当前位置:文档之家› 格林公式及其在曲线积分求解中的应用

格林公式及其在曲线积分求解中的应用

格林公式及其在曲线积分求解中的应用
格林公式及其在曲线积分求解中的应用

南昌工程学院

《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用

课程名称数分选讲

系院理学院

专业信息与计算科学

班级2012级1班

学生姓名魏志辉

学号2012101316

指导教师禹海雄

设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分??

1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插

入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;

其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。

2.曲线积分的类别:

曲线积分分为:对弧长的曲线积分(第一类曲线积分)

对坐标轴的曲线积分(第二类曲线积分)

两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。

3.两种曲线积分的联系:

对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;

或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对

坐标轴的曲线积分了。

在数学中,曲线积分或路径积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。

在曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。带有权重是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简单的公式(比如说

)在推广之后都是以曲线积分的形式出现()。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出4.格林公式

【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有

(1) ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy

其中是的取正向的边界曲线.

公式(1)叫做格林(green)公式.

【证明】先证

假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)

易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.

另一方面,据对坐标的曲线积分性质与计算法有

因此

再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证

综合有

当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴)的任何直线的交点至多是两点时,我们有

5., 若曲线积分在开区域内与路径无关,那它仅与曲线的起点与终点的坐标有关.假设曲线的起点为,终点为,可用记号

来表示,而不需要明确地写出积分路径.

显然,这一积分形式与定积分非常相似, 事实上,我们有下列重要定理

【定理一】设是一个单连通的开区域,函数,在内具有一阶连续偏导数,且【证明】依条件知,对内任意一条以点为起点,点为终点的曲线,曲线积分与路径无关,仅与的起点和终点的坐标有关,亦即, 确为点的单值函数.

下面证明

由于可以认为是从点沿内任何路径到点的曲线积分,取如下路径,有

类似地可证明

因此

【定理二】设是单连通的开区域,,在上具有一阶连续偏导数,则在内为某一函数全微分的充要条件是

在内恒成立.

【证明】显然,充分性就是定理一

下面证明必要性

若存在使得,则

由于,在内连续, 则二阶混合偏导数适合等式

从而

【定理三】设是一个单连通的开区域, 函数,在内具有一阶连续偏导数, 若存在二元函数使得

其中,是内的任意两点.

【证明】由定理1知,函数

适合

于是或

因此(是某一常数)

这是因为由点沿任意内的路径回到点构成一条封闭曲线,故

因此□

【确定的全微分函数的方法】

因为,而右端的曲线积分与路径无关,为了计算简便,可取平行于坐标轴的直线段所连成的折线作为积分路径(当然折线应完全属于单连通区域).

-------------------------------------------------------

【证明】先证

假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)

易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.

另一方面,据对坐标的曲线积分性质与计算法有

因此

再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证

综合有

当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴)的任何直线的交点至多是两点时,我们有

,

同时成立.

将两式合并之后即得格林公式

注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.

6. 牛顿—莱布尼兹公式?-

=

b

a

a

F

b

F

dx

x

F)

(

)

(

)

('

表示:)

('x

F在区间[]b a,上

的定积分可以通过它的原函数)(x F 在这个区间端点的值来表达.而格林公式表示:在平面区域D 上的二重积分可以通过沿闭区域D 的边界曲线L 的曲线积分来表达.这样,牛顿——莱布尼兹公式成为格林公式的特殊情形.

平面单连通域的概念.设D 为平面区域,如果D 内任一闭曲线所围的部分都属于D ,则称D 为平面单连通区域,否则称为复连通区域.

例如:平面上的圆形区域(){}1|,22<+y x

y x ,上半平面(){}0|,>y y x 都是单连通

区域,圆环形区域(){}(){}

10|,,41|,2222<+<<+

者沿L 的方向行走时,D 总在他的左边.例如D 是边界曲线L

及l 所围成的复连通域(图8),作为D 的正向边界,L 的正向是

逆时针方向,而l 的正向是顺时针方向.

