当前位置:文档之家› 遗传学重点总结

遗传学重点总结

遗传学重点总结
遗传学重点总结

遗传学

第一章

(一) 名词解释:

1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细

胞或集中于某一区域形成拟核。如:细菌、蓝藻等。

2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物

的细胞及真菌类。单细胞动物多属于这类细胞。

3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原

核细胞内,是指裸露的环状DNA分子。

4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为

姊妹染色单体。

5.同源染色体:指形态、结构和功能相似的一对染色体,他们一

条来自父本,一条来自母本。

6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B

染色体。

7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认

为是有性生殖的一种特殊方式或变态。

8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA

分子与组蛋白八聚体以及H1组蛋白共同形成。

9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的

特定的染色体大小、形态特征和数目。

10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合

结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。

12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将

来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核

(3n),将来发育成胚乳的过程。

13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父

本的某些性状,这种现象称为胚乳直感或花粉直感。

14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现

父本的某些性状,则另称为果实直感。

简述:

2.简述细胞有丝分裂和减数分裂各自的遗传学意义?

答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。

细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。

第四章孟德尔遗传

(一) 名词解释:

1.性状:生物体所表现的形态特征和生理特性。

2.单位性状:把生物体所表现的性状总体区分为各个单位,这些

分开来的性状称为。

3.等位基因(allele):位于同源染色体上,位点相同,控制着同

一性状的基因。

4.完全显性(complete dominance):一对相对性状差别的两个纯

合亲本杂交后,F1的表现和亲本之一完全一样,这样的显性表现,称作完全显性。

5.不完全显性(imcomplete dominance):是指F1表现为两个亲本

的中间类型。

6.共显性(co-dominance):是指双亲性状同时在F1个体上表现出

来。如人类的ABO血型和MN血型。

7.测交:是指被测验的个体与隐性纯合体间的杂交。

8.基因型(genotype):也称遗传型,生物体全部遗传物质的组成,

是性状发育的内因。

9.表现型(phenotype):生物体在基因型的控制下,加上环境条件

的影响所表现性状的总和。

10.一因多效(pleiotropism):一个基因也可以影响许多性状的发

育现象。

11.多因一效(multigenic effect):许多基因影响同一个性状的

表现。

12.返祖现象:是指在后代中出现祖先性状的现象。

13.基因位点(locus):基因在染色体上的位置。

14.性转换(reversal of dominance):显性性状在不同条件下发

生转换的现象叫做显性转换。

问答与计算:

1.显性现象的表现有哪几种形式?显性现象的实质是什么?

答:(1)完全显性,不完全显性,共显性。(2)显性现象的实质:并非显性基因抑制隐性基因作用,一对相对基因在杂合状态下,显隐性基因决定性状表现的实质在于它们分别控制各自决定的

代谢过程,从而控制性状的发育、表达。如孩子皮下脂肪颜色的遗传、豌豆株高的遗传。

2.何谓上位?它与显性有何区别?举例说明上位的机制。

答:所谓上位是指某对等位基因的表现受到另一对等位基因的影响,随着后者的不同而不同,这种现象叫做上位效应,上位可分为显性上位和隐性上位。而显性是指一对等位基因中,当其处于杂合状态时,只表现一个基因所控制的性状,该基因为显性基因,这种现象叫做显性。所以上位是指不同对等位基因间的作用,而显性是指一对等位基因内的作用方式。例如家兔毛色的遗传是一种隐性上位的表现形式,灰兔与白兔杂交,子一代为灰色,子二代出现9灰兔:3黑兔:4白兔的比例。这是由于基因G和g分别为灰色与黑色的表现,但此时必须有基因C的存在,当基因型为cc时,兔毛色白化,所以为隐性上位。

P 灰色× 白色

CCGG ↓ ccgg

F1 灰色

CcGg

F2 灰色黑色白色白色

9C_G_ 3C-_gg 3ccG-_ 1ccgg

10.写出玉米下列杂交当年获得的胚、胚乳、果皮细胞中的有关基因型:(1)♀白果皮(p)糯粒(wx)矮株(d)×♂红果皮(P)非糯(Wx)高株(D) (2)如果第二年将杂交种子种下,并以F1株的花粉自交,各部分会表现怎样的性状?

答:(1)杂交当年:胚PpWxwx、胚乳:PppWxwxwxDdd,果皮ppwxwxdd (2)F1代:株高:全为高株(Dd)、胚乳:非糯:糯=3:1,果皮:全为红果皮(Pp)。

16.水稻中有芒对无芒是显性,抗稻瘟病是显性,它们的控制基因位于不同的染色体上且都是单基因控制,现以有芒抗病的纯合品种和无芒感病的纯合品种杂交,希望得到稳定的无芒抗病品系,问:

(1) 所需的表现型在第几代开始出现?占多大比例?到第几代才能

予以肯定?

(2) 希望在F3获得100个无芒抗病的稳定株系, F2最少应种多少株?F2最少应选多少株?

答:(1)、F2出现,占3/16,F3才能予以肯定。

(2)、F2最少应种1600株,F2最少应选300株

第五章连锁遗传和性连锁

(一) 名词解释:

1.交换:指同源染色体的非姊妹染色单体之间的对应片段的交换,

从而引起相应基因间的交换与重组。

2.交换值(重组率):指同源染色体的非姊妹染色单体间有关基

因的染色体片段发生交换的频率。

3.基因定位:确定基因在染色体上的位置。主要是确定基因之间

的距离和顺序。

4.符合系数:指理论交换值与实际交换值的比值,符合系数经常

变动于0—1之间。

5.干扰(interference):一个单交换发生后,在它邻近再发生第

二个单交换的机会就会减少的现象。

6.连锁遗传图(遗传图谱):将一对同源染色体上的各个基因的

位置确定下来,并绘制成图的叫做连锁遗传

图。

7.连锁群:存在于同一染色体上的基因

群。

8.性连锁(sex linkage):指性染色体上的基因所控制的某些性状

总是伴随性别而遗传的现象,又称伴性遗传

9.性染色体(sex-chromosome):与性别决定有直接关系的染色体

叫做性染色体。

10.常染色体(autosome):性染色体以外其他的染色体称为常染色

体。同配性别

11.限性遗传(sex-limited inheritance):是指位于Y染色体(XY

型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性

或雌性上表现的现象。

12.从性遗传(sex-influenced inheritance):常染色体上基因所

控制的性状,在表现型上受个体性别的影响,只出现于雌方或

雄方;或在一方为显性,另一方为隐性的现

象。

13.交叉遗传:父亲的性状随着X染色体传给女儿的现象。

连锁遗传:指在同一同源染色体上的非等位基因连在一起而遗传的现象

填空题:

