当前位置:文档之家› ansys流场分析个人心得

ansys流场分析个人心得

ansys流场分析个人心得
ansys流场分析个人心得

ANSYS学习心得

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

ANSYS中的APDL命令总结

在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。 (1).Lsel, type, item, comp, vmin, vmax, vinc, kswp选择线 type: s 从全部线中选一组线 r 从当前选中线中选一组线 a 再选一部线附加给当前选中组 au none u(unselect) inve: 反向选择 item: line 线号 loc坐标 length 线长 comp: x,y,z kswp: 0 只选线 1 选择线及相关关键点、节点和单元 (2).Nsel, type, item, comp, vmin, vmax, vinc, kabs选择一组节点 type: S: 选择一组新节点(缺省) R: 在当前组中再选择 A: 再选一组附加于当前组 U: 在当前组中不选一部分 All: 恢复为选中所有 None: 全不选 Inve: 反向选择 Stat: 显示当前选择状态 Item: loc: 坐标 node: 节点号 Comp: 分量 Vmin,vmax,vinc: ITEM范围 Kabs: “0”使用正负号 “1”仅用绝对值 (3).Esel, type, item, comp, vmin, vmax, vinc, kabs选择一组单元 type: S: 选择一组单元(缺省) R: 在当前组中再选一部分作为一组 A: 为当前组附加单元 U: 在当前组中不选一部分单元 All: 选所有单元 None: 全不选 Inve: 反向选择当前组 Stat: 显示当前选择状态 Item:Elem: 单元号 Type: 单元类型号

基于谱单元方法的单圆柱绕流特性分析

基于谱单元方法的单圆柱绕流特性分析 基于谱单元方法的单圆柱绕流特性分析 提要: 谱单元方法是一种高效的高精度计算流体动力学数值计算方法,目前被广泛运用于空气动力学的大规模模拟中。本文详细介绍了该数值计算方法好核心思想和编程思路,并实现了其程序开发。最后以单圆柱绕流问题为例验证了其准确性和高效性。模拟结果表明谱单元方法是在科学研究和工程计算中极具发展和应用前景的数值计算工具。 关键词:谱单元、有限元、计算流体动力学、圆柱绕流 中图分类号: O313 文献标识码: A 文章编号: 自从1977年Gottlieb和Orszag[1]系统地从数学方面对谱方法进行了理论的阐述,它与有限差分法及有限元法一起构成了求解偏微分方程的三大方法,被广泛地应用于更多的领域。随着谱方法在各领域的应用和发展,谱方法在理论研究上日趋完善,它开辟了谱方法应用函数分析技术处理复杂问题的道路。1984年,Gottlieb和Hussaini 开始将谱方法向计算流体动力学方面推广[2,3]。到了80年代初期,Patera才结合谱方法的精度和有限元的思想提出所谓的谱单元方法[4],谱单元方法具有谱方法的高精度和收敛特性,并且还可以像有限元法一样具有很好的几何区域的适应性[5]。 本文研究了谱单元方法插值函数的选取和谱单元的离散过程,给出了离散方程的一般形式,并采用时间分裂格式的谱单元法求解Navier-Stokes方程,以不同雷诺数下单圆柱绕流的数值模拟作为基本算例,验证了谱单元法的高精度和计算效率,计算表明结果令人满意。 一、谱单元离散格式 二、单圆柱绕流计算分析

