当前位置:文档之家› 汽车散热器

汽车散热器

汽车散热器
汽车散热器

汽车散热器

目录

1、前言、

2、散热器的结构及对材料的要求、

3、铝散热器片材料的特点、

4、散热器的结构和种类样图、

5、用铝散热器取代铜散热器能够满足整车及发动机的性能要

求、

6、铝散热器使用寿命高于铜散热器、

7、铝散热器必须使用厂家规定的防冻防锈液、

8、铝散热器必须在生产厂家进行专业维修、

9、层叠式汽车散热器、

10、散热器的计算和选用原则散热

11、使用与保养、

12、汽车散热器的发展趋势、

13、结语、

1.前言

散热器是汽车水冷发动机冷却系统中不可缺少的重要部件,其作用是将发动机的水套内冷却液所携带的多余热量经过二次热交换,在外界强制气流的作用下从高温零件所吸收的热量散发到空气中的热交换装置。因此,冷却系统中散热器性能的好坏直接影响汽车发动机的散热效果及其动力性、经济性和可靠性,乃至正常工作和安全行驶的问题。

随着汽车发动机转速和功率的不断提高,热负荷也愈来愈大,对冷却系统的要求也越来越高,人们对包括散热器在内的冷却系统的研究愈加重视,新技术、新材料不断涌现。汽车铝散热器产品的优势体现在轻量化、可靠性高、价格低以及生产环保,整车厂采用铝水箱替代原有铜水箱是汽车散热器技术发展的必然趋势。目前,汽车散热器正朝着轻型、高效、经济的方向发展,国内乘用车产品90%以上采用的是铝散热器,在商用车上的使用近年也陆续采用并有扩大的趋势。

2. 散热器的结构及对材料的要求

汽车水冷发动机散热器由冷却用的散热器芯部、进水室和出水室三部分组成。冷却液在散热器芯内流动,空气从散热器芯外

高速流过,冷却液和空气通过散热器芯部进行热量交换。

目前,汽车散热器的结构形式可分为直流型和横流型两大类。

散热器芯部应具有足够的通流面积,让冷却液通过,同时也应具备足够的空气通流面积,让足量的空气通过以带走冷却液传给散热器的热量。还必须具有足够的散热面积,来完成冷却液、空气和散热片之间的热量交换。

散热器芯部的结构形式主要有管片式和管带式两大类。管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。

管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成。与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。开百叶窗波状带的散热器传热效率同普通平片散热片相比可提高160%。

传热系数是评价散热器散热性能的重要参数。影响因素众多,其中散热器材料的导热性能和焊接质量对其影响很大。散热器的工作条件恶劣,一般位于汽车前端迎风处,不仅要经受风吹雨淋和汽车排出的废气以及砂土、泥浆的污染,而且还要承受反复的热循环和周期性的振动。另外,散热器内长期流动着冷却液,对散热器有锈蚀及腐蚀作用。因此,为保证散热器可靠地发挥散热作用,对散热器材料性能有如下要求:具有良好的导热性能、具有一定的强

度和较强的耐腐蚀性、良好的加工性能及钎焊性能、良好的经济性。

3. 铝散热器片材料的特点

散热片选用导热系数较高的材料对提高热传导效率很有帮助,在金属的导热性方面,银的导热系数最高,其次是铜,银的价格昂贵,不适宜做散热材料,目前比较常用是铜、铝及铝合金。铝的导热系数低,但通过增加鳍片增大散热面积,也能起到较好的散热效果。

散热片的主要材料和成型技术可分为:全铝散热器是传统散热器,具有生产工艺简单、易于加工、材料成本低廉,价格便宜等优点。缺点是,整体散热效果欠佳。

铝是汽车工业使用较多的金属材料,也是汽车轻量化的首选材料。虽然铝的热传导率较铜低,仅为铜的60%,但由于铜散热器存在热传导率更低的锡保护层,使得铝散热器的热效率反而要高于铜散热器。另外,铝还有良好的铸造加工性能。

虽然铝散热器具有质量轻、原料成本低、散热性能好等优点,但其焊接工艺性差、生产设备投入大是长期难以解决的问题,限制了铝散热器的广泛应用。直到20世纪80年代中期,美国采用钎焊工艺制造铝散热器取得成功后,才使铝散热器的规模化生产和应用成为可能。

4. 散热器的结构和种类样图

图一:

图二:

图三:

5. 用铝散热器取代铜散热器能够满足整车及发动机的性能

要求

从铜、铝散热器结构上来说,其产品功能没有什么不同,也不影响产品之间的互换。铜、铝散热器都是曾遍采用管带式结构,散热带采用波浪带式结构,铜散热器散热管采用咬口式,铝散热器采用高频焊管和比较先进的B型管,只是由于原材料制造工艺和装备以及铜铝材料的性能不同,其材料和规格的选择不同。

从材料选用上看,铝散热器要比铜散热器选材厚一些,抗内部压力变形能力会比铜散热器强一些。从物理传热特性方面看,铜的导热

比铝材要优越,但是,焊接铜散热器所用的锡铅焊料导热系数比铝材焊料导热系数要小得多。因此,从产品的整体散热效果来说,匹配同一车型,同样正面面积,采用铝散热器的散热效率要高于铜散热器。一般情况下设计铜散热器时,经常采用芯子加厚的方案来满足整车的散热性能,同时也带来散热器的风阻增大等一系列问题。

铜散热器的常用材料:

6. 铝散热器使用寿命高于铜散热器

由于铜、铝散热器采用的焊接设备和工艺方法上的不同,其产品的结构强度差别较大。铝散热器焊接为硬钎焊,焊接温度为577~612℃,而铜散热器采用的是软钎焊,焊接温度低于450℃。铝散热器焊接接头的剪切强度为50~58MPa,抗拉强度为86~96MPa,而铜散热器锡焊抗扭强度为34~37MPa;所以铝散热器的结构强度要高于铜散热器很多。考虑到铝散热器的不易维修性,生产厂家在材料选型时必须考虑到产品的可靠性和使用寿命,因此,铝散热器的可靠性要

远高于铜散热器,目的是尽量减少整车用户的后期使用维修成本。另一方面,铝散热器在抗腐蚀性能方面存在不如铜散热器的事实,要求客户对汽车铝散热器的使用条件要比铜散热器严格些。主要是客户必须使用整车厂家规定的防冻防锈液。不能采用其它介质如水。铝散热器和铜散热器相比在同等条件下,铝散热器无故障里程要远远高于铜散热器。

7. 铝散热器必须使用厂家规定的防冻防锈液

铝散热器的主要失效形式是腐蚀导致的产品渗漏,腐蚀主要来源于大气腐蚀和水腐蚀,散热管的穴蚀是常见的现象之一。铜散热器的材料是铜,铜化学活性差,在大气中难于氧化。由于大气中还有少量的CO2、H2S、H2O等气体,它们都会加速铜的腐蚀。但铜在大气中腐蚀后形成铜绿,该薄膜组织致密,与铜基紧密结合,从而起到保护作用,防止基体的进一步腐蚀。