1.从遗传规律考虑,基因重组途径可有( )和( )。

①自由组合②连锁交换

5.符合系数变动于0-1之间,当符合系数为1时,表示();当符合系数为0时,表示()。

①两个单交换独立发生,完全没有干扰②完全干扰,不发生双交换

18.果蝇共有( )对染色体,其中一对称为( )。其上的基因的遗传方式称( )。

①4 ②性染色体③伴性遗传

6.玉米种子的有色(C)与无色(c),非蜡质(Wx)和蜡质(wx)胚乳,饱满(Sh)与皱粒(sh)是三对等位基因,用三隐性个体与这

三个基因均杂合的植株测交,测交后代的表现型种类和数量如下:无色非蜡质皱粒 84 无色非蜡质饱满 974

无色蜡质饱满 2349 无色蜡质皱粒 20

有色蜡质皱粒 951 有色蜡质饱满 99

有色非蜡质皱粒 2216 有色非蜡质饱满 15

总数 6708

1.确定这三个基因是否连锁。

2.假定杂合体来自纯系亲本的杂交,写出亲本的基因型。

3.如果存在连锁,绘制出连锁遗传图。

4.是否存在着干扰?如果存在,干扰程度如何?

答:(1)这3个基因是连锁的。

(2)cwxSh和CWxsh为亲本型,cwxsh和CWxSh为双交换型,亲本的基因型应该为ccShShwxwx和CCshshWxWx,sh位于中间。

(3)双交换频率为

C和Sh之间的重组率为

Sh和Wx之间的重组率为

连锁图:(略)

(4)理论双交换率为,大于实际双交换率,

存在干扰。符合系数,干扰系数=

8.下面是位于同一条染色体上的三个基因的连锁图,已注明了重组率,如果符合系数是0.6,在abd/+++×abd/abd杂交的1000个子代中,预期表型频率是多少?

(a,0)└──┴(b,10)────┘(d,20)

答:+b+ 3,a+d 3,+bd 47,a++ 47,ab+ 47,++d 47,abd 403,+++ 403

15.何为伴性遗传?一个父亲为色盲的正常女人与一个正常男人婚配,预期其子女的

类型及比率如何?

答:位于性染色体上的基因,一般是指X染色体上或Y染色体上的基因。它们所控制的性状总是与性染色体的动态相连在一起,这种与性别相伴随的遗传方式,称为伴性遗传。

父亲为色盲的正常女人的基因型为XCXc,正常男人的基因型为XCY,他们婚配,其子女

的情况如下:

XCXc × XCY

1XCXC:1XCXc:1XcY:1XCY

即在他们的子女中,女儿都表现正常,但有一半是色盲基因的携带者,儿子有一半表现

正常,一半为色盲。

第六章染色体变异

(一) 名词解释:

1.假显性:(pseudo-dominant):和隐性基因相对应的同源染色体

上的显性基因缺失了,个体就表现出隐性性状,(一条染色体

缺失后,另一条同源染色体上的隐性基因便会表现出来)这一

现象称为假显性。

2.位置效应:基因由于交换了在染色体上的位置而带来的表型效

应的改变现象。

3.剂量效应:即细胞内某基因出现的次数越多,表型效应就越显

著的现象。

4.染色体组:在通常的二倍体的细胞或个体中,能维持配子或配

子体正常功能的最低数目的一套染色体。或者说是指细胞内一

套形态、结构、功能各不相同,但在个体发育时彼此协调一致,缺一不可的染色体。

5.整倍体(Euploid):指具有基本染色体数的完整倍数的细胞、

组织和个体。

6.非整倍体:体细胞染色体数目(2n)上增加或减少一个或几个

的细胞,组织和个体,称为非整倍体。

7.单倍体:具有配子(精于或卵子)染色体数目的细胞或个体。如,

植物中经花药培养形成的单倍体植物。

8.二倍体:具有两个染色体组的细胞或个体。绝大多数的动物和

大多,数植物均属此类

9.一倍体:具有一个染色体组的细胞或个体,如,雄蜂。同源多

倍体

10.异源多倍体[双二倍体] (Allopolyploid):指染色体组来自

两个及两个以上的物种,一般是由不同种、属的杂种经染色体加倍而来的。

11.超倍体;染色体数多于2n的细胞,组织和个体。如:三体、

四体、双三体等。

12.亚倍体:染色体数少于2n的细胞,组织和个体。如:单体,

缺体,双单体等。

13.剂量补偿作用(dosage compensation effect):所谓剂量补

偿作用是使具有两份或两份以上的基因量的个体与只具有一份基因量的个体的基因表现趋于一致的遗传效应。

14.同源多倍体:由同一染色体组加倍而成的含有三个以上的染色

体组的个体称为同源多倍体。

填空:

1.染色体倒位的一个主要遗传学效应是降低到位杂合体中到位区段及其临近区域连锁基因之间的重组率。导致这一效应的实质是

倒位圈内发生交换后同时产生重复和缺失的染色单体

2.染色体结构变异中的缺失和重复在染色体配对中都形成环(瘤),但这两种变异形成的环所涉及的染色体是不同的,其中缺失环涉及正常染色体

3.易位是由于两条染色体的断裂片断错接形成的,这两条染色体是非同源染色体

4.缺体在下列哪一种类型的生物中最易存在:多倍体

5.染色体重复可带来基因的剂量效应、位置效应

6.易位杂合体最显著的效应是半不育

8.倒位的最明显遗传效应是抑制交换

9.八倍体小黑麦种(AABBDDRR)属于异源多倍体

1.基因的表现型因其所在位置不同而不同的现象称(位置效应),因基因出现的次数不同而不同现象称剂量效应。

2.倒位杂合体联会时在倒位区段内形成的“倒位圈”是由()形成的,而缺失杂合体和重复杂合体的环或瘤是由()形成的。

①一对染色体②单个染色体

3.染色体结构变异主要有四种类型,在减数分裂前期Ⅰ染色体联会时缺失,重复和倒位都能形成瘤或环。形成缺失环的是()染色体,形成重复环的是()染色体,形成倒位环的是()染色体。而相互易位则联会成()结构。

①正常②重复③一对④“十”字形

4.染色体结构变异中,假显性现象是由(缺失)而引起的,臂内倒位杂合体在减数分裂前期Ⅰ交换而导致后期Ⅰ出现(染色体桥、断片),10.利用单体测定某隐性基因(a)所在染色体,如果a基因正好在某

单体染色体上,则F1代表现( A、a)表现型,如果a基因不在某单体染色体上,则F1代将表现( A)表现型。

13.玉米相互易位杂合体(交替)式分离产生的配子全部可育;(相邻)式分离产生的配子全部不育。

(五) 问答与计算:

1.缺失的遗传效应是什么?