在研究圆柱流场时常用的几个无量纲化系数:CD(阻力系数),CL (升力系数)和 St(斯托罗哈数)定义如下: (12) 其中,FD为阻力,与来流方向一致,主要由流体绕圆柱柱表面摩擦阻力以及圆柱前后压力差造成;FL为升力,与来流方向垂直,主要由涡交替从圆柱上下表面脱落产生上下表面压力脉动造成;St 为涡脱落频率,D为圆柱直径。 2.1 计算域和网格划分 考虑直径为D的圆柱受到未经扰动的均匀来流作用,基于圆柱直径和来流流速的雷诺数取Re=200。所选计算域50D×40D,圆柱位于坐标系原点(0,0)。入口边界和出口边界分别位于圆柱中心上游20D 和下游30D处,流域顶部和底部离圆柱中心20D。相应的边界条件如下:进口处自由来流速度为绕流问题特征速度,即ux=U∞,uy=0.0;上下边界条件与进口边界条件相同;出口边界处纵向和横向速度梯度均为0.0,即∂ux/∂x=0.0,∂uy/∂x=0.0;圆柱表面处为不可滑移边界条件,即ux=0.0,uy=0.0。计算域和边界条件如图1所示。 图1 计算域和边界条件示意图 Fig 1 Schematic diagram of the computational domain and boundary conditions 计算域网格划分采用了四边形非结构化谱单元网格,总共划分了354个单元,如图2(a)所示。在靠近圆柱壁面的地方进行了几层非常细的网格加密,离圆柱壁面最近的一层网格厚度为0.1D,如图2(b)所示。同时,在圆柱尾流区域也进行了加密处理。 图2 (a)谱单元网格划分示意图 (b)圆柱附近网格加密示意图 Fig 2 (a) spectral element mesh, 354 elements (b) zoomed-in view of the mesh around the cylinder

ANSYS新手入门学习心得

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

流体力学Fluent报告——圆柱绕流之欧阳家百创编

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 欧阳家百(2021.03.07) 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕

流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr 数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

ansys命令流解释

对ansys主要命令的解释 本文给出了ansys主要命令的一些解释。 1, /PREP7 ! 加载前处理模块 2, /CLEAR,NOSTART ! 清除已有的数据, 不读入启动文件的设置(不加载初始化文件)初始化文件是用于记录用户和系统选项设置的文本文件 /CLEAR, START !清除系统中的所有数据,读入启动文件的设置/FILENAME, EX10.5 ! 定义工程文件名称 /TITLE, EX10.5 SOLID MODEL OF AN AXIAL BEARING ! 指定标题 4, F,2,FY,-1000 ! 在2号节点上施加沿着-Y方向大小为1000N 的集中力 6, FINISH ! 退出模块命令 7, /POST1 ! 加载后处理模块 8, PLDISP,2 ! 显示结构变形图,参数“2”表示用虚线绘制出原来结构的轮廓 9, ETABLE,STRS,LS,1 ! 用轴向应力SAXL的编号”LS,1”定义单元表STRS ETABLE, MFORX,SMISC,1 ! 以杆单元的轴力为内容, 建立单元表MFORX

ETABLE, SAXL, LS, 1 ! 以杆单元的轴向应力为内容, 建立单元表SAXL ETABLE, EPELAXL, LEPEL, 1 ! 以杆单元的轴向应变为内容, 建立单元表EPELAXL ETABLE,STRS_ST,LS,1 !以杆件的轴向应力“LS,1”为内容定义单元表STRS_ST ETABLE, STRS_CO, LS,1 !以杆件的轴向应力“LS,1”定义单元表STRS_CO ETABLE,STRSX,S,X ! 定义X方向的应力为单元表STRSX ETABLE,STRSY,S,Y ! 定义Y方向的应力为单元表STRSY *GET,STRSS_ST,ELEM,STEEL_E, ETAB, STRS_ST !从单元表STRS_ST中提取STEEL_E单元的应力结果,存入变量STRSS_ST; *GET, STRSS_CO,ELEM,COPPER_E,ETAB,STRS_CO”从单元表STRS_CO中提取COPPER_E单元的应力结果,存入变量STRSS_CO 10 FINISH !退出以前的模块 11, /CLEAR, START ! 清除系统中的所有数据,读入启动文件的设置 12 /UNITS, SI !申明采用国际单位制 14 /NUMBER, 2 !只显示编号, 不使用彩色 /NUMBER, 0 ! 显示编号, 并使用彩色 15 /SOLU ! 进入求解模块:定义力和位移边界条件,并求解 ANTYPE, STATIC ! 申明分析类型是静力分析(STATIC或者0)

圆柱绕流数值模拟

圆柱绕流的数值模拟研究 摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。 关键词:网格划分;圆柱绕流;涡量;网格自适应 钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。 研究圆柱绕流问题在工程实际中也具有很重要的意义。如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。 1数学模型与计算方法 1.1几何模型 结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。上游尺寸1.5D,下游尺寸4.5D。使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。 图1计算区域 1.2网格划分及边界条件设置 为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。计算区域共分两块,尺寸见图1所示。在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。 对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。

