当前位置:文档之家› LC正弦波振荡电路详解

LC正弦波振荡电路详解

LC正弦波振荡电路详解
LC正弦波振荡电路详解

LC 正弦波振荡电路详解

LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本 质上是相同的,只是选频网络采用 LC 电路。在LC 振荡电路中,当 f=f o 时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减 到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持 输出电压,从而形成正弦波振荡。由于 LC 正弦波振荡电路的振荡频 率较高,所以放大电路多采用分立元件电路。

一、LC 谐振回路的频率特性

LC 正弦波振荡电路中的选频网络采用 LC 并联网络,如图所示 图(a )为理想电路,无损耗,谐振频率为

「—(推导过程如下)

公式推导过程:

电路导纳为

式中Q 为品质因数

R 1

当Q>>1时,?—,所以谐振频率

将上式代入…二,得出令式中虚部为零, R ,

戸+(班)宀 1 就可求出谐振角频率

1

当f=fo 时,电抗

一一 丑 I?二

在信号频率较低时,电容的容抗( 兀€) J I

很大,网络呈感性;在信号频率较高 时,电感的 「二; 疼 感抗(昭祖)很大,网络呈容性;只有当f=fo 时,

[ 网络才呈纯阻性,且阻抗最大。这时电路产生电O ? ------------ 流谐振,电容的电场能转换成磁场能,而电感的

磁场能又转换成电场能,两种能量相互转换。

L :;讲嵌阀

绻 实际的LC 并联网络总是有损耗的,各种损耗等 效成电阻R ,如图

(b )所示。电路的导纳为

y =亦+—5—

R+

回路的品质因数'

公式推导过程:

电路导纳为

当Q>>1时,已 ,代入:',整理可得

亍(推导过程如下)

⑹萼慮匝路损耗时]

LC 并联网络

式中Q为品质因数

-丘

1

当Q>>1时,■,所以谐振频率

Q旦

将上式代入’二,得出

-1 [L Q制-一」一R U C 当f=f o时,电抗

= R+Q£R

当Q>>1时,-?「?「匸,代入':.,::,整理可得

上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。

当f=fo时,电抗推导过程如下)

公式推导过程:

电路导纳为

7 =何+—5—

R+ j^L

,+

(泌)

就可求出谐振角频率

1 1

\24LC

1+

式中Q为品质因数

丁+J 泌一2

L炉+同J

令式中虚部为零,

1

眉―J

当Q>>1时,,所以谐振频率

将上式代入」—,得出当f=f o时,电抗

当Q?I时,I N卜心,代入。辽身,整理可得

________________________________ Zn QXj QX C ________________________________ 当网络的输入电流为I o时,电容和电感的电流约为QI o。

丄二y 二」此+-_-—一 _

根据式]■ / ■',可得适用于频率从零到无穷大时

LC并联网络电抗的表达式Z=1/Y,其频率特性如下图所示。Q值愈大,曲线愈陡,选频特性愈好。

UC并联岡8S电抗的频率特性

相移(原因)。对于其余频率的信号,电 ”卜卜 压放大倍数不但数值减小,而且有附加相 移。电路具有选频特性,故称之为选频放 4' |

大电路。若在电路中引入正反馈,并能用 反馈电压取代输入电压,则电路就成为正. 弦波振荡电路。根据引入反馈的方式不 同,LC 正弦波振荡电路分为变压器反馈 式、电感反馈式和电容反馈式三种电路。

二、变压器反馈式振荡电路*;工心-; 1.工作原理

引入正反馈最简单的方法是采用变压器反馈方式,如图(

7114)

所示,用反馈电压取代输入电压,得到变压器反馈式振荡电路。

电路分析: ★观察电路,存在放大电路、选频网络、正反馈网络以及用晶 体管的非线性特性所实现的稳幅环节四个部分;

★判断放大电路能否正常工作,图中放大电路是典型的工作点 稳定电路,可以设置合适的静态工作点;

★交流通路如图所示,交流信号传递过程中无开路或短路现象, 电路可以正常放大;

★采用瞬时极性法判断电路是否满足相位平衡条件( 具体做 法)。

若以LC 并联网络作为共射放大电路 的集电极负

载,如右图所示,则电路的电 压放大倍数 4 = -0#

根据LC 并联网络的频率特性,当f=f° 时,电压

放大倍数的数值最大,且无附加

选频放大电路

LT

变压翻反織式振荡蛊

如图所示电路表明,变压器反馈式振荡电路中放大电路的输入电阻是放大电路负载的一部分,因此」与「相互关联。一般情况下,只要合理选择变压器原、副边线圈的匝数比以及其它电路参数,电路很容易满足幅值条件。