铝是化学活性较大的一种金属。在大气中会迅速氧化形成一层极薄的氧化膜,疏松多孔,容易渗透。但在破坏后又迅速氧化形成新的氧化层。为了提高铝在使用中的耐腐蚀性能,一般要经过阳极氧化处理,使表面形成致密、较厚的氧化层。铝在水溶液中极易被H+置换,当水溶液中含有氯离子时,很快被腐蚀。水温升高,特别在80℃以上时铝在水溶液中极易被腐蚀,因此铝散热器是不能使用普通水的。所以只有铝散热器正确地选择材料和使用防冻、防锈液,才能有效地减少自身的腐蚀确保产品正常使用寿命。一般情况下,选择防冻防锈

液PH值在7.5至9.0的冷却液较为适宜。由于生产防冻防锈液的社会厂家和规格牌号五花八门难于统一,用户可以根据整车的产品使用说明书查找到防冻防锈液规格型号。

铝散热器在使用防冻防锈液中,一般汽车在行驶2万km内不产生腐蚀,3万~5万km时逐步出现轻微的腐蚀,5万km以后时腐蚀的百分比会增加,这时应该及时更换防冻防锈液。

8. 铝散热器必须在生产厂家进行专业维修

铝散热器的维修较铜散热器要困难一些。因为铜散热器材料的基体材料熔点分别为1052~1080℃,而所采用的铜焊料(锡合金)的熔点为320℃以下,比较容易采用火焰焊接实现修补。而铝散热器采用的复合材料其焊料硅铝合金的熔点为577~627℃,而基体材料的熔点为643~654℃。两者仅相差46℃,因此在钎焊时温度控制要求极严格,否则焊接时易造成基体材料熔化,因此必须要用在专业设备上进行焊接,一定程度上限制了铝散热器的维修便利性。

目前,一般整车厂家的服务维修站不具备维修铝散热器的能力和手段,必须要将产品返回生产厂家进行侈理。如果客户在使用过程中发现铝散热器出现渗漏等问题,在应急的情况下,可以采用目前市面上常见的AB胶进行临时性地粘补以应急需,但事后必须要尽快更换一台同类型产品。对于故障件的维修,必须交给生产厂家进行专业修理。

9.层叠式汽车散热器

技术实施方案:

层叠式汽车散热器的技术实施方案:将一种用于连通加水口、进、出水管及放水阀等外接件的层叠式组件放置于层叠式散热器中要求的位置上,与其它叠片、散热带等连接。该组件由二种连通叠片和一种连通管组成,一种连通叠片是小孔叠片,它的一端比同一散热器上的普通叠片短,由此留出了一段空间,可以安装连通管。另一种连通叠片是过渡叠片,该叠片的一端有二孔,上孔与连通管相连,下孔与小孔叠片上的小孔相连,这两种连通叠片的其余部分和结构则与普通叠片相同。连通管其二端管孔与过渡叠片连接,中间孔上可以分别安装加水口、进、出水管和放水阀等外接件。

采用钢制框架封装的方法来保证层叠式散热器的结构强度符合使用要求,具体是:框架由钢制左、右侧板和上、下底板用螺栓连接组成,将层叠式散热器紧固于框架内。上、下底板的内侧与层叠式散热器之间有减震胶片衬垫,框架上可以分别安装护风圈、中冷器、膨胀水箱等其它部件,框架的左、右侧板上还可以装配支架以适应层叠式散热器在汽车上的悬挂式安装要求。

层叠式汽车散热器可用铝制造业可以用铜制造,它的优点:

1、较高的散热性能,匹配同等功率的汽车发动机,体积可比现在使用的相同型号的汽车散热器缩小20%以上,由此可以节省大量的贵重有色金属材料。

2、可以将电子风扇安装在散热器的钢制框架上,在容许的空间内选择有利的放置位置,这样可以优化冷风通道,减少风道阻力,增加通风流量,而不必像现在的散热器必须固定在发动机上装有风扇的一侧那样。例如:后置发动机的大型客车和气流通道限制严格的装甲车辆等的发动机散热状况就会由此得到改善。

3、可以使用发动机的风扇,在框架上安装导风罩,在框架的另一侧安装匹配的中冷器。

4、采用铜质材料制造时,采用硬钎焊工艺完成总成焊接,对出现的泄漏点可以用软钎焊补焊。

层叠式汽车散热器其中, 5.加水口,6.散热器盖, 8.进水管,9.边板,10.出水管,12.橡胶薄板,13.框架,14.螺栓组件。

实验数据与成本估算:

经过对三台层叠式散热器的试件的测试,结论表明:层叠式散热器比管带式散热器的散热性能可以提高30%以上,工艺制造成本可以降低40%左右;

相同工况下,层叠式散热器比管带式散热器的体积可以减小20%左右;

相同工况下,层叠式散热器比管带式散热器的冷风使用效率高30%以上,这意味着风扇的功率消耗可以降低25%左右。

10.散热器的计算和选用原则散热

散热器的设计计算:

汽车散热器的目的是使汽车在所有变化的行驶条件下,都能使发动机有着最相适宜的温度,也就是控制发动机的温度。因此,作为设计发动机的必要条件是要求能够适应行驶条件的变化。必须把散热器作为整个系统来考虑,(大体分为通风系和水循环系)。具体来说散热器设计计算包括如下方面:

(1)估算空气通道的阻力,并按所需的空气流量以及空气道和散热器的总阻力,选择风扇。

(2)设计计算散热器,确定散热器的散热面积、正面面积及容积,并在任何工作情况下和驱动风扇、水泵所需的最小功率的情况下,散热器应能将发动机的热量散出。

(3)估算冷却系统中的水阻力,并按所需的水流量及水流道阻力,选择阻力。

所以散热器设计计算。不仅只在于确定散热器的构造参数,而且还在于消耗发动机最小有效功率的情况下获得高效能的冷却装置。但其中关键性的一项是散热器芯子的设计。下面仅就其中一种方法概述如下:

1.散热器芯子设计所限定的条件:

作为汽车散热器芯子的设计条件之一,是必须考虑汽车车身和发动机舱容积所受限制的情况。在这个容积的空间中,满足发动机的散热量是非常必要的。散热器的空间容积是按车身型式、发动机要求的散热量参数以及提出的带有各种各样方向性问题而定。为了达到这些条件,考虑所有情况来设计芯子型式是不要的。可是由于汽车工业的特殊性(大量生产方式),其形势不宜太多。

散热器芯子型式、管距(散热带高度)、使用水管尺寸一旦大量投产就很难变动,除此以外,可以自由选择的举出下列三项:(1). 散热片材质、片厚;

(2). 片距;

(3). 芯子厚度。

但也不是完全自由的,必须在表2的范围内。

象这样所限定的散热器空间和芯子型式,必须满足发动机散热量要求,更要注意在成本最低情况下进行设计。

管带式芯子的Hf及fl(表2)

