当前位置:文档之家› 望远镜的放大倍数

望远镜的放大倍数

望远镜的放大倍数
望远镜的放大倍数

望远镜的放大倍数

很多人觉得望远镜的放大倍数应该越大越好,其实望远镜的放大倍数是由很多因素决定的,实践证明,最适合手持观察的望远镜倍数应该是6-10倍,而以7,8倍为最多。市面上的望远镜倍数一般不会超过20倍,如果标出了几百倍,几千倍,那么是假的无疑。为什么倍数不做高些呢?事实上,高倍数的望远镜在技术上没有什么难点,只要愿意,做到任意高倍数都可以,但是,高倍数会带来很多负面影响。首先是亮度,倍数越高,物体的表面亮度会越差,因为物体面积被放大到正比于二次方放大倍数,亮度下降会非常明显。当然如果望远镜口径大,倍数可以适当高些,但是手持望远镜的口径一般不超过50mm.还有更重要的就是高倍带来的抖动,手持望远镜会有轻微的抖动,但是这种轻微的抖动被放大以后会变得非常明显。

一些厂家也以虚假的高倍来吸引消费者,实际上一架望远镜的合理倍数是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,用三角架固定观测的可以比手持观测高些。若选购手持观测的双筒望远镜,7-10倍之间足够用,最高不要超过12倍,否则倍数越高,观测视场就越小、越暗,观测效果反而下降,尤其是高倍带来的抖动也大大增加,使观测的景物无法稳定下来,很难正常观测。

所以作为我们日常户外用的望远镜,建议选择7-10倍。超过10倍尽量就不要选择呢了。如果超过10倍就建议使用三角架。

我们从国外最流行的望远镜就能看到望远镜应该选择什么倍数。全球超高清望远镜连续三年销售冠军- 美国博士能精英系列的倍率就是7-10倍。

博士能奖杯系列应该所有知道望远镜的地球人都知道,博士能奖杯234210是全球400-600美元中高级望远镜销售冠军。而奖杯8X32是全球迷你望远镜销售冠军。刚才说了望远镜的倍数与视野成反比,但是不同的望远镜,同样倍率,同样口径的视野相差很大。

放大倍率8倍棱镜玻璃Bak-4棱镜结构屋脊

口径32mm旋升眼罩有最近对焦3米

防水防雾有出瞳距离16.5mm脚架接口有

对焦方式中心调焦出瞳直径4mm千米视野131 米

内部充氮有防水防雾是镀膜完全多层镀膜

镀膜技术PC-3重量420g质量保修2年

结构:双筒望远镜

放大倍率:10倍

口径:28mm

眼罩:旋升

调焦方式:中间调焦

自动调焦:否

是否防水:是

金属外壳,外裹防滑橡胶

防雾功能:有

测距功能:无

三脚架接口:有

镜片镀膜:多层全镀膜

近焦:3.3m

出瞳距离:15.3mm

出瞳直径:2.8mm

1000米处视野:110m

黄昏系数(微光系数):15.3

棱镜系统:屋脊

棱镜材质:Bak-4

体积:110x90x32 mm

产品重量:380g

质量保修:2年

博士能奖杯8X32之所以可以成为全球迷你望远镜销售冠军,除了其60层高清镀膜和高清镜片外,更为重要的是其131米的超宽视野,视野范围超过了50MM口径的望远镜。上图就是博士能奖杯8X32.

一.望远镜倍数的理论知识

这部分仅仅需要稍微了解一下,搞不明白也没有关系。

望远镜的放大倍数就是用肉眼观察一个物体的张角与用望远镜在同一个地点观察相同物体的角度放大倍数。例如,肉眼看一只鸟的角度为6角分,而用一个望远镜观察为60角分,则该望远镜的放大倍数为10倍。

以上是理论上的解释。最直接的解释就是,肉眼看到高度为0.1米的物体,使用10倍的望远镜看到的是1米高度。这样就明白了。

那望远镜的放大倍数是如何计算的?(这部分其实不需要十分准确的理解)

倍数 = 物镜焦距 / 目镜焦距。

如果望远镜没有标明物镜焦距,可以实际测量一下。例如,量出太阳成像的直径,并根据太阳每米焦距成像直径为8.7mm计算即可。另外,物镜焦距一般能够从镜筒的长度估计出来。对于一些结构特殊的望远镜,光路有可能经过内部棱镜或平面镜折射会缩短实际镜筒的长度,屋脊形折射甚至在外面不易观察出来,折反式光学系统的光路在镜体内完成,也无法从外观上观测出来。还有,长焦的摄影镜头由于采用了特殊结构,尽管没有反射,也可以使得镜筒的长度远小于焦距。