2.振汤频率及起振条件振荡频率

其中,

起振条件

R f=R +

其中,

3?优缺点

变压器反馈式振荡电路易于产生振荡,输出电压的波形失真不大,应用范围广泛。但是由于输出电压与反馈电压靠磁路耦合,因而耦合不紧密,损耗较大。并且振荡频率的稳定性不咼。

一F

二、电感反馈式振荡电路& ■' 二小

LC正弦波振荡电路详解

LC 正弦波振荡电路详解 LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本 质上是相同的,只是选频网络采用 LC 电路。在LC 振荡电路中,当 f=f o 时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减 到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持 输出电压,从而形成正弦波振荡。由于 LC 正弦波振荡电路的振荡频 率较高,所以放大电路多采用分立元件电路。 一、LC 谐振回路的频率特性 LC 正弦波振荡电路中的选频网络采用 LC 并联网络,如图所示 图(a )为理想电路,无损耗,谐振频率为 「—(推导过程如下) 公式推导过程: 电路导纳为 式中Q 为品质因数 R 1 当Q>>1时,?—,所以谐振频率 将上式代入…二,得出令式中虚部为零, R , 戸+(班)宀 1 就可求出谐振角频率 1

当f=fo 时,电抗 一一 丑 I?二 在信号频率较低时,电容的容抗( 兀€) J I 很大,网络呈感性;在信号频率较高 时,电感的 「二; 疼 感抗(昭祖)很大,网络呈容性;只有当f=fo 时, [ 网络才呈纯阻性,且阻抗最大。这时电路产生电O ? ------------ 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 L :;讲嵌阀 绻 实际的LC 并联网络总是有损耗的,各种损耗等 效成电阻R ,如图 (b )所示。电路的导纳为 y =亦+—5— R+ 回路的品质因数' 公式推导过程: 电路导纳为 当Q>>1时,已 ,代入:',整理可得 亍(推导过程如下) ⑹萼慮匝路损耗时] LC 并联网络

式中Q为品质因数

LC正弦波振荡电路的仿真分析

摘要 振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 关键词:LC振荡回路;仿真;正弦波信号;Multisim软件;

目录 一、绪论 (1) 二、方案确定 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (3) 2.3 振荡平衡条件一般表达式 (4) 2.4起振条件和稳幅原理 (4) 三、LC振荡器的基本工作原理 (4) 四、总电路设计和仿真分析 (5) 4.1软件简介 (5) 4.2 总电路设计 (7) 4.3 进行仿真 (8) 4.4 各个原件对电路的影响 (11) 五、心得体会 (12) 参考文献 (13) 附录 (14) 电路原理图 (14) 元器件清单 (14)

一、绪论 在本课程设计中,对LC正弦波振荡器的仿真分析。正弦波振荡器用来产生正弦交流信号的电路,它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。医用电疗仪中,用高频加热。在课程设计中,学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 我利用了仿真软件对电路进行了一写的仿真分析,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、方案确定 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

信号产生LC振荡电路

在信号频率较低时,电容的容抗()很大,网络呈感性;在信 号频率较高时,电感的感抗()很大,网络呈容性;只有当f=f0时,网络才呈纯阻性,且阻抗最大。这时电路产生电流谐振,电容的电场能转换成磁场能,而电感的磁场能又转换成电场能,两种能量相 互转换。 7.1.3 LC正弦波振荡电路 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率

式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)

公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)公式推导过程: 电路导纳为

LC正弦波振荡电路详解

LC正弦波振荡电路详解 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出

当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数

当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

LC正弦波振荡器的设计

高频电子线路课程设计报告 题目: LC正弦波振荡器的设计 学院: 专业班级: 姓名: 学号: 指导教师: 二〇一三年一月八日

摘要:振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件。其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。广泛用于电子工业、医疗、科学研究等方面。 三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器的理论分析与设计。 关键词:高频三点式正弦波振荡器。