2.重复的遗传学效应是什么?

3.倒位的遗传学效应是什么?

4.易位的遗传效应是什么?

7.什么是同源多倍体和异源多倍体?请各举一例说明其在育种上的

应用。

答:同源多倍体:增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍形成例如同源三倍体的无子西瓜,是利用它的高度不育

性;同源多倍体甜菜含糖量高等.

异源多倍体:增加的染色体组来自不同物种,一般是由不同种属间的杂交种染色体加倍形成的,例如异源八倍体小黑麦;白菜和甘蓝杂交

得到的白蓝等。

9.举例说明在育种上如何利用染色体数目的改变。

答::如四倍体番茄所含维生素C比二倍体番茄大约多了一倍;四倍

体萝卜的主根粗大,产量比最好的二倍体品种还要高;三倍体甜菜比较耐寒,含糖量和产量都较高,成熟也较早;三倍体的杜鹃花,因为不育,所以开花时间特别长;三倍体无籽西瓜,因为很少能产生有功

能的性细胞,所以没有种子。

第七章细菌和病毒的遗传

(一) 名词解释:

1.原养型:如果一种细菌能在基本培养基上生长,也就是它能合

成它所需要的各种有机化合物,如氨基酸、维生素及脂类,这种细菌称为原养型。

2.转化(transformation):指细菌细胞(或其他生物)将周围的

供体DNA,摄入到体内,并整合到自己染色体组的过程。

3.转导:以噬菌体为媒介,把一个细菌的基因导入另一个细菌的

过程。即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。

4.性导(sexduction):细菌细胞在接合时,携带的外源DNA整合

到细菌染色体上的过程。

5.接合(coniugation):指遗传物质从供体—“雄性”转移到受体

—“雌性”的过程。

6.Hfr菌株:高频重组菌株,F因子通过配对交换,整合到细菌染

色体上。

7、共转导(并发转导)(cotransduction):两个基因一起被转导的现象称。

7.普遍性转导:能够转导细菌染色体上的任何基因。

8.局限转导:由温和噬菌体(λ、)进行的转导称为特殊转导或

限制性转导。以λ噬菌体的转导,可被转导的只是λ噬菌体

在细菌染色体上插入位点两侧的基因。

9.att位点:噬菌体和细菌染色体上彼此附着结合的位点,通过

噬菌体与细菌的重组,噬菌体便在这些位点处同细菌染色体整

合或由此离开细菌染色体。

10.原噬菌体(prophage):某些温和噬菌体侵染细菌后,其DNA整

合到宿主细菌染色体中。处于整合状态的噬菌体DNA称为~~。

11.溶原性细菌:含有原噬菌体的细胞,也称溶原体。

12.F+菌株:带有F因子的菌株作供体,提供遗传物质。

填空:

1.在原核生物中,(接合)是指遗传物质从供体转换到受体的过程;以噬菌体为媒介所进行的细菌遗传物质重组的过程称(转导)。2.戴维斯的“U”型管试验可以用来区分细菌的遗传重组是由于(转化)还是由于接合,其依据是细菌是否直接接触

7.用ab+菌株与a+b菌株混合培养可形成ab、a+ b+重组型。但在混合前,如果把它们分别放在戴维斯U型管的两侧,若不能形成重组体,说明其重组是通过()产生的。如果重组前用DNA酶处理,若不能形成重组体,说明其重组是通过()产生的。如果在重组前用抗血清(如P22)处理,若不能形成重组体,说明其重组是通过()产

生的。

①接合②转化③转导

9.在Hfr leu+ str s×F- leu- strr 中,如果要得到重组体leu+ strr,如何选择重组体?为什么?(leu+为亮氨酸原养型,leu-为亮氨酸营养缺陷型,str s为链霉素敏感型,strr为链霉素抗性)。答:在基本培养基中加链霉素。因为重组体leu+ strr是抗链霉素的,而Hfr leu+ str s后菌株是链霉素敏感型,在有链霉素的培养

基上将被杀死。

第八章基因表达和调控

一) 名词解释:

1.重组子(recon):是在发生性状的重组时,可交换的最小的单位。

一个交换子可只包含一对核苷酸。

2.突变子(muton):是性状突变时,产生突变的最小单位。一个突

变子可以小到只是一个核苷酸。

3.顺反子(作用子)(cistron),表示一个起作用的单位,一个作用子

所包括的一段DNA与一个多肽链的合成相对应。是基因的基

本功能和转录单位,一个基因可有几个顺反子,一个顺反子产

生一条mRNA。

4.重叠基因{overlapping gene}:同一段DNA的编码顺序,由于阅

读框架的不同或终止早晚的不同,同时编码两个或两个以上多

肽链的基因。

5.隔裂基因(split gene):一个结构基因内部为一个或更多的不翻译

的编码顺序,如内含子(intron)所隔裂的现象。

6.跳跃基因(jumping gene):可作为插入因子和转座因子移动的

DNA序列,也称转座因子。

7.调控基因(regulator gene):其产物参与调控其他结构基因表达的

基因。

8.结构基因(structural gene):可编码RNA或蛋白质的一段DNA

序列。

9.repressor:阻抑物。与操作子结合的调控蛋白质。对于可诱导

操纵子来说,阻抑物本身就是与操作子结合的活性形式,而对于可阻抑的操纵子来说,阻抑物需要与辅阻抑物(corepressor)结合后才能与操纵子结合。

10.o peron:操纵子。是原核生物基因表达和调控的一个完整单元,

其中包括结构基因、调节基因、操作子和启动子。乳糖操纵元模型

11.组成型突变型(constitutive mutant):酶的产生从必须诱导变为

不需诱导的突变型。一般同一突变使代谢作用上直接有关的几种酶都由诱导型变为组成型。

12.顺反效应:同一基因内部的不同突变遗传效果不同,顺反排列

(a1a2 / + +)产生野生型。反式排列(a1 + / + a2)产生突变型。

这种顺式与反式排列产生不同遗传效应的现象叫做顺反效应。

13.假基因:现称拟基因,是一种核苷酸序列同其相应的正常功能

基因基本相同,却不能合成出功能蛋白质的失活基因,是没有功能的基因。

14.反义RNA(antisense RNA):指与被调控的RNA或DNA序列

互补的RNA,它通过配对碱基之间的氢键作用与特定的RNA

或DNA形成双链复合物,影响RNA的正常修饰、翻译等过程,封闭或抑制基因的正常表达,起到调控作用。

15、持家基因(housekeeping gene):在各类不同的细胞中均在表达的一组相同的基因,高等真核生物中其数目约在10 000左右

填空

4.RNA是由核糖核苷酸通过(磷酸二酯键)连接而成的一种(多聚体)。几乎所有的RNA都是由(模板) DNA (转录) 而来,因此,序列和其中一条链(互补) 。

5.在DNA合成中负责复制和修复的酶是(DNA聚合酶)。

6.在DNA复制和修复过程中修补DNA螺旋上缺口的酶称为(DNA 连接酶)。

7.在所有细胞中,都有一种特别的()识别()密码子AUG,它携带一种特别的氨基酸,即(),作为蛋白质合成的起始氨基酸。

①起始tRNA②起始③甲硫氨酸

9.真核生物有两种DNA连接酶,连接酶I主要是参与(),而连接酶II则是参与()。

. ①DNA的复制②DNA的修复

(五) 问答与计算:

1.简述基因概念的发展。

答:基因的最初概念来自于孟德尔的“遗传因子”,他认为生物性状是

由遗传因子控制的,性状本身不能遗传。1909年,丹麦学者W.L.Johannsen提出了“基因”一词,代替了孟德尔的遗传因子。1910年,摩尔根利用果蝇杂交试验证明基因位于染色体上,呈直线型排列,并于1926年发表了《基因论》。1928年Griffith进行的肺炎球菌的转化试验及1944年Avery等人进行的工作证明了DNA就是遗传物质。20世纪40年代G.W.Beadle和E.L.Tatum提出了“一个基因一个酶”的假说;1953年Waston和Crick提出了DNA双螺旋结构模型;1957年Crick提出了中心法则,并于1961年提出了三联遗传密码;1957年S.Benzer提出了“顺反子”概念。1961年,F.Jacob和J.Monod 提出“操纵子模型”学说,由此进一步证明了基因的作用

和遗传信息转移的中心法则。20世纪50年代初,B.McClintock在研究玉米的控制因子中提出了某些遗传因子的位置是可以转移的;60年代在大肠杆菌中发现插入序列,提出“跳跃基因”的概念;70年代发现基因的不连续性,提出“断裂基因”的概念;1978年,在噬菌体中发

现了重叠基因。

2.以乳糖操纵子(lac operon)为例,说明什么是顺式作用元件(cis-acting element)什么是反式作用因子(trans-acting factor)?它

们各自如何发挥作用?

答:顺式作用元件是指DNA分子上对基因表达有调节活性的某些特定的调控序列,其活性仅影响与其自身处于同一DNA分子上的基因,这种DNA序列多位于基因旁侧或内含子中,不编码蛋白质。真核生物的顺式作用元件可分为启动子、增强子以及沉默子(沉默基

因)。顺式作用元件可以通过改变模板的总体结构,或将模板固定在细胞核内特定的位置,促进RNA聚合酶Ⅱ在DNA链上的结合和滑动,有的还可以为RNA聚合酶Ⅱ或其它一些反式作用因子进入染色质提供一种“进入位置”。反式作用因子是指不同染色体上基因座编码的、能直接或间接地识别或结合在各顺式作用元件8~12bp核心序列上并参与调控靶基因转录效率的结合蛋白。这类DNA结合蛋白与不同识别序列之间在空间结构上相互作用,以及蛋白质与蛋白质之间的相互作用,构成了复杂的基因转录调控机制的基础。

第九章基因工程和基因组学

一) 名词解释:

基因工程

1.标记基因:指与目标性状紧密连锁、同该性状共同分离且易于

识别的可遗传的等位基因变异。

2.cDNA库:是以mRNA为模板,经反转录酶合成互补DNA构建的

基因库。

3.克隆(无性繁殖系)选择学说:一个无性繁殖系是指从一个祖

先通过无性繁殖方式产生的后代,是具有相同遗传性状的群体。

经过选择培养,可以获得无性系变异体,但其遗传性状不一定

有差异,在适当的培养条件下可产生逆转。

4.基因组:一个物种的单倍体细胞中所含有的遗传物质的总和称

为该物种的基因组。

普通遗传学知识点总结

普通遗传学知识点总结 绪论 1.什么是遗传,变异?遗传、变异与环境的关系? (1).遗传(heredity):生物亲子代间相似的现象。 (2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。 生物与环境的统一,这是生物科学中公认的基本原则。因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新代进行生长、发育和繁殖,从而表现出性状的遗传和变异。 2.遗传学诞生的时间,标志? 1900年孟德尔遗传规律的重新发现标志着遗传学的建立和开始发展) 第二章遗传的细胞学基础 1.同源染色体和非同源染色体的概念? 答:同源染色体:形态和结构相同的一对染色体; 异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。 2.染色体和姐妹染色单体的概念,关系? 染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质 3.染色质和染色体的关系? 染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。 4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?) 答:有丝分裂: 间期前期中期后期末期 染色体数目:2n 2n 2n 4n 2n DNA分子数:2n-4n 4n 4n 4n 2n 染色单体数目:0-4n 4n 4n 0 0 减数分裂: *母细胞初级*母细胞次级*母细胞*细胞 染色体数目:2n 2n n(2n) n DNA分子数:2n-4n 4n 2n n 染色单体数目:0-4n 4n 2(0) 0 5.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)