流体力学Fluent报告——圆柱绕流

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C 与 Strouhal 数 d 随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在 Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量

个人总结ansys命令流

Q235 属性:弹性模量E=2.1e5 N/mm2 密度=7.85e-6kg/mm3 泊松比=0.3 mp,ex,1,2.1e5 mp,prxy,1,0.3 mp,dens,1,7.85e-6 1,ksymm 镜像点 2,arsym 镜像面 3,kgen 复制点 4.adele删除面 6,kdist,k1,k2 测量两关键点的距离 7,adele,a,,,1 删除area and below 8,创建圆柱面: circle 创建圆 然后创建直线 然(轴线) 利用拉伸命令创建圆柱面creat__areas__by Lines adrag 线拉伸成面modeling>operate>extrude>lines>>along lines VDRAG 面拉伸成体modeling>operate>extrude>areas>>along lines !创建空心圆柱体 这个命令 CYLIND, RAD1, RAD2, Z1, Z2, THETA1, THETA2 Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>By Dimensions Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Cylinder>By Dimensions 9,aptn 分割面 10,asbw 用工作平面切割面 11.wpoffs 12.wprota

https://www.doczj.com/doc/9a10354136.html,ng 过圆外一点做圆的切线(0°或180°) 14,nummrg 将重复的点消除 15,asba 面减去面 16,两个圆柱面的相贯线作法:做出两个相穿的圆柱面,利用APTN命令 17,选择面,不选择一部分面 asel,u,loc,z,kz(735) 18.在工作平面上生成一个矩形面 RECTING,X1,X2,Y1,Y2 X1,X2——矩形在工作平面X方向坐标值的变化范围 Y1,Y2——矩形在工作平面Y方向坐标值的变化范围 18,圆阵列 建立工作平面与圆柱的横截面平行,在工作平面情况下建立局部坐标系(柱坐标系),然后利用agen命令复制。 19,转换成局部柱坐标系 20,kfill 在两个关键点之间生成一个或多个关键点 21.网格划分 aatt,1,14,1, !aatt,mat,real,type,esys,secn aesize,all,1000 !aesize,anum,size, 单元尺寸 mshape,0,2d !mshape,key,dimension 指定划分单元形状amesh,all k,1,24000,33000,2230 k,2,24000,33000,-2230 k,3,-24000,33000,-2230 k,4,-24000,33000,2230 kfill,2,3,23,5,1,1 kfill,1,4,23,28,1,1 *do,i,5,26 l,i,i+1 *enddo

ansys心得

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

ANSYS谐响应分析命令流

/FILNAME, Beam,1 !定义工作文件名。 /TITLE, Beam Analysis !定义工作标题。/PREP7 !定义单元。 ET,1,BEAM188 !定义材料属性。 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.1e5 MPDATA,PRXY,1,,0.3 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,7.9e-6 ! 定义杆件截面■200。 SECTYPE, 1, BEAM, RECT, , 0 SECOFFSET, CENT SECDATA,10,10,0,0,0,0,0,0,0,0 !建立几何模型。 K,1, ,, , K,2,350,, , !生成立柱。 LSTR, 1, 2 !以上完成几何模型。 !以下进行网格划分。 FLST,5,1,4,ORDE,1 FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义单元大小。!分配、划分平板结构。 LMESH, 1 !分析类型施加载荷并求解。 ANTYPE,2 !定义分析类型及求解设置。MSAVE,0 !模态提取方法。MODOPT,LANB,40 EQSLV,SPAR

MXPAND,40, , ,0 !模态扩展设置。 LUMPM,0 PSTRES,0 MODOPT,LANB,40,0,0, ,OFF !施加约束。 FLST,2,2,3,ORDE,2 FITEM,2,1 FITEM,2,-2 /GO DK,P51X, , , ,0,ALL, , , , , , !求解。 FINISH /SOL /STA TUS,SOLU SOLVE !以下进入谐响应分析模式。 *AFUN,DEG !指定角度单位为度。FLST,2,1,1,ORDE,1 FITEM,2,81 /GO FINISH /SOL !重新进入ANSYS求解器。ANTYPE,3 !分析类型为谐响应分析。HROPT,FULL !求解方法为FULL法。HROUT,ON LUMPM,0 EQSLV,FRONT,0, PSTRES,1 !包含了预应力。 !施加载荷。 FLST,2,1,1,ORDE,1 FITEM,2,24 /GO F,P51X,FY,-400*cos(30),-400*sin(30) FLST,2,1,1,ORDE,1 FITEM,2,36 /GO F,P51X,FY,300*cos(5),300*sin(5)