目录 1系统方案设计 (4) 1.1设计说明及任务要求 (4) 1.1.1设计说明 (4) 1.1.2设计要求 (5) 1.2 方案1 (6) 1.3 方案2 (7) 2电路设计 (8) 2.1工作原理 (8) 2.2设计内容 (9) 2.2.1原理图 (9) 2.2.2参数计算 (9) 2.2.2注意事项 (10) 3系统测试 (10) 3.1振荡器正常工作 (10) 3.2实现输出频率可变功能 (10) 4结论 (11) 5参考文献 (11) 6附录 (11) 6.1元器件明细表 (11) 6.2电路图图纸.......................................................................................... 错误!未定义书签。 6.2.1Altium Designer 原理图设计 (12) 6.2.2PCB制作 (13) 6.2.3成品展示 (13) 6.3电路使用说明 (13)

LC正弦波振荡器设计要点

通信基本电路课程设计报告设计题目:LC正弦波振荡器设计 专业班级电信10-03 学号 311008001022 学生姓名王勇 指导教师高娜 教师评分 2012年12月4日

目录 第一章设计任务与要求 (3) 1.1. 设计任务 (3) 1.2. 设计要求 (3) 第二章总体方案 (3) 2.1振荡器的选择 (3) 2.2信号输出波形的仿真选择 (4) 第三章电路工作原理 (4) 3.1 LC三点式振荡组成原理图 (4) 3.2 起振条件 (5) 3.3 频率稳定度 (5) 3.4 总原理图 (6) 3.5 LC振荡模块设计 (7) 第四章电路制作和调试 (12) 4.1元器清单 (12) 4.2 按设计电路安装元器件 (14) 4.3 测试点选择 (14) 4.4调试 (14) 4.5 实验结果与分析 (15) 4.6频率稳定度 (16) 第五章总结 (16) 第六章参考文献 (17)

第一章设计任务与要求 1.1 设计任务 (1).熟悉LC正弦波振荡器的工作原理,以及示波器的原理及用法。 (2).掌握LC正弦波振荡器的基本设计方法。 (3).理解LC正弦波振荡回路并掌握LC振荡器的设计,装载,调试,及其主要性能参数的测试方法和如何选择电路的测试点。 (4).了解外界因素、元件参数对振荡器工作稳定性及频率稳定度的影响情,以便提高振荡器的性能。 1.2 设计要求 (1).设计一个LC正弦波频振荡器。 (2).利用三端式振荡器原理产生正弦波信号,采用的具体电路不限。要求给出所选电路的优点和缺点并通过测量值进行证明。也可以进行不同三端式振荡器的性能比较。 (3).了解电路分布参数的影响及如何正确选择电路的静态工作点。 (4).电路的基本原理,LC正弦波振荡器是各种接收机和发射机中一种常见的电路,常用作载波振荡、本振混频振荡等。其典型形式为“三点式”振荡电路,其电路简单、频率稳定度高,它的工作原理是在正反馈的基础上,将直流电源提供的能量变成正弦交流输出。 (5).选择所需的方案,画出有关的电路原理图。 第二章总体方案 2.1振荡器的选择 LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定

浅析LC正弦波振荡电路振荡的判断方法

目录 摘要: (1) 0 前言 (2) 1 振荡器 (2) 1.1 什么是振荡器 (2) 1.2 振荡器的相关知识 (2) 1.3 反馈式振荡器的原理知识 (3) 2 正弦波振荡电路振幅条件的判定方法 (3) 3 LC正弦波振荡电路相位条件的判定方法 (5) 3.1 变压器耦合振荡器 (5) 3.2 三点式振荡器 (6) 4 判断三点式振荡器是否满足相位条件的简单方法 (9) 4.1 晶体管极间支路的电抗特性的分析 (9) 4.2 判断方法的实例应用 (14) 5 结论 (16) 参考文献 (16)

浅析LC正弦波振荡电路振荡的判断方法 摘要: 本文主要对LC正弦波振荡电路能否振荡的判断方法进行了浅要分析。当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。于是本文主要阐述了正弦波振荡电路振幅条件的判定方法和LC正弦波振荡电路相位条件的判定方法。针对较复杂的三点式振荡器相位条件的辨别,通过对晶体管极间支路的电抗性质进行较全面的分析,并作出总结,之后利用这些结论,可使判断过程大大简化。 关键词: LC正弦波振荡电路;振幅条件;相位条件;电抗性质 0 前言 正弦波振荡器是《通信电子线路》一书中的重点章节。本文试图通过对LC正弦波振荡电路能否振荡的判断方法的浅要分析,来更深入地理解该章内容。 在实践中,正弦波振荡器有着相当广泛的应用。如在通讯、广播、电视系统中用作载波信号源,在工业方面用于高频加热、熔炼、淬火、超声波焊接,在医学方面用于超声诊断、核磁共振成象等。由此可见,学好正弦波振荡器是十分必要的! 从结构上看,正弦波振荡器就是一个没有输入信号的带有选频网络的正反馈放大器。它也是一种能量转换器,无需外加信号,就能自动地把直流电转换成具有一定频率、一定波形和一定幅度的正弦交流电。 正弦波振荡器一般可分为:RC正弦波振荡器、LC正弦波振荡器、石英晶体振荡器,其中LC正弦波振荡器又可分为:变压器耦合振荡器、三点式振荡器。 本文通过对LC正弦波振荡电路的分析说明:当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。需要特别指出的是,当三点式振荡器符合“射同基反”的构成原则时,就满足了振荡的相位条件[1-2];对于电路较复杂的三点式振荡器,通过分析晶体管极间支路的电抗性质,并利用其分析结果,可以使其相位条件的判断过程大大简化。 1 振荡器 1.1 什么是振荡器 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。 1.2 振荡器的相关知识 1.2.1振荡器的分类 1