遗传学第一章遗传学细胞基础知识点

第一章遗传的细胞学基础 本章要点 ?真核细胞的结构及功能。 ?染色体的形态特征。 ?染色质的基本结构与染色体的高级结构模型。 ?多线染色体的形成原因。 ?有丝、减数分裂染色体形态、结构、数目变化及遗传学意义。 ?无融合生殖及其类型。 ?高等动植物的生活周期。 ?染色质、染色体、同源染色体、异固缩现象、核型、核型分析、双受精、直感现象、世代交替。 ?真核细胞的结构及功能: 1.细胞壁。植物细胞有细胞壁及穿壁胞间连丝。 成分:纤维素、半纤维素、果胶质。 功能:对细胞的形态和结构起支撑和保护作用。 2.细胞膜 成分:主要由磷脂和蛋白分子组成。 功能:选择性透过某些物质;提供生理生化反应的场所;对细胞内空间进行分隔,形成结构、功能不同又相互协调的区域。 3.细胞质 构成:蛋白分子、脂肪、游离氨基酸和电解质组成的基质。 细胞器:如线粒体、质体、核糖体、内质网等。 线粒体:双膜结构,有氧呼吸的场所,有自身的DNA,和植物的雄性不育有关。 叶绿体:双膜结构,光合作用的场所,有自身的DNA,绿色植物所特有。 核糖体:蛋白质和rRNA,合成蛋白质的主要场所。 内质网:平滑型和粗糙型,后者上附有核糖体。 高尔基体:单膜结构,分泌、聚集、贮存和转运细胞内物质的作用。 中心粒:动物及低等植物,与纺锤体的排列方向和染色体的去向有关。 4.细胞核 功能:遗传物质集聚的场所,控制细胞发育和性状遗传。 组成:1. 核膜;2. 核液;3. 核仁;4. 染色质和染色体。 ?染色体的形态特征: 间期细胞核里能被碱性染料染色的网状结构称为染色质。 在细胞分裂期,染色质卷缩成具有一定形态、结构和碱性染料染色很深的物质,染色体。 二者是同一物质在细胞分裂过程中所表现的不同形态。 ?不知道是什么

(完整版)高中生物遗传学知识点总结

高中生物遗传学知识点总结 高中生物遗传学知识点—伴性遗传 高中生物伴性遗传知识点总结: 伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。 高中生物遗传学知识点—遗传病 常见遗传病的遗传方式有以下这几种:(1)单基因遗传: 常染色体显性遗传:并指、多指; 常染色体隐性遗传:白化病、失天性聋哑 X连锁隐性遗传:血友病、红绿色盲; X连锁显性遗传:抗维生素D佝偻病; Y连锁遗传:外耳道多毛症; (2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿; (3)染色体病:染色体数目异常:先天性愚型病; 染色体结构畸变:猫叫综合症。 单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。根据致病基因所在染色体的种类,通常又可分四类: 一、常染色体显性遗传病 致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。

遗传因子的发现知识点总结.docx

· 第一章遗传因子的发现(1)生物的性状是由 决定的。显性性状由 第 1 节孟德尔的豌豆杂交实验(一)决定,用表示(高 茎用 D 表示),隐性性状由 一、豌豆杂交试验的优点决定,用 1、豌豆的特点表示(矮茎用 d 表示)。 ( 1)传粉、授粉。自然状态下,豌豆不会杂 交,一般为。( 2 )体细胞中因子( 2)有的性状。在。纯种高茎的体细胞中遗传2、人工异花授粉的步骤:(开花之前)→(避因子为,纯种矮茎免外来花粉的干扰)→→的体细胞中遗传因子 为。 二、一对相对性状的杂交实验 实验过程说明(3 )在形成时,成 P 表示,♂表对因子发生彼 示,♀表示此,分别进入不同的 ↓表示产生下一代配子中,配子中只有成对因子中的个。 F1 表示 F2 表示(4)受精时,配子的结合是的。 ×表示 ×表示 三、对分离现象的解释 遗传图解假说 Word 资料

四、对分离现象解释的验证——测交性状:生物所表现出来的形态特征和生理特性,如花的颜色、茎的测交: F1 与隐性纯合子杂交高矮等。 相对性状:的的。 显性性状:具有相对性状的两个亲本杂交,表现出来的 性状。 隐性性状:具有相对性状的两个亲本杂交,没有表现出 来的性状。 性状分离:后代中,遗传性状出现和 的现象。 3、基因类 显性基因:控制的基因,用来表五、分离定律示。 在生物的体细胞中,控制同一性状的因子存在,隐性基因:控制的基因,用来表不相融合;在形成配子时,成对的示。 因子发生,分离后的因子分别进入不等位基因:控制的个基因。 同的中,随配子遗传给后代。4、个体类 六、相关概念表现型:指生物个体实际出来的性状,如高茎和矮茎。 1、交配类基因型:与表现型有关的组成。 杂交:基因型的生物体间相互交配的过程。纯合子:由的配子结合成的合子发育成的个体(能 自交:基因型的生物体间相互交配的过程。遗传,后代性状分离): 测交:让 F1与。(可用来测定 F1 的基因型,纯合子(如 AA 的个体)纯合属于杂交)子(如 aa 的个体) 正交和反交:是相对而言的,若甲♀×乙♂为,则杂合子由的配子结合成的合子发育成的个体 甲♂×乙♀为。(能稳定遗传,后代发生性状分离) 2、性状类表现型与基因型关系:+→ 表现型 第3页共10页第4页共10页

高三生物遗传学知识点总结

高三生物遗传学知识点总结 一仔细审题:明确题中已知的和隐含的条件,不同的条件现象适用不同 规律:1基因的分离规律:a只涉及一对相对性状;b杂合体自交后代的性状 分离比为3∶1;c测交后代性状分离比为1∶1。2基因的自由组合规律:a 有两对(及以上)相对性状(两对等位基因在两对同源染色体上)b两对相 对性状的杂合体自交后代的性状分离比为9∶3∶3∶1c两对相对性状的测交 后代性状分离比为1∶1∶1∶1。3伴性遗传:a已知基因在性染色体上b♀♂ 性状表现有别传递有别c记住一些常见的伴性遗传实例:红绿色盲血友病果 蝇眼色钟摆型眼球震颤(x-显)佝偻病(x-显)等二掌握基本方法:1最基础 的遗传图解必须掌握:一对等位基因的两个个体杂交的遗传图解(包括亲代 产生配子子代基因型表现型比例各项)例:番茄的红果r,黄果r,其可能的 杂交方式共有以下六种,写遗传图解:p①rrrr②rrrr③rrrr④rrrr⑤rrrr⑥rrrr★注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在 ▲一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即一个来 自父方,一个来自母方。2关于配子种类及计算:a一对纯合(或多对全部基 因均纯合)的基因的个体只产生一种类型的配子b一对杂合基因的个体产生 两种配子(dddd)且产生二者的几率相等。cn对杂合基因产生2n种配子, 配合分枝法即可写出这2n种配子的基因。例:aabbcc产生22=4种配子:abcabcabcabc。3计算子代基因型种类数目:后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积(首先要知道:一对基因杂交, 后代有几种子代基因型?必须熟练掌握二1)例:aaccaacc其子代基因型数目?∵aaaaf是aa和aa共2种[参二1⑤]ccccf是cccccc共3种[参二1④]答案 =23=6种(请写图解验证)4计算表现型种类:子代表现型种类的数目等于

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

高中生物遗传知识点总结(精选.)