散热器的选择原则

散热器是水冷式发动机冷却系统中的主要散热部件,水不断地在水套和散热器中循环,将发动机的一部分热量经由散热器而散到大气中去,来保证发动机正常工作。

若散热器尺寸不足够大,在满载时将会发生局部过热现象。因为在这种情况下,散热器不能把水冷却到需要的程度,而造成冷却水沸腾。

又若发动机散热器散热能力过大,特别是在无冷却强度调节装置(现在通常用的硅油离合器)时,发动机在过冷的情况下工作,使冷却损失加大,发动机的经济性和有效功率将会降低。这因为浓的润滑油在使摩擦损失增加,燃料的汽化作用变坏。很明显,当发动机在冷起动或开始工作时要较热发动机为差。同时,散热器若是散热能力过大时,势必造成有色金属的过量消耗。就目前我国的实际情况来讲,若是设计有错,将会浪费数以千吨的有色金属和大量财力。

所以,正确选择汽车散热器是非常重要的,应当尽量满足下列原则:

(1)必须满足发动机的散热量要求,以适应不同行驶条件的变化。

(2)考虑整车所限制的散热量容积空间,保证安装尺寸,并使之符合尺寸系列标准。

(3)芯部结构先进,具有最适当的空气阻力和小的液体阻力。

(4)具有足够的耐震强度,特别对于矿用倾泻汽车这点尤为重要。

(5)具有耐腐蚀的材质及表面处理,使用寿命要长。

(6)重量要轻,对于小客车特别要考虑重量指标要求并且尽量减少尺寸,以扩大视野。

(7)便于维修和保养,满足用户的使用要求。

(8)保证成本在最低限度。

11. 使用与保养

1、散热器不应与任何酸、碱或其它腐蚀性性质接触。

2、建议使用软硬水需软化处理后使用,避免造成散热器内部堵塞及水垢的产生。

3、在使用防冻液,为了避免散热器的腐蚀,请务必使用正规厂家生产且符合国家标准的长效防锈防冻液。

4、在安装散热器过程中,请不要损坏散热带(片)和碰伤散热器,以保证散热能力和密封。

5、散热器内完全放水再注水时,要先将发动机缸体的放水开关扭开,有水流出时,再关上,从而避免产生水泡。

6、在日常使用中应随时检查水位,要停机降温后加水。加水时,将水箱盖慢慢打开,作业人员身体应尽量远离加水口,以防高压蒸汽油加水口喷出造成烫伤。

7、在冬季为防止结冰造成芯子破裂现象,如长期停车或间接停车时,应将水箱盖和放水开关,将水全部放出。

8、备用的散热器有效环境应保持通风、干燥。

9、视实际情况用户应在1~3个月间对散热器进行完全清洗一次芯体。清洗时,用清水沿反进风向侧冲洗。

10、水位计应每3个月清洗一次或视实际情况,各部件拆下用温水加无腐蚀性洗涤剂清洗。

12. 汽车散热器的发展趋势

散热器在限定的空间内应具有足够的散热性能和较高的使用寿命,所以整个散热器总成必须降低原材料消耗,改善生产工艺和结构,降低生产成本,实现薄壁、轻型、高效。在焊接部位,应采取扩大焊接面积的方法来降低应力,如主片和水室采用双面焊接的窄沟槽形式,尽可能减小壁厚,不容许采用增加壁厚的方法来提高总成强度。如散热器的主片和水室的壁厚应控制在0.6~0.8mm 范围内,冷却管的料厚应在0.11~0.13mm范围内,散热带的厚度为0.043~0.06mm。铜散热器的料厚如超过上述值会使成本增加,但强度提升有限。

采用低锡焊料、有机焊剂和高效率的氮气保护硬钎焊工艺,生产铝散热器是今后发展的趋势。以铝代铜可以进一步减小散热器质量,特别是硬钎焊生产的铝散热器可以实现整个总成等强度,极大地提高了散热器的可靠性。

13.结语

汽车散热器材料与制造技术发展很快。铝散热器以其在材料轻量化上的明显优势。国外轿车配套的散热器多为铝散热器,普遍采用装配式,主要是从保护环境的角度来考虑(尤其是欧美国家)。在欧洲新型的轿车中,铝散热器占有的比例平均为64%。从我国汽车散热器生产的发展前景看,硬钎焊生产的铝散热器逐渐增多,其发展前景将超过装配式的铝散热器并取而代之。

在整个设计过程中,有很多人给了我很多的指导和帮助,在此谢

谢他们。

汽车散热器的毕业设计论文

汽车散热器的毕业设计论文 目录 1、前言、 2、散热器的结构及对材料的要求、 3、铝散热器片材料的特点、 4、散热器的结构和种类样图、 5、用铝散热器取代铜散热器能够满足整车及发动机的性能要 求、 6、铝散热器使用寿命高于铜散热器、 7、铝散热器必须使用厂家规定的防冻防锈液、 8、铝散热器必须在生产厂家进行专业维修、 9、层叠式汽车散热器、 10、散热器的计算和选用原则散热 11、使用与保养、 12、汽车散热器的发展趋势、 13、结语、

1.前言 散热器是汽车水冷发动机冷却系统中不可缺少的重要部件,其作用是将发动机的水套内冷却液所携带的多余热量经过二次热交换,在外界强制气流的作用下从高温零件所吸收的热量散发到空气中的热交换装置。因此,冷却系统中散热器性能的好坏直接影响汽车发动机的散热效果及其动力性、经济性和可靠性,乃至正常工作和安全行驶的问题。 随着汽车发动机转速和功率的不断提高,热负荷也愈来愈大,对冷却系统的要求也越来越高,人们对包括散热器在内的冷却系统的研究愈加重视,新技术、新材料不断涌现。汽车铝散热器产品的优势体现在轻量化、可靠性高、价格低以及生产环保,整车厂采用铝水箱替代原有铜水箱是汽车散热器技术发展的必然趋势。目前,汽车散热器正朝着轻型、高效、经济的方向发展,国内乘用车产品90%以上采用的是铝散热器,在商用车上的使用近年也陆续采用并有扩大的趋势。 2. 散热器的结构及对材料的要求 汽车水冷发动机散热器由冷却用的散热器芯部、进水室和出水室三部分组成。冷却液在散热器芯内流动,空气从散热器芯外高速流过,冷却液和空气通过散热器芯部进行热量交换。 目前,汽车散热器的结构形式可分为直流型和横流型两大类。

汽车水散热器的概述及理论设计计算

汽车水散热器的概述 及理论设计计算 一、散热器概述 1汽车散热器的定义: 汽车散热器是水冷式发动机冷却系统的关键部件。通过强制水循环对发动机进行冷却,是保证发动机在正常的温度范围内连续工作的换热装置。 1、散热器在汽车中的重要地位 1汽车总成 产值比重按不同的车型能够占汽车总成的1~2.5% 2发动机总成 产值比重按不同的车型能够占发动机的15%左右 3、散热器结构的发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4、散热器的结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构 三、汽车的整体结构 温度过高及过低的坏处