LC正弦波振荡器课程设计

第 1 页共26 页

摘要 电子线路中,在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为高频信号发生器。 高频信号发生器主要是产生高频正弦震荡波,电路主要由高频振荡电路构成。振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。它无需外加激励信号。 关键词:高频; LC正弦波振荡器;西勒电路;multisim 目录

摘要 (1) 第1章绪论 (1) 1.1 概述 (1) 1.2 平衡条件 (1) 1.3 起振条件 (1) 1.4 稳定条件 (2) 1.4.1.振幅稳定条件 (2) 1.4.2 相位平衡的稳定条件 (3) 1.5 振荡器的频率稳定度 (4) 1.5.1 频率准确度和频率稳定度 (4) 1.5.2 提高频率稳定度的措施 (4) 1.5.3 LC振荡器的设计考虑 (4) 第2章 LC正弦波振荡器 (5) 2.1 LC三点式振荡器相位平衡条件的判断准则 (5) 2.2 电感三点式振荡器 (5) 2.3 电容三点式振荡器 (6) 2.4 克拉泼和西勒振荡器 (7) 2.4.1克拉泼振荡器 (8) 2.4.2.西勒振荡器 (9) 第3章调试与分析 (10) 3.1 调试中的问题 (10) 3.2 各振荡电路的方案比较与分 (11) 3.2.1 电容三点式振荡的特点: (11) 3.2.2 电感三点式振荡特点: (11) 3.2.3 克拉泼振荡特点: (12) 3.2.4 西勒振荡器特点: (13) 结论 (18) 参考文献 (19) 附录 (20)

致谢 (21)

LC正弦波振荡器仿真实验

LC正弦波振荡器仿真实验 1电容三点式 (1) (C1 , C2, L1)=(100nF,400nF,10mH) (2) (C1 , C2, L1)=(100nF,400nF,4mH) Oscilloscope-XSCl Time-ChanndjS.ChflnndJ 27.342 ms603.146frtV-5.577 V Reverse T2 * +2X401 im-l-SH V4,297 V T2-TI5a. 712 LB-Z?2¥9.374 V Xu Fi!-. hinnpf IVne base Charnel 占Chamd E rnoger Scale;SOusE :Scab: 11 V/Ofv5cate ;.2 V/Dw Ed^e-SE E |Ext D Tpog.tDw): 0r piM i0D4v): D Level:fl v1 B/A AC 'O|[K]? |K|[~Q~[bir|? Sngte Auto

Spectrum andllyzer-XSA1i (C I ,C2,L I ) U o /V Ui/V 增益A 相位 差 谐振频率f o /KHz 测量值 理论值 测量值 理论值 (100 nF ,400nF,10mH) 9.246 2.281 4.053 4 1.063* n 5.959 5.627 15.567ms 15.472ms (100 nF,400nF,4mH) 9.874 2.462 4.010 4 1.042* n 8.851 8.897 27.401ms 27.342ms (100 nF,900nF,4mH) 10.302 1.143 9.013 9 1.032* n 8.025 8.388 14.575ms 14.514ms a.asi^-s ^.2H3 v < Entef d9 Ln Span: IM kHz Rai^e: 2 | Start: 1 kH? Ref! D dB Genter: 51 Resihjtion freq: &>d: 101 鴉 1 Itflz LOW kHz StarE Sbqp Reverse Sh (MM redder. Set... Span oaitrol Set span 壬⑴ 翼即 Fili qpan Frequmv Antpilu^ Inpul ? Tr 沟ger (3) (C1 , C2, L1)=(100nF,900nF,4mH)