定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有

???+=??-??L D Qdy Pdx dxdy y P x Q )(

, (1)

其中L 是D 的取正向的边界曲线.公式(1)叫做格林公式.

证 先假设区域D 既是X 型又是Y 型的情形,即穿过区域D 且平行坐标轴的直线与D 的边界曲线L 的交点恰好为两点(图9)

设(){}b x a x y x y x D ≤≤≤≤=),()(|,21??,因为y P

??连

续,所以

{}?????-=????????=??b a b a x x D

dx x x P x x P dx dy y y x P dxdy y P ))(,())(,(),(12)()(21????.

另一方面,对坐标的曲线积分

{}??????-=+=+=L L L b a a b b

a dx x x P x x P dx x x P dx x x P Pdx Pdx Pdx 12))(,())(,())(,())(,(2121????

.

因此得 ???=??-L D Pdx dxdy y P . (2)

类似地,设(){}d y c y x y y x D ≤≤≤≤=),()(|,21??,则可证

???=??L D Qdy dxdy x Q . (3)

由于D 既是X 型又是Y 型的区域,(2)(3)同时成立,二式合

并即得公式(1)

区域D 既是X 型又是Y 型这样的要求是相当严格的,但

是对于一般情形,即区域D 不满足这个条件时,我们可在D

内引进辅助线把D 分成有限个部分闭区域,使得每个部分闭

区域都满足这个条件,如图10,应用公式(1)于每个部分区

域,即可得证.因此,一般地对于由分段光滑曲线围成的闭区域公式(1)都成立.证毕.

注 (1) 格林公式中左端二重积分的被积函数是

y P x Q ??-??,而且在D 内偏导连续.这是初学者容易记错或者忽略的地方.右端曲线积分中曲线L 对区域D 来说都是正向,这也是需要注意的.

(2) 对于复连通区域D ,格林公式右端应包括沿区域D 的全部边界的曲线积分.例如对图8的复连通域1D (阴影部分)格林公式应为

????+++++=???? ????-??L l D Qdy Pdx Qdy Pdx dxdy y P x Q 1.

其中+L 、+l 是D 的取正向的闭曲线.

(3) 格林公式揭示出二重积分与平面曲线积分之间的联系,同时也给出了通过二重积分计算曲线积分的一个重要公式.许多情况,曲线积分化为二重积分计算往往是方便的.当然有些二重积分也可以化为曲线积分来计算,但是在化为曲线积分时,被积表达式并不是唯一的.例如,??D xdxdy 化为曲线积分时,即可以

格林公式及其在曲线积分求解中的应用

南昌工程学院 《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用 课程名称数分选讲 系院理学院 专业信息与计算科学 班级2012级1班 学生姓名魏志辉 学号2012101316 指导教师禹海雄 设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分?? 1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插 入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分) 对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx; 或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对 坐标轴的曲线积分了。

缓和曲线计算公式

高速公路的线路(缓和曲线)计算公式 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角: α ⑥点ZH 的坐标:x Z ,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ的坐标 ? 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l

②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: 当只知道HZ 点的坐标时,则:

l为到点HZ的长度 α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反 x Z ,y Z 为点HZ的坐标 ? 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)——第一缓和曲线长度 l 1 ——第二缓和曲线长度 l 2 l ——对应的缓和曲线长度 R——圆曲线半径

R ——曲线起点处的半径 1 ——曲线终点处的半径 R 2 P ——曲线起点处的曲率 1 P ——曲线终点处的曲率 2 α——曲线转角值 四、竖曲线上高程计算 (上坡为“+”,下坡为“-”)已知:①第一坡度:i 1 (上坡为“+”,下坡为“-”) ②第二坡度:i 2 ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

公路缓和曲线原理及缓和曲线计算公式

一、缓和曲线 缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。 1.缓和曲线的作用 1)便于驾驶员操纵方向盘 2)乘客的舒适与稳定,减小离心力变化 3)满足超高、加宽缓和段的过渡,利于平稳行车 4)与圆曲线配合得当,增加线形美观 2.缓和曲线的性质 为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。 S=A2/ρ(A:与汽车有关的参数) ρ=C/s C=A2 由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。 3.回旋线基本方程 即用回旋线作为缓和曲线的数学模型。 令:ρ=R,l h=s 则 l h=A2/R