温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大 4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件的磨损 6气缸内的温度过高时,进入气缸内的新鲜空气很快膨胀,就减少了进气量,降低功率。 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件的摩擦阻力加大,消耗较多的功率,因而减少了输出功率 4废气中的水蒸气与硫化物生成一种叫亚硫酸的液滴腐蚀零件 5传走的热能增加,转变为机械功的热能减少,造成过多的散热损失. 汽车分类最新标准 以前的分类是我国1988年6月发布的有关标准GB/T3730.1-1988。 2目前新标准已将汽车的分类作了修改: 3一是废除了“轿车”的提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座): 1分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。 商用车: 2分为客车、货车和半挂牵引车 3客车细分为小型客车、城市客车、长途客车、铰接客车、无轨客车、越野客车、专用客车。 4货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专

汽车冷却系统设计要求

汽车冷却系统设计要求

汽车冷却系统设计 ——叶海见 汽车冷却系统设计 (2) 一、概述 (3) 二、要求 (3) 三、结构 (3) 四、设计要点 (6) (一)散热器 (6) (二)散热器悬置 (6) (三)风扇 (6) (四)副水箱 (8) (五)连接水管 (8) (六)发动机水套 (8) 五、设计程序 (8) 六、匹配 (8) 七、设计验证 (9) 八、设计优化 (9)

一、概述 二、汽车对冷却系统的要求 (一)汽车对冷却系统有如下几点要求 1、保证发动机在任何工况下工作在最佳温度范围; 2、保证启动后发动机能在短时间内达到最佳温度范围; 3、保证散热器散热效率高,可靠性好,寿命长; 4、体积小,重量轻,成本低; 5、水泵,风扇消耗功率小,噪声低; 6、拆装、维修方便。 (二)冷却系统问题对汽车的影响 1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化。 2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。 三、冷却系统布置选型 (一)冷却系统结构 1、分类: 液体蒸 发 简单蒸发冷 却 以加注冷却液来补偿冷却介 质蒸发损失的蒸发冷却。

冷却冷 却 带辅助水箱 的蒸发冷却 用辅助水箱补充冷却介质的 蒸发冷却。 带冷凝器的 蒸发冷却 蒸发的冷却介质在冷凝器中 凝结后,通。过冷却回路流 回到发动机加水箱的蒸发冷 却。 循 环 冷 却 对流冷却 利用热虹吸作用使冷却液自 然循环的冷却方式。 强 制 冷 却 开式强 制冷却 冷却介质不进行再循环的强 制。冷却方式。 单循环 强制冷 却 冷却介质在冷却水箱、冷却 塔、管式冷却器、散热器等 中进行冷却的强制冷却方 式。 双循环 强制冷 却 利用副回路(外循环)中的 冷却液在热交换器中对发动 机冷却介质进行再冷却的强 制冷却方式。 空气冷却自然空气冷却 利用自然空气循环的冷却方 式。 强制空气冷却 利用风扇迫使空气循环的冷 却方式。 2、常用结构:

汽车冷却系统匹配设计说明

一、冷却系统说明 二、散热器总成参数设定及基本性能要求 三、膨胀箱总成参数设定及基本性能要求 四、冷却风扇总成参数设定及基本性能要求 五、橡胶水管参数设定及基本性能要求

一、冷却系统说明 内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。 1.1 发动机的工况及对冷却系统的要求 一个良好的冷却系统,应满足下列各项要求: 1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持最佳的冷却水温 度。 2)应在短时间内,排除系统的压力。 3)应考虑膨胀空间,一般其容积占总容积的4-6%; 4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。 5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压; 6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积;

7)设置水温报警装置; 8)密封好,不得漏水; 9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。 10)使用可靠,寿命长,制造成本低。 1.2 冷却系统的总体布置 冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。 提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。 在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水管。 在整车布置中散热系统中,还要考虑散热器和周边的间隙,散热器到保险杠外皮的最小距离100毫米,如果发动机的三元崔化在前端的话,还要考虑风扇到三元催化本体距离至少100毫米,到三元催化隔热罩距离至少80毫米。一般三元催化的隔热罩到本体大概有15毫米,隔热罩厚度为0.5-1毫米,一般材料为st12。 1.2.1散热器布置 货车散热器一般采用纵流水结构,因为货车的布置空间也较宽裕。而且纵流

汽车发动机冷却系统的设计原则

发动机冷却系统的设计原则 (李勇) 水冷式汽车发动机冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇及连接水管、冷却液等组成。我们主机厂主要根据整车布置及发动机功率的要求来选定散热器及各零部件的形状、大小,并合理布置整个冷却系统,保证发动机的动力性、经济性、可靠性和耐久性,从而提高整车的性能。 一、冷却系统的总体布置原则 冷却系统总布置主要考虑两方面,一是空气流通系统;二是冷却液循环系统。因此在设计中必须做到提高进风系数和冷却液循环中的散热能力。 1,提高进风系数。要做到提高进风系数就必须要做到:(1)减小空气的流通阻力,(2)降低进风温度,防止热风回流。 (1)减小空气的流通阻力 设计中应尽量减少散热器前面的障碍物,进风口的有效进风面积不要小于60﹪的散热器芯部正面积;在整车布置允许的前提下,尽可能采用迎风正面积较大的散热器;风扇与任何部件的距离不应小于20mm,这样就可以组织气流通畅排出,可以减少风扇后的排风背压。 (2)降低进风温度, 要合理布置散热器的进风口,提高散热器与车身、发动机舱接合处的密封性,防止热风回流。 (3)合理布置风扇与散热器芯部的相对位置 从正面看,尽量使风扇中心与散热器中心重合,并使风扇直径与正

方形一边相等,这样可以使通过散热器的气流分布最为均匀,或者使风扇中心高一下些,使空气流经散热器上部的高温高效区。 另:考虑发动机振动的因素,风扇和护风罩之间的间隙应该在20mm 以上。 从轴向看,尽可能加大风扇前端面与散热器之间的距离,并合理设计护风罩。要使气流均匀通过散热器芯部整个面积,必须要求风扇与散热器之间保持一定的距离,一般对载货汽车,风扇与散热器芯部之间的距离不得小于50mm。 2,提高冷却液循环中的散热能力 要提高冷却液循环中的散热能力,提高冷却液循环中的除气能力是关键。冷却系统的气体会造成水泵流量下降,使散热器的冷却率下降;还会造成发动机水套内局部沸腾,致使局部热应力猛增,影响发动机性能;在热机停工况,气体还会造成冷却液过多的损失。因此要提高冷却液循环中的除气能力,其措施就是设计膨胀水箱和相应的除气管路(当散热器位置比发动机位置高时,可以在散热器上部直接开一个注水口,并在注水口上用一压力式的散热器盖即可,我厂的农用车型的散热器就是采用此方式进行排气及加水)。 二、散热器的选择 (1)现在我厂基本上全部都采用铜制散热器,芯部结构为管带式的。散热器要带走的热量Q w,按照热平衡的试验数据或经验公式计算:Q w=(A·g e·Ne·h n)/3600 kJ/s 式中: A—传给冷却系统的热量占燃料热能的百分比,对柴油机A=0.18~0.25