实验十三LC正弦波振荡器

实验十三 LC 正弦波振荡器 一、实验目的 1、 掌握变压器反馈式LC 正弦波振荡器的调整和测试方法 2、 研究电路参数对LC 振荡器起振条件及输出波形的影响 二、实验原理 LC 正弦波振荡器是用L 、C 元件组成选频网络的振荡器,一般用来产生1MHz 以上的高频正弦信号。根据LC 调谐回路的不同连接方式,LC 正弦波振荡器又可分为变压器反馈式(或称互感耦合式)、电感三点式和电容三点式三种。图13-1为变压器反馈式LC 正弦波振荡器的实验电路。 其中晶体三极管T 1组成共射放大电路,变压器T r 的原绕组 L 1(振荡线圈)与电容C 组成调谐回路,它既做为放大器的负载,又起选频作用,副绕组L 2为反馈线圈,L 3为输出线圈。 该电路是靠变压器原、副绕组同名端的正确连接(如图中所示),来满足自激振荡的相位条件,即满足正反馈条件。在实际调试中可以通过把振荡线圈L 1或反馈线圈L 2的首、末端对调,来改变反馈的极性。而振幅条件的满足,一是靠合理选择电路参数,使放大器建立合适的静态工作点,其次是改变线圈L 2的匝数,或它与L 1之间的耦合程度,以得到足够强的反馈量。稳幅作用是利用晶体管的非线性来实现的。由于LC 并联谐振回路具有良好的选频作用,因此输出电压波形一般失真不大。 振荡器的振荡频率由谐振回路的电感和电容决定 式中L 为并联谐振回路的等效电感(即考虑其它绕组的影响)。 振荡器的输出端增加一级射极跟随器,用以提高电路的带负载能力。 图13-1 LC 正弦波振荡器实验电路 三、实验设备与器件 1、 +12V 直流电源 2、双踪示波器 3、 交流毫伏表 4、直流电压表 5、 频率计 6、振荡线圈 7、 晶体三极管 3DG6×1(9011×1) LC 2π1f 0

实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告

高频实验报告 实验名称:LC正弦波振荡电路实验 姓名: 学号: 班级:通信 时间:2014.01 南京理工大学紫金学院电光系

一、 实验目的 1.进一步学习掌握正弦波振荡电路的相关理论。 2.掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能;熟悉静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响。 3.熟悉LC 振荡器频率稳定度,加深对LC 振荡器频率稳定度的理解。 二、实验基本原理与电路 1. LC 振荡电路的基本原理 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。 普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图2-1和2-2所示。 串联改进型电容三点式振荡电路——克拉泼电路振荡频率为: 图2-1克拉泼振荡电路 C L C C L 图2-2西勒振荡电路

LC正弦波振荡器设计

高频电子线路课程设计报告 设计题目:LC正弦波振荡器的设计 2012年6月10日 前言 (1) 一、设计任务与要求 (1) 1.1设计目的 (1) 1.2设计要求 (1) 二、总体方案 (2) 2.1整体分析 (2) 2.1.1 LC谐振回路原理 (2) 2.1.2电感三点式振荡器 (3) 2.1.3电容三点式振荡器 (4) 2.1.4 克拉泼振荡器 (5) 2.2综合比较最终选择方案 (6) 三、设计内容 (6) 3.1 电路工作原理 (6)

3.1.1平衡条件 (6) 3.1.2 起振条件 (9) 3.1.3振幅的起振条件 (9) 3.2仿真结果与分析 (11) 四、总结 (14) 五、参考文献 (14)

前言 正弦波振荡器在各种电子设备中有着广泛的应用。它是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。它与放大器的区别在于,无需外加激励信号,就能产生具有一定频率、一定波形和一定振幅的交流信号。常用正弦波振荡器主要由决定振荡率的选频网络和维持振荡的正反馈放大器组成。 正弦波振荡器在各种电子设备中有着广泛的应用。例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。 根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型,其中LC振荡器和晶体振荡器用于产生高频正弦波。正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可以由集成电路组成,但前者的性能可以比后者做得好些,且工作频率也可以做得更高。 一、设计任务与要求 1.1设计目的 掌握LC正弦波振荡器的基本设计方法。通过该设计,可以巩固所学的LC振荡器工作原理等电子技术知识,学习multisim仿真软件的使用,锻炼学生实际动手能力,促进学生所掌握的理论知识向实践应用的转变,从而达到培养学生电子综合应用实践能力的目的。 1.2设计要求 使用电感、电容等器件设计一个LC正弦波振荡器,包括方案设计、电路设计和仿真验证。具体要求如下:设计正弦波振荡器,输出稳定正弦波信号,输出频率可调范围为10~20MHz。