4.缓和曲线最小长度 缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。a1=0,a2=v2/ρ,a s=Δa/t≤0.6 2)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s) 3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度 超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。 发布日期:2012-01-31 作者:李秋生浏览次数:149 4)从视觉上应有平顺感的要求计算缓和曲线最小长度 缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。 《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。 5.直角坐标及要素计算

缓和曲线要素及计算公式

缓和曲线要素及计算公式 缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。 缓和曲线的主要曲线元素 缓和曲线主要有ZH 、HY 、QZ 、YH 、HZ 5个主点。 由此可得: q P R q T T h ++=+=2 tan )(α R P R E h -+=2 sec )(α s h L R L 2180)2(0+-=πβα 180 )2(0R L y πβα-= 式中:h T -缓和曲线切线长 h E -缓和曲线外矢距 h L -缓和曲线中曲线总长 y L -缓和曲线中圆曲线长度

缓和曲线与圆曲线区别: 1. 因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P 产生) 2. 缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q; 3. 由于有缓和曲线的存在,因此有缓和曲线角0β。 缓和曲线角 0β的计算: R L S 2/0=β(弧度)= R L S π90 (度) 内移值P 的计算: ()m R L P S 242 = 切线增长值q 的计算: )(240223 m R L L q S S -= P -缓和曲线内移值 q -缓和曲线切线增长值 0β-缓和曲线首或尾所采用的缓和曲线段分别的总缓和曲线角。 S L -缓和曲线两端各自的缓和曲线长。 R -缓和曲线中的主圆曲线半径 α-偏转角

缓和曲线主点桩号: ZH 桩号=JD 桩号-h T HY 桩号=ZH 桩号+S L QZ 桩号=HY 桩号+2y L YH 桩号=QZ 桩号+ 2 y L HZ 桩号=ZH 桩号+h L 另外、QZ 桩号、YH 桩号、HZ 桩号还可以用以下方式推导: QZ 桩号=ZH 桩号+ 2 h L YH 桩号=HZ 桩号-S L HZ 桩号=YH 桩号+S L 切线支距法计算坐标: 缓和曲线段内坐标计算如式: 2 2540S P p L R L L -=X s P RL L Y 63 = 进入净圆曲线段内坐标计算如式: ?? ??????- ?? ???+=R L L R q X s p π1802 sin ? ??????????- ?? ? ?? -???+=R L L R P Y s p π1802cos 1

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

缓和曲线要素及公式介绍

11.2.1 带缓和曲线的圆曲线的测设 为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。 目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。数学表达为: ρ∝1/l 或ρ·l = k ( k为常数) 若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有: ρ·l = R·l0 = k 目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R , 铁路缓和曲线的长度为:l0 = 0.09808V3/R 。 11.2.2 带缓和曲线的圆曲线的主点及主元素的计算 带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。

带缓和曲线的圆曲线的主元素及计算公式: 切线长 T h = q+(R+p)·tan(α/2) 曲线长 L h = 2l0+R·(α-2β0)·π/180° 外矢距 E h = (R+p)·sec(α/2)-R 切线加长 q = l0/2-l03/(240R2) 圆曲线相对切线内移量 p = l02/(24R) 切曲差 D h = 2T h -L h 式中:α为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。 11.2.3 缓和曲线参数推导 dβ = dl/ρ = l/k·dl 两边分别积分,得: β= l2/(2k) = l/(2ρ)

当ρ = R时,则β =β0 β0 = l0/(2R) 若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则: dx = dl·cosβ = cos[l2/(2k)]·dl dy = dl·sinβ = sin[l2/(2k)]·dl 考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线 长度l为参数的缓和曲线方程式: X = l-l5/(40R2l02)+…… Y = l3/(6Rl0)+…… 通常应用上式时,只取前一、二项,即: X = l-l5/(40R2l02) Y = l3/(6Rl0) 另外,由图可知, q = X HY-R·sinβ0 p = Y HY-R(1-cosβ0) 以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2) p = l02/(24R) 若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为: Xi = R·sinψi+q Yi = R·(1-cosψi)+p 11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核