汽车水散热器概述及理论设计计算

汽车水散热器地概述 及理论设计计算 一.散热器概述 1汽车散热器地定义: 汽车散热器是水冷式发动机冷却系统地关键部件.通过强制水循环对发动机进行冷却,是保证发动机在正常地温度范围内连续工作地换热装置. 1.散热器在汽车中地重要地位 1汽车总成 产值比重按不同地车型能够占汽车总成地1~2.5% 2发动机总成 产值比重按不同地车型能够占发动机地15%左右 3.散热器结构地发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4.散热器地结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构 三.汽车地整体结构 温度过高及过低地坏处

温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大 4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件地磨损 6气缸内地温度过高时,进入气缸内地新鲜空气很快膨胀,就减少了进气量,降低功率. 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件地摩擦阻力加大,消耗较多地功率,因而减少了输出功率 4废气中地水蒸气与硫化物生成一种叫亚硫酸地液滴腐蚀零件 5传走地热能增加,转变为机械功地热能减少,造成过多地散热损失. 汽车分类最新标准 以前地分类是我国1988年6月发布地有关标准GB/T3730.1-1988. 2目前新标准已将汽车地分类作了修改: 3一是废除了“轿车”地提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座): 1分为普通乘用车.活顶乘用车.高级乘用车.小型乘用车.敞篷车. 仓背乘用车.旅行车.多用途乘用车.短头乘用车.越野乘用车.专用乘用车. 商用车: 2分为客车.货车和半挂牵引车 3客车细分为小型客车.城市客车.长途客车.铰接客车.无轨客车. 越野客车.专用客车. 4货车细分为普通货车.多用途货车.全挂牵引车.越野货车.专用作

汽车散热器电动风扇技术条件模板

QC/T 773— ( -12-17发布, -05-01实施) 前言 本标准参考国外先进标准及中国的QC/T 413- 《汽车电气设备基本技术条件》等相关标准制定。 本标准由全国汽车标准化技术委员会提出。 本标准由全国汽车标准化技术委员会归口。 本标准负责起草单位: 上海日用—友捷汽车电气有限公司。 本标准主要起草人: 张梅学、林宏楣、周伟刚、杨忠明。QC/T 773— 汽车散热器电动风扇技术条件 Cooling fan module specification for automobile 1 范围 本标准规定了汽车散热器电动风扇(以下简称风扇)的要求、试验方法、检验规则、标志、包装、储存和保管。 本标准适用于汽车发动机散热器装置上驱动负载排出热量的风扇。含电子调速控制器的有刷(直流电动机)风扇也可参照执行。 本标准不适用于汽车散热器电动风扇的电子模块。 2 规范性引用文件

下列文件中的条款经过本标准的引用而成为本标准的条款。凡是注日期的引用文件, 其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准, 然而, 鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件, 其最新版本适用于本标准。 GB/T 1236 工业通风机用标准化风道进行性能试验(idt ISO 5801: 1997) GB/T 2423.17 电工电子产品基本环境试验规程试验Ka: 盐雾试验方法(eqv IEC 68-2-11: 1988) GBl 8655 用于保护车载接收机的无线电骚扰特性的限值和测量方法(idt IEC/CISDIVR25: 1995) QC/T 413- 汽车电气设备基本技术条件 QC/T 29106 汽车低压电线束技术条件 3 要求 3.1 一般规定 3.1.1 文件。 风扇应符合本标准的要求, 并应按照经规定程序批准的图样及技术文件制造。 3.1.2 常态工作环境条件。 风扇的常态工作环境条件按QC/T 413- 中

散热器在电动汽车上的设计

散热器在电动汽车上的设计及改进 2012-03-30 核心提示:IGBT产生的热量通过热传导的方式由管壳传到散热器,然后通过强迫风冷的方式传到外界环境中去(散热器安装在逆变器的外部)。为减少管壳与散热器之间的热阻,首先要求散热器的安装表面粗糙度达1.6以上 2012年3月30日讯 1逆变器模块 2006年4月我们开发了一款电动汽车用逆变器。一共用了4个IGBT,右边是3个型号为 FF1200R17KE3-B2的IGBT,主要功能是逆变(该模块以下简称为逆变模块);左边是1个型号为 FF300R17KE3的IGBT,主要功能是斩波或制动(该模块以下简称为斩波模块)。该逆变器的散热方式为强迫风冷,风机安装在散热器的底部,进风方式为抽风。3个逆变模块为主要工作模块。 通过查找IGBT的参数,并经过计算得出:在峰值功率下各逆变模块的发热量为1016W,由于斩波模块的工况比较复杂,估算其发热量为200W,则总功耗为3248W;在额定功率下各逆变模块的发热量为574W,斩波模块的发热量为100W,则总功耗为1822W。 2散热器热传递的分析 IGBT产生的热量通过热传导的方式由管壳传到散热器,然后通过强迫风冷的方式传到外界环境中去(散热器安装在逆变器的外部)。为减少管壳与散热器之间的热阻,首先要求散热器的安装表面粗糙度达1.6以上,其次在管壳的底部均匀涂满导热硅胶或者加垫一层导热系数大而硬度低的纯铜箔或银箔,并用一定的预紧力压紧。 3散热器的仿真分析 计算流体动力学(ComputationalFluidDynamics,简称CFD)是通过计算机数值计算和图像显示,对含有流体流动和传热等相关物理现象进行的系统分析。CFD的基本思想是把原来在时间域和空间域上连续的物理量的场,如速度场,温度场,压力场等,用有限个离散点上的一系列变量值的集合来代替按照一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。

汽车散热器的工作原理

汽车散热器的工作原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

汽车散热器的工作原理为了避免发动机过热,燃烧室周围的零部件(缸套、缸盖、气门等)必须进行适当的冷却。内燃机的冷却装置有三种形式,水冷却、油冷却和空气冷却。汽车发动机冷却装置以水冷却为主,用气缸水道内的循环水冷却,把水道内受热的水引入散热器(水箱),通过风冷却后再返回到水道内。为了保证冷却效果,汽车冷却系统一般由散热器(1)、节温器(2)、水泵(3)、缸体水道(4)、缸盖水道(5)、风扇等组成。以轿车为例,散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器里面的冷却水不是单纯的水,而是由水(符合饮用水质量)、防冻液(通常为乙二醇)和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的沸点,在一定工作压力之下,轿车冷却液的允许工作温度可达摄氏120度,超过了水的沸点且不容易蒸发。发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,水泵叶轮推动冷却液在整个系统内循环。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。节温器实际上是一个阀门,其原理是利用可随温度伸缩的材料,例如石蜡或乙醚之类的材料做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现代轿车已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电