实验2 正弦波振荡器(LC振荡器和晶体振荡器)

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

LC正弦波振荡电路

LC正弦波振荡电路 2011-07-12 16:02:35 来源:互联网 LC正弦波振荡器 一、LC并联谐振回路 LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。常见的LC正弦波振荡电路有变压器反馈式、电感三点式和电容三点式。它们的选频网络采用LC并联谐振回路。 1.LC并联谐振回路的等效阻抗 图1 LC并联谐振回路 LC并联回路如图1所示,其中R表示回路的等效损耗电阻。由图可知,LC并联谐振回路的等效阻抗为 (1) 考虑到通常有,所以 (2) 2.LC并联谐振回路具有以下特点 由式(2)可知,LC并联谐振回路具有以下特点:

(1)回路的谐振频率为 或(3) (2)谐振时,回路的等效阻抗为纯电阻性质,并达到最大值,即 (4) 式中,,称为回路品质因数,其值一般在几十至几百范围内。 由式(2)可画出回路的阻抗频率响应和相频响应如图2所示。由图及式(4)可见,R 值越小Q值越大,谐振时的阻抗值就越大,相角频率变化的程度越急剧,选频效果越好。 LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。常见的LC正弦波振荡电路有变压器反馈式、电感三点式和电容三点式。它们的选频网络采用LC并联谐振回路。 (3)谐振时输入电流与回路电流之间的关系 由图1和式(4)有

通常,所以。可见谐振时,LC并联电路的回路电流或 比输入电流大得多,即的影响可忽略。这个结论对于分析LC正弦波振荡电路的相位关系十分有用。 二、变压器反馈式LC振荡电路 1.电路组成 图1所示为变压器反馈式LC振荡电路。由图可见,该电路包括放大电路、反馈网络和选频网络等正弦波振荡电路的基本组成部分,其中LC并联电路作为BJT的集电极负载,起选频作用。反馈是由变压器副边绕组N2为实现的。下面首先用瞬时极性法来分析振荡回路的相位条件。 2.相位平衡条件判断 相位平衡条件的判断参考动画。 图1 变压器反馈式LC振荡电路 3.起振与稳幅 变压器反馈式LC正弦波振荡电路起振的幅值条件是环路增益大于1,只要变压器的变比和BJT选择适当,一般都可以满足幅值条件。 而振荡的稳定是利用放大器件的非线性来实现的。当振幅大到一定程度时,虽然BJT 集电极的电流波形可能明显失真,但由于集电极的负载是LC并联谐振回路,具有良好的选频作用,因此输出电压的波形一般失真不大。

LC正弦波振荡电路振荡的判断方法

高频电子线路课程论文 论文题目:LC正弦波振荡电路的分析学生:何涛 学科专业:微电子技术 学号:201202021014 指导教师:万云 日期:2014年11月12日

目录 目录 (2) 摘要 (3) 一.振荡器 (4) 1.1 什么是振荡器 (4) 1.2 振荡器的相关知识 (4) 1.2.1 振荡器的分类 (4) 1.2.2 正弦波振荡器的应用 (4) 1.3 反馈式振荡器的原理知识 (4) 二.正弦波振荡器振幅条件的判定方法 (5) 三.LC正弦波振荡电路相位条件的判定方法 (7) 3.1变压器耦合振荡器 (7) 3.1.1 什么是变压器的同名端 (7) 3.1.2 变压器耦合振荡器 (7) 3.2 三点式振荡器 (9) 四.判断三点式振荡器是否满足相位条件的简单方法 (10) 4.1 晶体管极间支路电抗特性的分析 (10) 4.1.1 LC串联、并联支路的电抗特性 (11) 4.2 判断方法的实例应用 (12) 五.结论 (13) 参考文献 (14)

摘要 本文主要对LC正弦波振荡电路能否振荡的判断方法进行了浅要分析。当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。于是本文主要阐述了正弦波振荡电路振幅条件的判定方法和LC正弦波振荡电路相位条件的判定方法。针对较复杂的三点式振荡器相位条件的辨别,通过对晶体管极间支路的电抗性质进行较全面的分析,并作出总结,之后利用这些结论,可使判断过程大大简化。 关键词:LC正弦波振荡电路;振幅条件;相位条件;电抗性质

