎么分布而定,而温度如何分布则与结构如何变形(变形量很大时,几何形状会改变)有关,这种相依的关系就称为偶合(coupling)。严格来说,前述的分析程序(先做热传分析再做结构分析)观念上不是很正确的,较正确的做法应该是热传与结构分析必须同时进行,也就是说温

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较.

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

ANSYS分析报告分析

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

相关主题
文本预览
相关文档 最新文档