高中生物伴性遗传知识点总结: 伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。 3.常见遗传病的遗传方式: (1) 单基因遗传: 常染色体显性遗传:并指、多指; 常染色体隐性遗传:白化病、失天性聋哑 X连锁隐性遗传:血友病、红绿色盲; X连锁显性遗传:抗维生素D佝偻病; Y连锁遗传:外耳道多毛症; (2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿; (3 )染色体病:染色体数目异常:先天性愚型病; 染色体结构畸变:猫叫综合症。 单基因遗传病

单基因遗传病是指受一对等位基因控制的遗传病, 较常见的有红绿 色盲、血友病、白化病等。根据致病基因所在染色体的种类,通常又可分四类: 一、常染色体显性遗传病 致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。 常见常染色体显性遗传病的病因和临床表现 1、多指(趾)、并指(趾)。临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。 2、珠蛋白生成障碍性贫血。病因:珠蛋白肽链合成不足或缺失。临床表现:贫血。

(完整版)遗传学知识点归纳(整理)

遗传学教学大纲讲稿要点 第一章绪论 关键词: 遗传学 Genetics 遗传 heredity 变异 variation 一.遗传学的研究特点 1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。 2. 遗传信息的传递包括世代的传递和个体间的传递。 3. 通过个体杂交和人工的方式研究基因的功能。 “遗传学”定义 遗传学是研究生物的遗传与变异规律的一门生物学分支科学。 遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity 生物性状或信息世代传递的现象。 同一物种只能繁育出同种的生物 同一家族的生物在性状上有类同现象 变异variation 生物性状在世代传递过程中出现的差异现象。 生物的子代与亲代存在差别。 生物的子代之间存在差别。 遗传与变异的关系 遗传与变异是生物生存与进化的基本因素。遗传维持了生命的延续。没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。 变异使得生物物种推陈出新,层出不穷。没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。 二. 遗传学的发展历史 1865年Mendel发现遗传学基本定律。建立了颗粒式遗传的机制。 1910年Morgan建立基因在染色体上的关系。 1944年Avery证明DNA是遗传物质。 1951年Watson和Crick的DNA构型。 1961年Crick遗传密码的发现。 1975年以后的基因工程的发展。 三. 遗传学的研究分支 1. 从遗传学研究的内容划分 进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学 生物进化的机制突变和选择 有害突变淘汰和保留 有利突变保留与丢失 中立突变 DNA多态性 发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。 特征:基因的对细胞周期分裂和分化的作用。 应用重点干细胞的基因作用。 转基因动物克隆动物 免疫遗传学研究基因在免疫系统中的作用的遗传学分支。 重点不是研究免疫应答的过程, 而是研究基因在抗体和抗 原形成和改变中的作用。 2. 从遗传学研究的层次划分 群体遗传学研究基因频率的改变的遗传学分支。

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

遗传学总结

遗传学总结 第一章绪论 遗传(heredity, inheritance)指生物世代间相似的现象(名词)或指生物性状或基因(注意二者的不同)从上代向下代的传递过程(动词) 变异(variation)生物个体间的差异(名词)生物的性状或基因从上代向下代传递时发生变化的过程(动词)(并非所有的变异都可以遗传!) 简述遗传和变异的矛盾与统一 ?遗传和变异现象是自然界普遍存在的生命活动的基本特征 ?遗传决定了物种的基本特性,变异决定了种内个体间差异 ?遗传(的稳定)是相对的,变异是绝对的 ?变异积累达到或超过一定“阈值”就可能成为新物种的来源 ?变异给进化提供丰富素材,遗传使变异得以积累和传递。如果性状不存在变异,遗传将只是简单的重复,如果变异不能遗传,也就失去其遗传学意义,生物同样不能够进化,都是生物的进化和发展不可缺少的因素 第二章孟德尔遗传定律 实验设计: 1.实验对象:豌豆 2.对具有不同单一性状的纯系(true-breeding or pure-breeding strains)进行遗传杂交—-单因子杂交(monohybrid cross) 3.反复试验验证 4.数学方法分析 5.理论归纳 显性定律(The Principle of Dominance): 在杂合子中,一个等位基因可能掩盖另一个等位基因的存在。 分离定律(The Principle of Segregation): 在杂合子中,两个不同等位基因在配子形成时会彼此分离。 6.定律验证-测交(Testcrosses) 双因子杂交(dihybrid cross) 自由组合(独立分离)定律(The Principle of Independent Assortment): 不同对基因在形成配子时,不同基因的等位基因自由组合(或称为彼此独立分离) 限制条件:控制性状的两对或两对以上的非等位基因位于非同源染色体上或在同源染色体上但距离较远。 7对基因位于7对不同染色体上的几率: 1 x 6/7 x 5/7 x 4/7 x 3/7 x 2/7 x 1/7 = 0.0061种 表型分析方法: 1.棋盘法

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

遗传学期末复习总结

名词解释 遗传学:遗传学是研究生物的遗传与变异规律的一门生物学分支科学,是认识和阐明生物体遗传信息的组成、传递、和表达规律的科学。 基因:基因位于染色体上,是具有特定核苷酸顺序的(主要是DNA)片段,是储存遗传信息的功能单位.基因可以发生突变,基因之间可以发生交换。孟德尔在遗传分析中所提出的遗传因子,就是基因。 基因座:基因在染色体上所处的位置。特定的基因在染色体上都有其特定的座位。 等位基因:在同源染色体的相同座位上控制同一性状的不同形式的基因。 复等位基因:在群体中占据同源染色体上同一位点的两个以上的基因,如人的ABO血型中IA,IB和i。 显性基因:在杂合状态中,能够表现其表型效应的基因。 隐性基因:在杂合状态中,不表现其表型效应的基因。 基因型:个体或细胞的特定基因的组成。 表型:生物体某特定基因所表现的性状(可以观察到的各种形体特征、基因的化学产物、各种行为特性等)。 纯合体:基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞称为纯合体,或称基因的同质结合。 杂合体:基因座上有两个不同的等位基因,或称基因的异质结合。 回交:杂交产生的子一代个体再与其亲本进行交配的方式。 测交:杂交产生的子一代个体再与其隐性(或双隐性)亲本的交配方式,用以测验子代个体的基因型的一种回交。 概率:指在反复试验中,某事件发生的可能性大小。 基因型:控制生物性状的全部基因的总称。 表现型:指生物体所有性状的总称。 完全显性:F1所有个体都表现出显性亲本的性状,这种表现形式称完全显性。 不完全显性:杂合子性状介于显性纯合子与隐性纯合子之间,这种表现形式称不完全显性。