一.振荡器 1.1 什么是振荡器 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。 1.2 振荡器的相关知识 1.2.1 振荡器的分类 按照所产生的波形,振荡器可分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器可分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器是利用正反馈原理构成的振荡器,是目前最广泛的一类振荡器。所谓负阻式振荡器是利用具有负阻特性的器件构成的振荡器,在这种电路中,负阻起的作用,是将振荡回路正阻抵消以维持等幅振荡。 1.2.2 正弦波振荡器的应用 正弦波振荡器的应用大致可分为两类:一类是频率输出,另一类是功率输出。所谓频率输出是指,用正弦波振荡器产生具有准确而稳定的频率的电信号。它的应用范围极为广泛。例如,在无线电通信、广播、电视发射机中,用来产生所需的载波信号;在超外差接收机中,用来产生本地振荡信号;在各种无线电测量仪器中,用作各种频段的正弦波信号源;在数字系统中,用作时钟信号源;作为时间基准,用于定时器、时标、电子钟表,等等。很明显,在这一类应用中输出信号频率的准确和稳定是主要的性能指标,对输出功率的要求则不是主要的。在功率输出类中,正弦波振荡器用作高频功率源,如工业用的高频加热设备和医用的电疗仪器等。在这一类应用中,高效率输出大功率则是对它的主要要求,而对振荡频率的准确、稳定不必苛求。 1.3 反馈式振荡器的原理知识 1.反馈式正弦波振荡器是最常见的一种振荡器,它是由放大器、选频网络和反馈网络组成的一个闭合环路,如图1.1所示。若反馈回来的信号X F(=X F FX O)。

正弦波振荡器振荡电路分析

正弦波振荡器分析 1.振荡器的振荡特性和反馈特性如图9.10所示,试分析该振荡器的建立过程,并判断A、B两平衡点是否稳定。 解:根据振荡器的平衡稳定条件可以判断出A点是稳定平衡点,B点是不稳定平衡点。因此,起始输入信号必须大于U iB振荡器才有可能起振。 图9.10 图9.11 2.具有自偏效应的反馈振荡器如图9.11所示,从起振到平衡过程u BE波形如图9.12所示,试画出相应的i C和I c0波形。 解:相应的和波形如图9.13所示。 图9.12 图9.13 3.振荡电路如图9.11所示,试分析下列现象振荡器工作是否正常: (1)图中A点断开,振荡停振,用直流电压表测得V B=3V,V E=2.3V。接通A点,振荡器有输出,测得直流电压V B=2.8V,V E=2.5V。 (2)振荡器振荡时,用示波器测得B点为余弦波,且E点波形为一余弦脉冲。

解:(1)A点断开,图示电路变为小信号谐振放大器,因此,用直流电压表测得 V =3V,V E=2.3V。当A点接通时,电路振荡,由图9.12所示的振荡器从起振到平B 衡的过程中可以看出,具有自偏效应的反馈振荡器的偏置电压u BEQ,从起振时的大于零,等于零,直到平衡时的小于零(也可以不小于零,但一定比停振时的u BEQ小),因此,测得直流电压V B=2.8V,V E=2.5V是正常的,说明电路已振荡。 (2)是正常的,因为,振荡器振荡时,u be为余弦波,而i c或i e的波形为余弦脉冲,所示E点波形为一余弦脉冲。 4.试问仅用一只三用表,如何判断电路是否振荡? 解:由上一题分析可知,通过测试三极管的偏置电压u BEQ即可判断电路是否起振。短路谐振电感,令电路停振,如果三极管的静态偏置电压u BEQ增大,说明电路已经振荡,否则电路未振荡。 5.一反馈振荡器,若将其静态偏置电压移至略小于导通电压处,试指出接通电源后应采取什么措施才能产生正弦波振荡,为什么? 解:必须在基极加一个起始激励信号,使电路起振,否则,电路不会振荡。 6.振荡电路如图9.14所示,试画出该电路的交流等效电路,标出变压器同名端位置;说明该电路属于什么类型的振荡电路,有什么优点。若L=180μH,C2=30pF,C 的变化范围为20~270pF,求振荡器的最高和最低振荡频率。 1 图9.14

高频课程设计(lc正弦波振荡器)