汽车冷却系统设计

一、冷却系统说明 内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。 1.1 发动机的工况及对冷却系统的要求 一个良好的冷却系统,应满足下列各项要求: 1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持最佳的冷却水温 度。 2)应在短时间内,排除系统的压力。 3)应考虑膨胀空间,一般其容积占总容积的4-6%; 4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。 5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压; 6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积; 7)设置水温报警装置; 8)密封好,不得漏水; 9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。 10)使用可靠,寿命长,制造成本低。 1.2 冷却系统的总体布置 冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。 提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。 在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水管。 在整车布置中散热系统中,还要考虑散热器和周边的间隙,散热器到保险杠外皮的最小距离100毫米,如果发动机的三元崔化在前端的话,还要考虑风扇到三元催化本体距离至少100毫米,到三元催化隔热罩距离至少80毫米。一般三元催化的隔热罩到本体大概有15毫米,隔热罩厚度为0.5-1毫米,一般材料为st12。

汽车散热器的工作原理

汽车散热器的工作原理 为了避免发动机过热,燃烧室周围的零部件(缸套、缸盖、气门等)必须进行适当的冷却。内燃机的冷却装置有三种形式,水冷却、油冷却和空气冷却。汽车发动机冷却装置以水冷却为主,用气缸水道内的循环水冷却,把水道内受热的水引入散热器(水箱),通过风冷却后再返回到水道内。为了保证冷却效果,汽车冷却系统一般由散热器(1)、节温器(2)、水泵(3)、缸体水道(4)、缸盖水道(5)、风扇等组成。以轿车为例,散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器里面的冷却水不是单纯的水,而是由水(符合饮用水质量)、防冻液(通常为乙二醇)和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的沸点,在一定工作压力之下,轿车冷却液的允许工作温度可达摄氏120度,超过了水的沸点且不容易蒸发。发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,水泵叶轮推动冷却液在整个系统内循环。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。节温器实际上是一个阀门,其原理是利用可随温度伸缩的材料,例如石蜡或乙醚之类的材料做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现代轿车已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电动机运转。这两种形式的散热器电扇运转实际上都由温度传感器控制。散热器兼作储水及散热作用,如果单纯依赖散热器,有三个缺点,一是水泵吸水一侧因压力低而容易沸腾,叶轮容易穴蚀;二是气水分离不好容易气阻;三是温度高冷却液容易沸腾逸走。因此设计师就加装了膨胀水箱,它的上下两根水管分别与散热器上部和水泵进水口联接,防止上述问题的产生。现在轿车的冷却系统比过去复杂了,主要是增加了温度控制元件,散热器风扇可随发动机温度变化而“随机应变”,冷却系统普遍采用冷却液。当然,发动机的热也是燃料所产生的能量,将其冷却实际上是一种不得已的浪费。因此人们正研究一种无需冷却的陶瓷材料做成的隔热发动机,将来一旦实现,发动机将会又小又简单。

(完整版)汽车散热器选择的计算方法

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。 散热器热阻曲线 三,散热器尺寸设计: 对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确

定: 按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α: α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]} 式中: ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度, b 为两肋片的间距); ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度); ψ3———描写散热器宽度尺寸W 增加时对α的影响; √√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响; 以上参数可以查表得到。 计算两肋片间的表面所散的功率q0 q0 =α×ΔTfa×(2h+b)×L 根据单面带肋或双面带肋散热器的肋片数n,计算散热功率Pc′ 单面肋片:Pc′=nq0 双面肋片:Pc′=2nq0 (单面肋,简单的说,就是一边带肋,一边是一个平面。利于在特定场合下的装配,例如在电源模块上。) 若Pc′>Pc 时则能满足要求。 四,估算散热器表面积: 由Q=HA(T1-T2)结合修正系数推得: S = 0.86W/(△T*a))(平方米) 式中 △T——散热器温度与周围环境温度(Ta)之差(℃); α(h)——换热系数,是由空气的物理性质及空气流速决定的。 α的值可以表示为: α= Nu*λ/L 式中λ——热电导率由空气的物理性质决定; L——散热器高度; Nu——空气流速系数。 Nu值由下式决定 Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)] 式中 V——动黏性系数,是空气的物理性质; V1——散热器表面的空气流速; Pr——参数(见下表)。 温度t/℃动黏性系数热电导率Pr 0 0.138 0.0207 0.72 20 0.156 0.0221 0.71

最常见的汽车散热器维修

最常见的汽车散热器维修 汽车散热器维修处理驱动程序,你可能有更戏剧性的故障之一。由于包含在冷却系统中的热量和压力的性质,这些类型的问题,是我们与来自一个残疾车的打开机盖下的蒸汽定型云。散热器的冷却系统显然是最有名的,但它经常不是罪魁祸首,当它涉及到一个故障。下面是一些最常见的车辆的冷却系统的维修: 失败的温控器,温控器是最常见的罪魁祸首,当车辆过热。温控器是不实际的散热器本身的一部分,而是一种类型的阀,该阀控制冷却液可以流动的散热器的流入和流出的多少。这有助于保持发动机在最佳运行温度。当恒温器出现故障时,汽车开始过热非常迅速。 漏散热器软管不是散热器的冷却系统内的泄漏是最常见的来源,但散热器软管。软管连接到发动机的散热器,并允许两者之间的冷却剂流动。散热器软管被认为是一个磨损部件,这意味着他们应定期更换,它们是否工作良好与否。这是因为它们倾向于随着时间的推移变得更加容易出现故障。 冷却系统中的空气。空气可以成为被困在冷却系统中,这限制了冷却剂的流动,并降低了它的效率。如果你的车好像是热,你可能希望看到流血的冷却系统,以消除可能的气泡。 散热器泄漏。泄漏散热器本身不是问题的软管更难找到并修复。寻找来自散热器的信号泄漏的位置的气泡或蒸汽。漏散热器有时可以打补丁,但它是一个棘手的工作。 失败的水泵。冷却系统采用泵将整个发动机冷却液,以调节温度。水动作通过散热器,过去的泵,进入发动机,然后被强制返回到散热器。如果水泵出现故障,水不再循环正确的,该车将过热。破碎的水泵是相当普遍的。 冷却系统的障碍物。障碍物可以采取发动机“尺度”阻塞在发动机的冷却通道或散热器,这使得它难以用于冷却液有效移动的形状。障碍物也可以发生时,限制的空气流,这反过来使得它很难用于散热器将热量传递给空气通过散热器。这可能是由于弯曲鳍任何身体伤害的事故。 失败的散热器风扇。现代汽车,使用电风扇拉足够的空气通过散热器在怠速和低的速度下保持车内凉爽。做精在高速公路上的一辆汽车,但在怠速或在交通过热可能与散热风扇有问题。一个汽车散热器是如何工作的 散热器的主要功能是由汽车的发动机燃烧燃料,因为它产生的多余热量消散。它的功能作为更大的冷却系统的一个组成部分。由于发动机冷却液通过散热器时,它会通过几个简单的过程。 摄入量 的发动机的水泵产生运行在特定方向上的散热器的流入和流出的冷却剂的流动。移动通过散热器的冷却剂的量来控制的恒温器,根据发动机的温度,打开和关闭。一旦发动机冷却水的流动,移动过去的恒温器,它进入散热器通过上部软管。有两种基本类型的散热器:下流和横流。下流散热器,冷却剂进入的上部罐和向下移动,跨主体的散热器。上的横流的散热器,冷却剂进入的侧槽(通常上的汽车的驾驶员侧)和向另一侧的散热器侧向流动。许多现代汽车使用横流的设计,因为它可以让散热器有一个较短的垂直尺寸,这有助于罩的间隙。 冷却 的冷却剂一旦进入第一箱,它流入微小通道,连接两个罐。这些小通道,连接到一排排精致的金属散热片,这是给散热器其独特的棱纹的外观。通常是由铜或铝的金属翅片。这两种金