曲线积分和格林公式学习总结

高 数 作 业 姓名:徐艳涛 班级:电子商务1133 学号:201161102348

曲线积分和格林公式学习总结 §1对弧长的曲线积分 1.1由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分 化为定积分的计算方法。 1、引例:求曲线形构件的质量 最后举例巩固计算方法的掌握。 2、s z y x f d ),,(? Γ 为第一类曲线积分,其中Γ为曲线,被积函数 ) ,,(z y x f 中的点) ,,(z y x 位于曲线Γ上,即),,(z y x 必须满足Γ对应的方程,222dz dy dx ds ++=是弧微分、弧长元素。 若Γ是封闭曲线,则第一类曲线积分记为s z y x f d ),,(?Γ 3、第一类曲线积分的应用: 1)、曲线Γ的长s=s d ?Γ 2)、若空间曲线形物体的线密度为),,(z y x f ,Γ∈),,(z y x ,则其质量M ds z y x f ),,(?Γ = ; 质心坐标为),,(z y x ,其中M ds z y x zf z M ds z y x yf y M ds z y x xf x ),,(,),,(,),,(???Γ Γ Γ = = = ; 对x 轴的转动惯量ds z y x f z y Ix ),,()(2 2 += ?Γ 4、第一类曲线积分的计算方法: 若空间曲线Γ参数方程为:?? ? ??===)() () (t z z t y y t x x ,β α ≤≤t ,则dt t z t y t x ds 222)]('[)]('[)]('[++=, s z y x f d ),,(?Γ =? β α )) (),(),((t z t y t x f t t z t y t x d )]('[)]('[)]('[2 2 2 ++。 例1 计算? Γ ds z y x )(2 2 2 ++,其中Γ:t x cos =,t y sin =,t z =,π 20≤≤t 解 因为222z y x ++=222sin cos t t t ++=21t +,dt dt t t ds 21)(cos )sin (22=++-=, 所以? Γ ds z y x )(2 22++) 3 82(22)1(3 2 20 πππ + = += ?dt t 例2 ?Γds y ||,其中Γ为球面2 2 2 2 =++z y x 与平面y x =的交线; 解 Γ的参数方程为t z t y x sin 2,cos = ==,π 20≤≤t ,dt dt z y x ds 2'''222=++=, 根据对称性得到? L ds y ||=2 4d cos 24 2 =?t t π 例3 计算?Γ ds z y x )(2 2 2 ++,其中:Γ???? ?==+1 222z a y x )0(>a 解 Γ:?? ? ??===1sin cos z t a y t a x ,π20≤≤t ,dt t z t y t x ds 222)]('[)]('[)]('[++=adt dt t t a =+=)cos (sin 222 ∴ ?Γ ds z y x )(2 22++) 1(2)1(2 2 20 +=+= ?a a adt a ππ