共显性或并显性:杂合子中两种基因都完全表达出来,这种表现形式称共显性/并显性。 镶嵌显性:两纯合亲本杂交,杂合体的表型与两纯合亲本都不同,而是各自在不同部位分别表现出显性的现象。如黑瓢虫鞘翅色斑遗传(由谈家桢教授发现)。 致死基因:生物体中具有致死作用的基因。 隐性致死:基因的致死作用只在纯合体时表现。 显性致死:基因的致死作用只在杂合体时表现。 复等位基因:种群中同源染色体同一座位上存在的两个以上的等位基因,在遗传上称为复等位基因,是对群体而言。 性染色体:与性别决定有关的染色体,叫性染色体。 常染色体:与性别决定无密切关系的染色体,叫常染色体。 性别决定:一般指雌雄异体生物决定性别的方法,通常可分为染色体决定与非染色体决定。 性别分化:受精卵在性别决定的基础上,进行雄性或雌性性状发育的过程。 性染色质体(巴氏小体):位于间期细胞核内一染色很深的小体,与性别、X-染色体数有关,故称为X染色质体。 剂量补偿效应:XY型性别决定的生物中,使性连锁基因在两种性别中有相等或相近的有效剂量的遗传效应。 伴性遗传:性染色体上的基因所控制的性状在遗传上总是与性别相关,这种遗传方式称伴性遗传或性连锁。 从性性状:由常染色体上基因所控制的性状,由于受性激素的影响,基因在不同性别中的表达不同,这种性状的遗传叫从性遗传。 限性性状:性染色体或常染色体上的基因所控制的性状仅在某一性别中表现的现象,这种性状的遗传叫限性遗传。 交换:指减数分裂过程中,每一对同源染色体在(配对)联会时,染色体常常交叉,因而使同源染色体的非姐妹染色体互相调换相应或同源的片段,这一过程叫交换。 交换率/交换值:是染色单体两个基因间发生交换的平均次数。 重组率/重组值( RF):是指重组型配子数占总配子数的百分率。重组值RF=(重组型配子数/总配子数)×100%。

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

细胞遗传学知识点总结

着丝粒(centromere) 是染色体上染色很淡的缢缩区,由一条染色体所复制的两个染色单体在此部位相联系。含有大量的异染色质和高度重复的DNA序列。 包括3种不同的结构域: 1. 着丝点结构域(kinetochore domain):纺锤丝附着的位点; 2.中央结构域(central domain):这是着丝粒区的主体,由富含高度重复序列的DNA构成; 3. 配对结构域(pairing domain):这是复制以后的姊妹染色单体相互连接的位点。 着丝粒的这三种结构域具有不同的功能,但它们并不独立发挥作用。正是3种结构域的整合功能,才能确保有丝分裂过程中染色体的有序分离。 发芽酵母(Saccharomyces cerevisiae)的着丝粒由125bp左右的特异DNA序列构成,其它模式生物包括裂解酵母(Schizosaccharomyces pombe)、果蝇(Drosophila melanogaster) 以及人类,它们的着丝粒均由高度重复的DNA序列构成、但序列均不同。 染色体着丝粒中与纺锤丝相连接的实际位置,微管蛋白的聚合中心,由蛋白质所组成。 与着丝粒的关系:着丝粒是动粒的附着位置,动粒是着丝粒是否活跃的关键。每条染色体上有两个着丝点,位于着丝粒的两侧,各指向一极。 ?功能:姊妹染色单体的结合点 ?着丝点的组装点 ?纺锤丝的附着点 ?着丝粒的功能高度保守 在染色体配对及维系生物体遗传信 息稳定传递中起作重要作用。 组成(DNA-蛋白质复合体):着丝粒DNA:不同的生物中具有特异性,着丝粒蛋白:在真核生物中是保守的。 水稻着丝粒DNA的组成:CentO:155-bp重复序列,CRR:着丝粒特异的逆转座子。 在活性着丝粒中,着丝粒特异组蛋白H3(CENH3)取代了核小体组蛋白八聚体中的组蛋白H3, 形成含CENH3的核小体。因此,CENH3是真核生物内着丝粒的根本特征, 是功能着丝粒的共同基础, 可作为功能着丝粒染色质的识别标记。 →着丝粒分裂:正常分裂(纵向分裂),横分裂或错分裂(misdivision)。说明问题:着丝粒并不是一个不可分割的整体,而是一个复合结构,断裂的着丝粒具有完整功能。 分散型着丝粒又称散漫型着丝粒(holocentromere)又称多着丝粒(polycentromere) 某些生物中,染色体上着丝粒的位置不是固定在一个特定的区域,而是整个染色体上都有分布,或2个或2个以上,纺锤丝可以与染色体上的许多点连接。 →特点:细胞分裂中期,与赤道板平行排列 →细胞分裂后期,染色体平行地向两极移动 →X射线照射,染色体断裂,无论断片大小,均能有规律地走向两极 偏分离现象:基因杂合体Aa产生的A配子与a配子的分离不等于1:1 验证方式: 人类新着丝粒: ?结构不同于普通的着丝粒,通常不具有高度重复的α-卫星DNA ?可以组装成动粒并行使着丝粒的功能 ?16条染色体上发现了40多个新着丝粒 端粒:真核细胞染色体末端的一种特殊结构,由端粒DNA和蛋白质组成。其端粒DNA是富含G的高度保守的重复核苷酸序列。 组成:人和其它哺乳动物的端粒DNA序列由(5‘-TTAGGG-3’)反复串联组成