轿车水箱风扇故障修理

轿车水箱风扇故障修理 05年款的奇瑞旗云轿车,发现空调有时不制冷。奇怪的是怠速或慢速行驶时不制冷,高速行驶中空调可以制冷。2013年南京夏天出奇的热,40℃高温下风扇吹出来阵阵热风,是什么样的感受? 本人是DIY迷,没有轻易将车送4S店,想先找找空调不制冷的原因。经反复观察,发现空调开关、空调离合器都工作正常,但是水箱风扇转动无力,还经常出现停转现象。 原因找到了。空调散热器和水箱都装在车头,风扇无力造成散热效果差,一方面使水箱温度过高,另一方面造成空调散热器温度也过高,引起空调热保护停止工作。当车子怠速或慢速行驶时,风扇散热效果差导致空调热保护停机;当车子高速行驶时,从车头吹进的高速气流有助于水箱和空调散热器散热,所以空调在车辆高速时可以制冷。 将水箱风扇拆下来,取下2个风扇电机,发现旗云轿车的风扇电机外壳是不可拆卸的,此种设计有欠缺,就是无法维护修理。通常这种情况下只有换新风扇了,但我凭经验知道风扇电机其实没大毛病,一般是电机碳刷接触不良的问题。 1、动手慢慢撬开电机罩盖,见下图: 2、取下电机罩盖,如下图:

3、观察碳刷情况,可以看出4个碳刷都接触不良,不能紧密的接触电机转 子的整流片: 4、取下碳刷支架,进一步观察,可发现4个碳刷都不能正常弹出,下图是 有问题的4个碳刷:

5、试着清洁碳刷并改善碳刷的润滑条件,解决不了问题,碳刷依旧卡住不能自由弹出。经分析,认为可能是碳刷受潮后发生膨胀,与碳刷室内壁摩擦阻力过大所致。于是将4个碳刷侧面用锉刀进行消磨,直到碳刷可以自由弹出为止。 正常弹出的碳刷状况是下图的样子。

6、经过修理的碳刷支架安装在电机转子上的情况,可以看出碳刷与转子整流片可以紧密接触了。 两个电机都按此法进行修复,将风扇复原后通入12V直流电实验,风扇工作正常,可以送出强劲的风了。将风扇装回轿车,空调不制冷的问题解决了,阵阵凉风拂面而来!

汽车散热器风扇故障

散热器风扇故障 辆1992年款丰田佳美3.0轿车,搭载3VZ-FE发动机。据客户反映,发动机起动后,散热器风扇始终以高速挡旋转汽车散热器天津二手网,此故障已经在其他修理___厂维修多次都未修好。 ___接车后,首先打开发动机舱盖,起动发动机,散热器风扇立即高速旋转。发动机工作一段时间后,用手触摸散热器上水管感觉热,触摸下___水管感觉不热。是不是散热器堵塞了造成冷却液温度过高而使散热器风扇高速旋转呢?询问客户后得知,为了排除故障,该车刚刚清洗过散___热器,而且进行过散热器替换,但是上下水管温差仍然较大。既然这样,可以先排除散热器有问题的可能性。用红外测温仪测量发动机的___冷却液温度,笔者发现水温并不高,而且客户反映水温表始终处于较低的位置,于是笔者确认是散热器风扇始终高速旋转造成节温器没有___打开,所以散热器的上水管和下水管温差较大。 ___下面来查找散热器风扇高速旋转的原因。查看散热器风扇控制系统电路图(附图),该款发动机配备了由电脑控制的液压式散热器风扇系统_____发动机带动液压泵旋转产生油压,由液压油驱动散热器风扇液压电机旋转。散热器风扇控制单元根据输入的发动机转速信号、节气门位置___传感器的怠速信号、发动机冷却液温度信号以及空调工作信号,通过液压油流量电磁阀控制液压油流量来实现对冷却风扇转速的控制。据___此得知,此车需要检查的部位包括液压泵、散热器风扇液压电机、液压油管路以及散热器风扇转速控制系统 ___笔者分析后认为,既然散热器风扇能够高速旋转,这就表明液压泵、散热器风扇液压电机以及液压管路基本完好,问题应该出在散热器风___扇转速控制系统。用举升机举起车辆,在发动机前端下部找到液压泵和液压油流量控制阀,断开液压油流量控制阀的插头,结果散热器风___扇停止了转动,这说明液压油流量控制阀正常。降下车辆,在发动机前端上部找到了发动机水温传感器,水温传感器插头的2根导线的外皮___被剥开了2个小口,这应该是以前的维修人员检查时剥开的。在剥开处用万用表测量水温传感器的电阻值,并在维修手册中查找相对应的温____度值,查询结果与发动机的实际水温相同,这说明水温传感器正常。将试灯的2个脚分别与水温传感器的2根导线连接,这样做会使试灯与___水温传感器的综合阻值变小,等效于发动机水温升高,结果散热器风扇转得更快了,这说明水温传感器、液压油流量控制阀以及液压风扇___控制单元基本完好。笔者指着仪表板右下方的液压风扇控制单元询问客户,客户说维修人员曾经拆检过这个控制单元并检查过相关线束,___但未发现异常。因为检查液压风扇控制单元和相关线束比较麻烦,于是笔者决定先检查其他部件。 ___再次查看电路图,笔者发现空调高压开关也与液压风扇控制单元相连。在发动机舱内左前部找到空调高压开关,询问客户,客户说此空调___压力开关没有检查过。拔下空调高压开关连接插头并用跨接线短接,这等效于空调系统压力正常(如果只是拔下空调压力开关插头,则等效___于空调系统压力过高,也就是空调管路内的制冷剂温度过高),结果发现散热器风扇的转速降低,发动机怠速运转一段时间后,发动机温度___逐渐升高到正常工作温度。 ___检查空调系统,发现该车的空调系统不工作,而且空调管路中无制冷剂。询问客户,客户说由于此前是冬天,所以一直没有使用空调,于___是笔者建议客户对空调系统进行检漏并加注制冷剂,但是客户觉得维修站工时费高,最后选择了去其他修理厂加注制冷剂,至此发动机无___法升温故障的检修结束。 ___回顾该车的故障原因,由于空调管路内无制冷剂,所以空调高压开关始