二. 望远镜倍数的相关知识

望远镜的放大倍率一般分三等:中倍率(6-10倍)、大倍率(10-20倍)和变倍率(德式20-40倍,国产25-40倍)。军用望远镜过去以6倍、8倍居多,现在7倍的军用望远镜颇为流行(理由为人的目视距离约7km)。除美国、德国之外,俄罗斯、中国相继研制了7倍军用望远镜并装备部队。望远镜并非放大倍率越大越好,如果倍率超过10倍,通常应安装在三脚架上使用,如果仅用胳膊支撑使用,手的颤抖对观察的影响就很严重,观察效果就会变差。另外在评价选用望远镜时,还应考虑几何光力的大小。一般地,小光力望远镜(出瞳直径为2-3mm),适于良好照明条件下使用;中光力(出瞳直径为3-4mm)适于一般照明条件下使用,如我军62式8倍观察红外望远镜(出瞳直径为3.7mm);高光力(出瞳直径为4-6mm)不仅适合白天使用,而且适合于黎明及黄昏低照度条件下使用,如我军新式的Y/GG95-7型望远镜(出瞳直径为5.71mm)。

使用望远镜,首先要装定视度。手持望远镜向千米以外的远目标观察。分别对左、右眼进行装定,转动目镜视度转螺直至清晰为止,记住视度的分划数。继而装定目距。双眼通过望远镜进行观察,并扳动望远镜筒,使两个视场汇合成圆形,这时目距的分划数就是观察者的目距。第一次使用望远镜后,应记住自己的视度和目距,再将使用时就可以直接装定,使用望远镜观察时应双手持握,两肘夹紧紧靠胸前,这种姿势比较稳固,如果有工事或其他依托物,肘部应尽量支撑,特别是使用大倍率望远镜。在雪雾天气或强烈日光下使用望远镜,可戴上滤光镜,使观察较为清晰。关于倍数:每架望远镜上都标有主要参数,如7"35表示该镜为7倍,物镜口径35mm。一般6倍以下为低倍率,6 10倍为中倍率,10倍以上为高倍率。很多人总认为倍数越高越好,一些厂家也以虚假的高倍来吸引消费者,实际上一架望远镜的合理倍数是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,用三角架固定观测的可以比手持观测高些。若选购手持观测的双筒望远镜,7 10倍之间足够用,最高不要超过12倍,否则倍数越高,观测视场就越小、越暗,观测效果反而下降,尤其是高倍带来的抖动也大大增加,使观测的景物无法稳定下来,很难正常观测。

世界各国如美国、俄罗斯装备部队的望远镜品种虽很多,但大多以6 10倍为主,一些世界名牌如蔡司、博士能等所产望远镜同样也是以中倍率为多,这是因为一个清晰而稳定的成像是最重要的。

关于口径:口径越大,观测视场、亮度就越大,有利于暗弱光线下的观测,但口径越大,体积重量就越大,成本也越高,一般可根据需要在30 50mm之间选用。

关于视场:视场是指千米处可观测的视界,如1000/93mm,是指该望远镜在一千米处可以观测到93米宽的范围,也可以换算成度来表示为5c。视场大小的比较必须是在口径相近、倍数相同的条件下进行,视场大小关键在于棱镜系统目镜部分的设计,一般名厂的高级品种及军用望远镜都采用广角大视场设计,这种广角大视场望远镜会给人一种宽广舒适、心旷神怡的感觉。

视场大小非常重要,知名的望远镜市场都非常大,即使是迷你望远镜的视场也非常大。比如全球超高清迷你望远镜冠军,博士能传奇190125,作为一款25MM小口径,10倍倍率的望远镜,其视场也超过100米。

型号190125口径25 mm镜片镀膜完全多层镀膜

放大倍数10倍视野95米@1000米出瞳直径 2.56 mm

防滑设计有ED镜片是三脚架不支持

防水防雾是调焦方式中央聚焦出瞳距离15.5 mm

体积105X95X35 mm棱镜玻璃BAK-4重量230g

关于镀膜:镜片镀膜的作用是为了减少反光,使透光率增加,提高观测亮度。镀膜颜色不同与质量无关,镀膜越淡反光越小越好,但近年来各地市场上出现了反光很强、亮闪闪的各种红膜、黄膜望远镜,很吸引消费者,其实这种劣质镀膜反射损失了很多光线,使色彩偏冷变暗,清晰度下降,更有甚者有人竟将这种劣质红膜望远镜称为可暗光夜视红外线夜视望远镜来欺骗消费者,实际上真正的红外线夜视仪是光电倍增管成像,与望远镜原理完全不同,白天不能使用,价格昂贵且需电源才能工作。

结构材料:为降低成本,市场上普通望远镜大都采用塑料镜身、镜筒,只有少数高级产品及军用型采用全金属结构,价格昂贵,但其坚固耐用性是无可比拟的,笔者手中收藏的几架几十年前的苏制全金属军用望远镜外观虽十分陈旧,但各部分依然操作灵活,光学性能优异。

三. 如何选择适合自己的双筒望远镜倍数?