表观遗传学(总结)资料

1.表观遗传学概念 表观遗传是与DNA 突变无关的可遗传的表型变化,且是染色质调节的基因转录水平的变化,这种变化不涉及DNA 序列的改变。表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传学内容包括DNA 甲基化、组蛋白修饰、染色质重塑、遗传印记、随机染色体失活及非编码RNA 等调节。研究表明,这些表观遗传学因素是对环境各种刺激因素变化的反映,且均为维持机体内环境稳定所必需。它们通过相互作用以调节基因表达,调控细胞分化和表型,有助于机体正常生理功能的发挥,然而表观遗传学异常也是诸多疾病发生的诱因。因此,进一步了解表观遗传学机 制及其生理病理意义,是目前生物医学研究的关键切入点。 别名:实验胚胎学、拟遗传学、、外遗传学以及后遗传学 表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。 2.表观遗传学现象 (1)DNA甲基化 是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 (2)基因组印记 基因组印记是指来自父方和母方的等位基因在通过精子和传递给子代时发生了修饰,使带有亲代印记的等位基因具有不同的表达特性,这种修饰常为DNA甲基化修饰,也包括组蛋白乙酰化、甲基化等修饰。在形成早期,来自父方和母方的印记将全部被消除,父方等位基因在精母细胞形成精子时产生新的甲基化模式,但在受精时这种甲基化模式还将发生改变;母方等位基因甲基化模式在卵子发生时形成,因此在受精前来自父方和母方的等位基因具有不同的甲基化模式。目前发现的大约80%成簇,这些成簇的基因被位于同一条链上的所调控,该位点被称做印记中心(imprinting center, IC)。印记基因的存在反映了性别的竞争,从目前发现的印记基因来看,父方对的贡献是加速其发育,而母方则是限制胚胎发育速度,亲代通过印记基因来影响其下一代,使它们具有性别行为特异性以保证本方基因在中的优势。印记基因的异常表达引发伴有复杂突变和表型缺陷的多种人类疾病。研究发现许多印记基因对胚胎和胎

数量遗传学知识点总结

第一章绪论 一、基本概念 遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。 二、数量遗传学的研究对象 数量遗传学的研究对象是数量性状的遗传变异。 1.性状的分类 性状:生物体的形态、结构和生理生化特征与特性的统称。如毛色、角型、产奶量、日增重等。 根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。 数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。 质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。 阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。有或无性状:也称为二分类性状(Binary traits)。如抗病与不抗病、生存与死亡等。分类性状:如产羔数、产仔数、乳头数、肉质评分等。 质量性状、数量性状与阈性状的比较 质量性状数量性状阈性状 性状主要类 型品种特征、外貌 特征 生产、生长性状生产、生长性状 遗传基础单个或少数主 基因 微效多基因微效多基因 变异表现方式间断型连续型间断型 考察方式描述度量描述 环境影响不敏感敏感敏感或不敏感研究水平家系群体群体 2.数量性状的特点: 必须进行度量,要用数值表示,而不是简单地用文字区分; 要用生物统计的方法进行分析和归纳; 要以群体为研究对象; 组成群体某一性状的表型值呈正态分布。 3.决定数量性状的基因不一定都是为数众多的微效基因。有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。 果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛的双肌(double muscling)基因(MSTN);猪的氟烷敏感基因(RYR1)三、数量遗传学的研究内容

遗传学(第二版)刘庆昌-重点整理1

Heredity (遗传) 亲代与子代(上下代)之间相似的现象 遗传的特点:相对稳定性、保守性。 Variation (变异) 亲代与子代之间以及子代个体之间的差异。 变异的特点:普遍性和绝对性。 分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。 Evolution (进化) 生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。 进化的两种方式: 渐变式:积累变异成为新类型(continual variation),如适应性进化。 跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。 遗传与变异的关系 遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下: ★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。 3、遗传、变异与进化的关系 生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。 动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。 摩尔根创立基因学说 克里克提出的“中心法则”。 Human Genome Project (HGP) Epigenetics 表观遗传学 1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。 2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变 3. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting (5)休眠转座子激活…

医学遗传学名词解释总结

医学遗传学medical genetics:应用遗传学的理论与方法研究遗传因素在疾病的发生、流行、诊断、预防、治疗与遗传咨询等中的作用机制及其规律的遗传学分支学科 遗传病genetic disease:发生需要有一定的遗传基础,通过这种遗传基础、并按一定的方式传于后代发育形成的疾病 基因组genome:单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA 分子再发割裂基因split gene:真核生物的结构基因由编码序列与非编码序列两者间隔排列组成城断裂状,称割裂基因 风险率recurrence risk:病人所患的遗传性疾病在家系亲属中再发生的风险率 内含子intron 又称插入序,指基因中的非编码序列。 外显子exon 指结构基因基因中的编码序列 基因表达gene expression:细胞在生命过程中,储存在DNA顺序中的遗传信息经过转录与翻译,转变为具有生活活性的蛋白质分子。 假基因pseudogene:一种畸变基因,核苷酸序列与有功能的正常基因有很大的同源性,但由于突变、缺失或插入以至不能表达,因而没有功能的基因 基因家族gene family:真核基因组中有许多来源相同,结构相似,功能想关的基因,这组基因成为基因家族。 GT-AG rule割裂基因结构的一个重要特点,指的就是在各种真核生物基因中,每个内含子的两端具有广泛的同源性与互补性,5端起始的两个基因碱基就是GT,3端最后两个简直就是AG。 基因突变gene mutation:基因在结构上发生碱基对组成或排列顺序的改变称为基因突变 诱变剂mutagen凡就是能够诱发基因突变的各种内外环境因素均被称之为诱变剂 静态突变static mutation:生物世代中基因突变的发生,总就是以相对稳定的一定频率发生,并且能够使得这些突变随着世代的繁衍、交替而得以传递 无义突变nonsense mutation 当碱基置换或移码导致mRNA上出现终止密码,多肽链合成提前终止,产生失去活性或丧失正常功能的蛋白质。 错义突变missense mutation 编码某种氨基酸的密码子经碱基替换以后,变成编码另一种氨基酸的密码子,从而使多肽链的氨基酸种类与序列发生改变。 移码突变frame shift mutation:基因组DNA链中插入或缺失一个或多个碱基对,从而使该点之后的部分或所有三联体遗传密码子组合发生改变的基因突变形式动态突变dynamic mutation:又称不稳定三核苷酸重复序列突变。突变就是由基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断扩增体细胞突变分子病 单基因遗传病monogenic disease 单一基因突变一起的疾病。 先证者proband:家族中第一个就诊或被发现的患病成员 纯合子/杂合子homozygote/heterozgote 控制某性状的基因为两个相同/不同的的基因。 等位基因allele 指位于同源染色体同一位点上不同形式的基因,她们影响着同一相对性状。 系谱分析pedigree analysis:对具有某种性状的家系成员的性状分布进行观察,通过对改性状在家系后代的分离或传递方式来 共显性codominance染色体上的某些等位基因,彼此之间没有显性与隐性之分,

相关主题
文本预览
相关文档 最新文档