高频电子线路课程设计报告设计题目:LC正弦波振荡器 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (1) 二、总体方案 (1) 三、设计内容 (4) LC振荡电路工作原理 (4) 构成振荡器的条件 (4) 由正反馈的观点来决定振荡的条件 (4) 振荡器平衡和稳定条件 (5) LC三端式振荡器相位平衡条件的判断准 (6) 西勒电路工作原理 (7) 仿真结果与分析 (7) 各种条件下仿真波形图 (7) 参数计算 (10) 四、电路制作和调试 (11) 元器件清单及参数 (11) 五、总结 (12) 六、主要参考文 (13)

LC 正弦波振荡器的设计 一、 设计任务与要求: 通过LC 正弦波振荡器的设计进一步巩固高频电子线路的相关知识,并在设计制作的过程中运用并熟悉multisim10电子仿真软件,在实践的过程中培养我们发现问题,并利用所学知识或利用一切可以利用的资源解决问题的能力,掌握振荡器的工作原理知识,设计一个LC 正弦波振荡器,要求该电路输出稳定的正弦波信号,输出频率可调范围为10M~~20MHZ 。 二、 总体设计方案: LC 振荡电路采用三端式振荡,其中包括电感反馈式哈特莱振荡器、电容反馈式克拉泼振荡器、改进型电容反馈式西勒振荡器。 方案一:电感反馈式三端振荡器——哈特莱振荡器 哈特莱振荡器其振荡频率为f= LC 21,式中L=1L +2L +2M 。 优点:由于L 1与L 2之间有互感存在,所以比较容易起振。其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。 主要缺点:与电容反馈振荡电路相比,其振荡波形不够好。这是因为反馈支路为感性支路,对高次谐波成高阻抗,故对于LC 回路中高次谐波反馈较强,波形失真较大。其次是当工作频率较高时,由于L 1和L 2上的分布电容和晶体管的极间电容均并联于L 1与L 2两端,这样反馈系数F 随频率变化而改变。工作频率越高,分布参数的影响越严重,甚至可能使F 减小到满足不了起振条件。 方案二:电容反馈式三端振荡器考毕兹振荡器 V (a ) 原理电路 (b ) 交流等效电路

LC正弦波振荡器设计(新版)

中北大学 课程设计说明书 学生姓名:宋可为学号:15 学院:信息商务学院 专业:电子信息工程 题目:电子综合应用实践: LC正弦波振荡器的设计 韩建宁 指导教师:职称: 讲师 2011 年 1 月 7 日

中北大学 课程设计任务书 10/11 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:宋可为学号:15 课程设计题目:电子综合应用实践: LC正弦波振荡器的设计 起迄日期:2010年12月27 日~2011年1月7日课程设计地点:201,503,1号楼教室 指导教师:韩建宁 系主任:王浩全

下达任务书日期: 2010 年12月27 日 课程设计任务书 1.设计目的: 掌握LC正弦波振荡器的基本设计方法。通过该设计,可以巩固所学的LC振荡器工作原理等电子技术知识,促进学生所掌握的理论知识向实践应用的转变,从而达到培养学生电子综合应用实践能力的目的。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):使用电感、电容等器件设计一个LC正弦波振荡器,包括方案设计、电路设计和 仿真验证。同组成员合作完成。 具体设计要求: f10MHz±10KHz; (1)振荡频率 o (2)频率稳定度Δf/f ≤10-4; o (3)输出幅度U ≥0.3V(峰-峰值)。 o 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:

(1)查阅相关文献资料,了解LC正弦波振荡器的相关知识;(2)确定设计方案、绘制电路原理图; (3)仿真验证; (4)撰写课程设计说明书。

课程设计任务书 4.主要参考文献: [1]《电子线路设计·实验·测试》,第三版,谢自美主编,华中科技大学出版社 [2]《高频电子线路实验与课程设计》,杨翠娥主编,哈尔滨工程大学出版社 [3]《高频电路设计与制作》,何中庸译,科学出版社 [4]《通信电子线路》,第三版,高如云主编,西安电子科技大学出版社 [5]《模拟电子技术》。胡宴如主编,高等教育出版社 [6]《电子技术基础实验与课程设计指导》,第二版,高吉祥,主编,电子工业出版社 5.设计成果形式及要求: 提供课程设计说明书一份; 设计原理图。 6.工作计划及进度: 2010年12月27日~ 2010年12月29日:查阅资料; 2010年12月30日~ 2011年1月4日:设计方案; 2011年 1月 5日~ 2011年1月6日:完成实验;撰写课程设计说明书; 2011年1月7日:答辩

相关主题
文本预览
相关文档 最新文档