主要有以下要点需要掌握:

1. 作为普通的消费者,选择双筒望远镜时,无论你是户外旅游使用,还是在室内观看比赛,都不应该选择10倍以上的双筒望远镜。由于大倍率的双筒望远镜亮度系数过低,所以基本上10倍以上的双筒望远镜都没有真正高清望远镜。

2. 10倍以上的望远镜,只是适合特殊人群,需要配备三角使用的。

3. 作为室内使用,一般使用7倍的望远镜适宜。

4. 作为室外使用,一般使用8-10倍的双筒望远镜适宜。

5. 如果你需要携带方便,建议购买32MM以内的小口径望远镜,这种望远镜体积小巧,重量一般在400克以内。在选择小口径迷你望远镜时,一定要选择高清级别的,另外一定要注意视野范围大小。

四. 数码望远镜倍数?

数码望远镜是望远镜的一个重要分支,数码望远镜同时具备拍照、录像、摄像,图像传输、图像存储等功能。数码望远镜是望远镜和数码相机的一个完美结合,让你不仅能观赏到远处的美景,而且还能存储或者录下一路的风景!

数码望远镜具备的拍照功能,可以保存人生历程中经历的众多难忘瞬间,在美国,此款产品广受体育运动教练员、球探、猎鸟人、野生动物观察员、狩猎爱好者以及任何一个摄影、摄像爱好者的青睐。数码望远镜被主流科技媒体评为“百项科技创新”,由于结构简单,成像清晰,能够用较小的机身长度实现超长焦的效果,在加上先进的数码功能,在大大拓宽了望远镜的应用领域,可以广泛的应用在侦查、观鸟、电力、野生动物保护等等。

由于数码望远镜集合了光学技术和数码技术,对生产技术要求很高,要生产出高品质的数码望远镜,需要先进的光学系统和数码系统的无缝结合,所以,目前在市面上真正能生产出来数码望远镜的品牌很少,在全球只有ORPHA奥尔法和BUSHNELL博士能这两个一流的品牌才能生产数码望远镜。国内虽然很多小的厂家号称能生产数码望远镜,但是从技术实力,无论光学还是数码,这些厂家都缺乏基本的技术,所以生产出来的号称数码望远镜,成像和拍摄,摄像的效果都非常差,这种低端望远镜只能作为小孩科普学习使用,无法在实际中使用。

博士能其实并没有数码望远镜的生产技术,BUSHNELL这部分技术必须从ORPHA奥尔法购买,然后交给其代工厂生产。这是BUSHNELL永远技术更新晚于ORPHA 1-2年的原因。所以BUSHNELL的销量一直只有ORPHA的1/3左右。

ORPHA奥尔法从1995年开始投入大量的人力和物流,研发数码望远镜,2000年在世纪之交,ORPHA 在美国SHOT SHOW发布了其第一代的数码望远镜HD35,这是世界首台数码望远镜,搭配35万像素的数码

拍摄,没有视频摄制的功能,现在看来这是一款非常入门级的产品。但是在当时,数码相机的最高分辨率也就在几十万像素,所以HD35在当时是一款划时代产品,在SHOT SHOW上荣获了最具创意产品的称号。当时这款数码望远镜售价高达1000美元,2000年在北美市场销量突破1万台。正式这款HD35 宣布了望远镜进入到数码时代。

规格参数:

放大倍数: 8倍

相机像素: 1200万

物镜口径: 30毫米

棱镜玻璃:Bak-4

镀膜:HID专利多层全镀膜

视野: 103米/1000米处

最近聚焦: 3米

出瞳距离: 12毫米

出瞳直径: 3.75毫米

液晶材质: LCD

屏幕尺寸: 1.5英寸

最大扩展: 32G SD

三脚架接口: 有

重量: 388克

技术特点:

1200万像素,1080x720p HD

HD数码高清技术

8倍可变,30毫米口径

双目同步即时回放

1.5英寸LCD液晶屏幕

最大可扩展至32G SD

可拍照、可连拍、可摄像

多语言菜单

从2000年到2012年,ORPHA的数码望远镜从1代的HD35发展到底三代的HD500. 2013年2月,ORPHA 在德国纽伦堡户外展会上发布了其第四代数码望远镜HD1200. 当即引起巨大反响。上图就是这款HD1200数码望远镜。

奥尔法ORPHA搭载了8X30高清的光学镜头,8倍的倍率保证了在拍摄时的稳定性,30MM口径,保证其携带的方便性。其拍摄照片的分辨率最高可以达到1200万像素,可以满足各种大幅图像输出的要求。