缓和曲线交点桩号计算公式

缓和曲线计算方法(ZH~HY)中线 首先计算直线段坐标方位角(即ZH~JD坐标方位角),及ZH点坐标。备用偏角公式:{30*L/(π*RLS)缓和曲线} 计算待求点偏角=((L/10)2 *(57296/(RLS ))/60。其中L=待求点至ZH距离、R=圆曲线半径、LS =缓和曲线长。 待求点方位角=直线方位角±待求点偏角。(曲线左转-偏角,曲线右转+偏角) 待求点至ZH点弦长=L—L5 /(90*R2 *LS 2),其中L=待求点至ZH距离(里程)、R=圆曲线半径。 待求点坐标: X=ZH点X坐标+COS(待求点方位角)*弦长 Y= ZH点Y坐标+SIN(待求点方位角)*弦长 缓和曲线计算左右边线坐标(ZH~HY) 左侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)—边线与中线夹角。 右侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)+边线与中线夹角。 左侧边线坐标: X=该点中线X坐标+COS(左侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离 右侧边线坐标: X=该点中线X坐标+COS(右侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离 圆曲线计算方法(HY~YH)中线 注:(ZY-YZ)同理,方位角=用直线方位角-待求点偏角 首先计算直线段坐标方位角(即ZH~JD坐标方位角),及HY点坐标。 求出缓圆点(HY)偏角=(LS*90)/(π* R)。 求待求点偏角=(L*90)/(π* R)。 其中: L=待求点至HY距离(里程)、R=圆曲线半径、LS =缓和曲线长。 待求点至HY点弦长=2* R*SIN(待求点偏角)。 待求点方位角=直线方位角±HY点偏角±待求点偏角,(曲线左转-偏角,曲线右转+偏角)。 待求点坐标: X=HY点X坐标+COS(待求点方位角)*弦长 Y=HY点Y坐标+SIN(待求点方位角)*弦长 圆曲线计算左右边线坐标 左侧方位角=(待求点方位角±偏角—边线与中线夹角)。 右侧方位角=(待求点方位角±偏角)+边线与中线夹角)。 左侧边线坐标: X=该点中线X坐标+COS(左侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离 右侧边线坐标: X=该点中线X坐标+COS(右侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离 缓和曲线计算方法(YH~HZ)中线 首先计算直线段坐标方位角(即ZH-JD坐标方位角),及YH点坐标。备用偏角公式:{30*L/

曲线积分和格林公式

什么是曲线积分?? 1. 设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界, 在L上任意插入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds) ,若Σ f(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx 或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;

)在推广之后都是以曲线积分的形式出现()。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出 4.格林公式 【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有 (1) ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy 其中是的取正向的边界曲线. 公式(1)叫做格林(green)公式. 【证明】先证

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

曲线积分与格林公式学习总结

曲线积分与 格林公式学习总结 王德才 201121102340 电子商务1133班

一、 曲线积分 1定义:设L 为xOy 平面上的一条光滑的简单曲线弧,f(x,y)在L 上有界,在L 上任意插入一点列M1,M2,M3…,Mn 把L 分成 n 个小弧段ΔLi 的长度为ds ,又Mi(x,y)是L 上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds ,记λ=max(ds) ,若Σ f(x,y)i*ds 的极限在当λ→0的时候存在,且极限值与L 的分法及Mi 在L 的取法无关,则称极限值为f(x,y)在L 上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L 叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2、对弧长的曲线积分:s z y x f d ),,(?Γ 为第一类曲线积分,其中Γ为曲线,被积函数) ,,(z y x f 中的点),,(z y x 位于曲线Γ上,即),,(z y x 必须满足Γ对应的方程,222dz dy dx ds ++=是弧微分、弧长元素。 若Γ是封闭曲线,则第一类曲线积分记为s z y x f d ),,(?Γ (1)第一类曲线积分的应用: 1)、曲线Γ的长s=s d ?Γ 2)、若空间曲线形物体的线密度为),,(z y x f ,Γ∈),,(z y x ,则其质量M ds z y x f ),,(?Γ =; 质心坐标为),,(z y x ,其中M ds z y x zf z M ds z y x yf y M ds z y x xf x ),,(,),,(,),,(???Γ Γ Γ ===; 对x 轴的转动惯量ds z y x f z y Ix ),,()(22+=?Γ (2)第一类曲线积分的计算方法: 若空间曲线Γ参数方程为:?? ? ??===)()() (t z z t y y t x x ,βα≤≤t ,则dt t z t y t x ds 222)]('[)]('[)]('[++=, s z y x f d ),,(?Γ=?β α))(),(),((t z t y t x f t t z t y t x d )]('[)]('[)]('[222++。 例1 计算? Γ ds z y x )(222++,其中Γ:t x cos =,t y sin =,t z =,π20≤≤t 解 因为222z y x ++=222sin cos t t t ++=21t +,dt dt t t ds 21)(cos )sin (22=++-=, 所以? Γ ds z y x )(2 22++)3 82(22)1(3 2 20 πππ +=+= ?dt t 3第一类曲线积分 (1 )公式:= 应用前提: 1)曲线L 光滑,方程可以写成为:

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

第二节 第二类曲线积分与格林公式

第二节第二类曲线积分与格林公式 一、单项选择题 ()()() ()()()()() 2()A.2 B.1 C. 1 1.L 1A 1,0B 0,1L 12A D.2 2.2 A. 1 B.e 1 1,0B 1,2 L y y L x y x y x y dx dy e x dx xe y dy e y +-=--++-=-+=-=+??设为直线上从点到的直线段,则设为抛物线-上从点到的一段弧,则()()2223222 C.e 5 .5 sin 3.A(2,0)B(0,0)31cos 1sin 3 A. e (12)1 B. 2e (12)1 C. 3e (12)1 D. 4x L D e x t t L x y xe dx y t x y y dy πππππππ-+=-?+?=-? ??+ ??-? ??----?? ??--???从点到点如果是摆线的一段弧,则的值为( )()()()()() 22223e (12)14..d d .d d .d d .d d 5.0,01,1d (sin )d 7 A. cos1 B. 4L L L L L A x y x y B x x xy y C x xy y D y x x y L y x x y x x y y ππ??--?? +++++=--+=-?????积分值与路径无关的是设是上从点到点之间的有向弧,则()()()()()()()() 26.L 1,0,0,00,1L 7.0,0077 7cos1 C. D. 4444 (3)d (2)d A. 0 B. 1 C. 2 D ,11,1. 1 A. L L x y x x y y x dy ydx L π----+-=-+=-?? 设为三个顶点分别为和的三角区域的边界,的方向为顺时针的方向,则为从点经点到点的折线,则1 B. 2 C. 0 D. 1 -

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类: |字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。 (一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量(center line survey) 、测纵断面图(profile) 、横断面图(cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量(road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量(center line survey)

缓和曲线)计算公式

高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角: α ⑥点ZH的坐标:x Z,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 x Z,y Z为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 x Z,y Z为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径

P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程 五、超高缓和过渡段的横坡计算

第十一章曲线积分及格林公式习题课

第十一章 曲线积分及格林公式习题课 一、原式111000(11xdx x x ydy = ++?+=∫∫∫ 二、原式40002(1)4a a x a a ae e dx e ad e ππθ= ++=?+∫∫ 三、原式2222001(cos sin cos sin )(1cos 4)44 t t t t dt t dt π ππ=+=?∫∫= 四、(1)22 22(1)((1))Q P x y 2 x y x y ????==???+,原式0= (2):1cos ,sin ,:02l x r t y r t t π=+=→ 原式()()2222222201cos sin 21l ydx x dy r t r t dt r x y ππ????==?+∫∫ v =? 五、2y xy ?′=2(),x x ?= 原式()()22 1,122 (1,1)(0,0) 0,01|22x y xy dx yx dy =+=∫= 六、 22 :()()1D x a y a ?+?≤ 左式11[ ()][()]22()()D D D x d x d d y x ?σ?σσ??=+=+≥=∫∫∫∫∫∫π §11.4 对面积的曲面积分 §11.5 对坐标的曲面积分(1) 一 . 1. :z Σ=,,22:D x y a +≤ 2dS = 原式D zdS a 3πΣ===∫∫∫∫ 2. 原式2222dS Rh h R R R ππΣ ===∫∫ 3. 原式1100(1(1)120 x D xy x y dx xy x y dy ?=??=??=∫∫∫ 二 . 222 1)2x y M zdS rdr 15πσπΣ+≤====∫∫∫∫ 三. (,,)(,,0)R x y z dxdy R x y dxdy ∑∑=±∫∫∫∫

关于不同类型缓和曲线 的判断及起点、终点曲率半径的计算方法

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:A^2=[(R大*R小)÷(R大-R小)]*Ls 由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,也就是R大=(A^2*R小)÷(A^2-R小*Ls)就可以

相关主题
文本预览
相关文档 最新文档