汽车散热器的毕业设计论文

汽车散热器的毕业设计论文 学校: 河北旅游职业学院系别:机械电子系 专业:机械制造与自动化班级:机制09(2) 姓名:代明明

目录 1、前言、 2、散热器的结构及对材料的要求、 3、铝散热器片材料的特点、 4、散热器的结构和种类样图、 5、用铝散热器取代铜散热器能够满足整车及发动机的性能要 求、 6、铝散热器使用寿命高于铜散热器、 7、铝散热器必须使用厂家规定的防冻防锈液、 8、铝散热器必须在生产厂家进行专业维修、 9、层叠式汽车散热器、 10、散热器的计算和选用原则散热 11、使用与保养、 12、汽车散热器的发展趋势、 13、结语、

1.前言 散热器是汽车水冷发动机冷却系统中不可缺少的重要部件,其作用是将发动机的水套内冷却液所携带的多余热量经过二次热交换,在外界强制气流的作用下从高温零件所吸收的热量散发到空气中的热交换装置。因此,冷却系统中散热器性能的好坏直接影响汽车发动机的散热效果及其动力性、经济性和可靠性,乃至正常工作和安全行驶的问题。 随着汽车发动机转速和功率的不断提高,热负荷也愈来愈大,对冷却系统的要求也越来越高,人们对包括散热器在内的冷却系统的研究愈加重视,新技术、新材料不断涌现。汽车铝散热器产品的优势体现在轻量化、可靠性高、价格低以及生产环保,整车厂采用铝水箱替代原有铜水箱是汽车散热器技术发展的必然趋势。目前,汽车散热器正朝着轻型、高效、经济的方向发展,国内乘用车产品90%以上采用的是铝散热器,在商用车上的使用近年也陆续采用并有扩大的趋势。 2. 散热器的结构及对材料的要求 汽车水冷发动机散热器由冷却用的散热器芯部、进水室和出水室三部分组成。冷却液在散热器芯内流动,空气从散热器芯外高速流过,冷却液和空气通过散热器芯部进行热量交换。

汽车水箱风扇损坏不转的原因及解决-看了省800元

汽车水箱冷却电扇不转或坏掉的朋友,如果看了我这篇文章就可能为您省800大洋。“黎叔生气了,后果很严重”,揭露无良生产商和黑4S店,让广大朋友从此不上当,让厂商经销商喝西北风去,上演现实版,一个风扇引发的血案。 废话不说,下面是解决过程。 开的车是某范,生产商是小日本中国合资,今天到4S店做保养,检测员说水箱冷却风扇不转了,才3万公里,踏马太奇怪了,我都不信,我就去看了。 我问:你们测了吗,是电路坏了,还是电机坏了。保养员说,不是我测的,我测下看。这时,另一个保养员过来说,不是不转,要用手拨下才转,并且转的风量很小。比旁边一个风量小。当时保养员说这是冷却风扇。但是发动机与空调是分开的,4S店是不会告知你的。 这电扇坏了怎么办呢,发动机会显示高温,那不是上高速要出问题,要过年回家了,很担心,只能换了,一报价,尼玛的,电机580,工时费220,还只是换电机,风扇叶子还是原来的,但是不换又担心。只能换了。上网一查原厂的网上卖最贵的才280,便宜的几十块钱,黑啊,按我以前做汽车的零件报价经验,原厂卖给汽车主机厂的价大概在50-70间,他妈的,转眼翻了10倍不止,这样能让人们消费吗,能不过剩吗? 很不爽,我就临走时把点机拿回来看下,一看才知道,不是电机风扇坏了,是电机生产商玩的小把戏,是让电机只能用到这么久,电机生产商是东洋(中山)的某公司。人家说,德国人说可以用20年,其实你能用30年,日本说可以用20年,就只能用20年,中国就不说了。下面看鬼子是怎么弄的。 上图,先拆下风扇电机: 拔掉线束端子

拔掉红色防水套,撬开5处卡勾,红圈处

揭开电机顶盖后如图 然后取出最上面的电刷部分,线圈如左,那么粗,不可能烧,电刷如右图,发现是电刷出问题了,电刷后面的弹簧根本弹不出来石墨刷,用手拉都费劲,所以石墨刷接触不到电机换向铜片,难怪时转时不转,转也没力气,电流不稳定。

散热器改造 参考文献

参考文献: [1] 员冬玲,邵敏,蔡中盼,李选友.振荡流热管汽车散热器传热性能的实验研究[J].制冷学报,2013,34(5). [2] 刘建设.汽车散热器发展浅析[J].装备制造技术,2010,(9):105—106. [3] 关凤艳.汽车散热器的优化设计及传热性能分析的研究[J].制造业自动化,2011,33(7):143.145. [4] 李明.微型汽车散热窗翅片性能研究与优化设计[D].武汉:武汉理工大学硕士学位论文,2010. [5] 常贺.基于CFD方法得汽车散热器仿真研究[D].吉林:吉林人学硕士学位论文,2009. [6] 张毅.车辆散热器模块流动与传热问题的数值分析与试验研究 [D].浙江:浙江大学博士学位论文,2006. [7] 寇磊.百叶窗翅片传热特性的数值模拟[J].建筑热能通风空调,2009.28(1):6~9. [8] 寇磊.紧凑式热交换器传热和流动特性的数值模拟[D].长沙:中南大学硕士学位论文,2009. [9] 吕俊成,杨连波.微型汽车散热器百叶窗翅片高度的优化设计[J].机械制造,2012,50(3). [10] 李晓光.汽车百叶窗翅片式散热器性能数值模拟与风洞实验 [D].研究天津:天津大学硕士论文,2012. [11] 张忠伟.管芯式汽车散热器的特性分析与仿真[D].呼和浩特:

内蒙古工业大学硕士学位论文,2007. [12] 王福宝.多结构百叶窗翅片在平行流冷凝器应用中的性能模拟研究[D].武汉:华中科技大学硕士学位论文,2009. [13] 丁秀菊,刘艳妮.汽车工业用散热器材料分析及其发展前景[J].科技创新与应用,2011(22). [14] 王志军.管带式散热器的设计及其参数化设计系统的研究 [D].山东:山东大学硕士学位论文,2011. [15] 黄坚,黎仕增,李勇.6DL发动机散热器材料改进与性能试验分析[J].公路运输,2013. [16] 吴忠奎.汽车散热器材料应用分析[J].科技向导,2013. [17] 刘梅.汽车散热器用超薄波浪形水箱铜带的研制[J].现代经济信息,2013. [18] 周伟.汽车散热器实验研究及性能分析[D].重庆:重庆大学硕士学位论文,2013. [19] 关凤艳.汽车铝塑散热器结构技术及应用[J].科技创新导报,2011(21). [20] 黄晖,马翠英.散热器材料及其发展[J] .重型卡车,2005.3. [21] 刘晓丽.新型管芯式散热器空气阻力性能有限元分析 [D].内蒙古:内蒙古工业大学硕士学位论文,2010. [10] 陈家瑞.汽车构造.5版.[M].北京:人民交通出版社,2006.

相关主题
文本预览
相关文档 最新文档