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕 流的数值模拟 令狐采学 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了

亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

ansys命令流

第一天目标: 熟悉ANSYS基本关键字的含义k --> Keypoints关键点l --> Lines线a --> Area 面v --> Volumes体e --> Elements单元n --> Nodes节点cm --> component组元et --> element type单元类型mp --> material property材料属性r --> real constant实常数d --> DOF constraint约束f --> Force Load集中力sf --> Surface load on nodes 表面载荷bf --> Body Force on Nodes体载荷ic --> Initial Conditions初始条件第二天目标: 了解命令流的整体结构,掌握每个模块的标识!文件说明段/BATCH/TILE,test analysis!定义工作标题/FILENAME,test!定义工作文件名/PREP7!进入前处理模块标识!定义单元,材料属性,实常数段ET,1,SHELL63!指定单元类型ET,2,SOLID45!指定体单元MP,EX,1,2E8!指定弹性模量MP,PRXY,1, 0.3!输入泊松比MP,DENS,1, 7.8E3!输入材料密度R,1, 0.001!指定壳单元实常数-厚度......!建立模型K,1,0,0,,!定义关键点 K,2,50,0,,K,3,50,10,,K,4,10,10,,K,5,10,50,,K,6,0,50,,A,1,2,3,4,5,6,!由关键点生成面......!划分网格ESIZE,1,0,AMESH, 1......FINISH!前处理结束标识/SOLU!进入求解模块标识!施加约束和载荷DL,5,,ALLSFL,3,PRES,1000SFL,2,PRES, 1000......SOLVE!求解标识FINISH!求解模块结束标识/POST1!进入通用后处理器标识....../POST26!进入时间历程后处理器……/EXIT,SAVE!退出并存盘以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助/ANGLE!指定绕轴旋转视图/DIST!说明对视图进行缩放/DEVICE!设置图例的显示,如: 风格,字体等/REPLOT!重新显示当前图例/RESET!恢复缺省的图形设置/VIEW!设置观察方向/ZOOM!对图形显示窗口的某一区域进行缩放第三天生成关键点和线部分 1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:

ANSYS分析报告分析

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

利用ANSYS谐响应分析结果导入LMS-Virtual-lab中进行声学分析步骤

1.前期用ANSYS对模型进行动力学分析,然后保存结果文件.rst格式的,然后导入到Vritual lab12中进行声学分析,可能步骤有些长,大家尽量慢慢看,如果有不明白的,或者我的步骤有错误的,大家可以指正,还有我的VL版本是12的,12的版本和以前的微有不同,在后边大家会发现的。我的Q1728993717. 2.进入声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 3.导入Ansys分析结果文件.rst格式:文件—Import—默认即可,看好单位,与模型统一; 4.更改文件名称,便于后续操作:在特征树中点开Nodes and Elements—右键点其子选项 (就是带有齿轮标志那个)—属性—特征属性—更改名称—StructuresMesh. 5.提取声学面网格:开始—Structures—Cavity Meshing—插入—Pre/Acoustics Meshers— Pre/Acoustics Meshers—Skin Meshers,出现一下图框, 在Grid to Skin 区域选择结构网格即:StructuresMesh,其余都默认不用改,之后点击应用,Close。 6.在次回到声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 7.命名声学网格:点开特征树中的Nodes and Elements—右键Skin Meshpar1.—属性—特征 属性—改名称—AcousticsMesh;到这步之后为了方便起见,可以将结构网格StructuresMesh隐藏:右键StructuresMesh—Hide/Show; 8.设定分析类型:工具—Edit the Model Type Definitions—点击“是”出现对话框如下:

相关主题
文本预览
相关文档 最新文档