更为主要的,其提供了超乎想象的1280*720的高清HD视频拍摄模式,可以说HD1200是集高清望远镜+高清数码拍摄+高清摄像的三位一体的专业设备。

在光学镜头上采用了ORPHA第四代镀膜技术,以保证更高的通光率,从而保证望远镜和拍摄的效果最佳。ORPHA HD1200的推出,在实际的光学性能和拍摄性能上大大的超出了竞争对手。根据最近美国OPTICAL TIMES的最新统计,2013年上半年ORPHA HD1200在全球的销量已经超过了30万台,占据全球所有数码望远镜60%的市场份额。成为新一代数码望远镜霸主。

同时ORPHA另外一款知名的FARSHOT远摄王单筒数码望远镜,是全球数码望远镜销量排名第二的数码望远镜,搭配3.0寸可折叠的大屏幕,提供最高1200万像素的拍照,640X480的摄像分辨率。8倍放大倍率,30MM口径,售价不到2000元。

技术参数:

望远镜规格8x30

图像传感器500万像素CMOS传感器

图像分辨率4023x3024、2592x1944、2048x1536、1600x1200、640x480

储存容量4G

镜头f=7.45mm/F/3.0

焦点范围一般1.2m~

TFT高清晰显示屏 3.0英寸彩屏

TFT屏旋转角度270°

PC摄像模式VGA(640×480),QVGA(320×240)

快门速度1/10~1/2650秒

自动10/20秒

彩色显示24bits或更高的

摄录模式单张拍/自拍/AV1/Audio/PCCAM

帧频30fps/15fps

录像有声影片

录音时间约10分钟

数位变焦8倍数位变焦

暴光/白平衡自动或手动

闪光灯模式自动制闪光/不强制闪光

电源锂电池

自动关机大概60秒(可调整)

传输标准USB1.1

TV制式NTSC/PAL

应用系统Windows98/2000/Me/XP

重量约360g (不含电池)

外形尺寸220(L)×60(H) ×50(W)mm

五.望远镜倍数过高会有什么负面效果?

1、望远镜倍数过大,会导致图像晃动。

手持双筒望远镜,一般以7-10倍为宜,超过10倍观测景物时晃动厉害,也由于图像的晃动,不利于观察图像的细节,会引起头晕,眼睛也容易疲劳,甚至引起恶心。固定望远镜倍数太大也会因为风吹草动引起震动。对于观测者来说,12倍是手持望远镜的极限倍数,而且观察时最好肘部有依托,身体或望远镜依附某些固定物体。理论上12倍及以上的望远镜是必须使用三脚架的。

2、望远镜倍数与视野范围成反比。

一般来讲,倍数越大,视场越小,也就是说可观察的区域就会越小。这不仅仅是因为目镜的原因,即便目镜在焦距变化时能够保持视在视角不变(例如60度),也会因观察区域的减小使得视野与放大倍数成反比变小。这样,就不利于发现和寻找目标,对于经常变换目标的观察观测者尤其不利。即便是找好了目标,架子稍有晃动就容易失去目标。

需要说明的一点,望远镜的倍数只是影响视野范围的一个因素。不同款式的望远镜,由于内部设计的不同,即使是同样口径,同样倍率情况下,视野范围(视场)也相差很远。

3、望远镜倍数与望远镜的亮度成反比

例如口径50mm,7倍时亮度(指数)为50,10倍为25、15倍为11、25倍为4,而物体的亮度的减小会直接影响人眼的观察效果(人眼的分辨能力、色彩能力均随着亮度的减小而变得越来越差)。一般来讲,白天亮度小于5、夜间亮度小于20时,观察暗弱物体就很难。大口径的望远镜在这一点上就具备优势,例如,口径300mm的反射镜,放大50倍时,亮度仍为36(非常亮)。另外,观察太阳系亮天体时,由于亮度高,基本不受此限制。

当然望远镜的亮度,不仅仅给望远镜的倍数有关系,还与望远镜的镀膜和镜片,内部光路结构有关系。

4、望远镜倍数过高会导致出瞳距离小

大倍数的取得一般通过短焦距的目镜来进行的。目镜焦距短,会造成镜目距离(即出瞳距离)小、视在角度小等遗憾,造成观察不舒服、不适合戴眼镜者使用等问题。

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

望远镜系统结构设计

光学课程设计 望远镜结构系统设计 姓名:曾茂桃 班级:光通信082 学号:2008031126 指导老师:张翔

摘要 该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW 法基本原理。并应用光学设计软件对系统误差、成像质量进行理论分析。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。 关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅

目录 一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选………………………………………………页 3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页 3.3内调焦望远镜…………………………………………………………页 四.目镜组的主要种类及其结构:………………………….. 页 4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页 4.3Porro、Roof棱镜结构及其特点…………………………………页 五.望远镜像差设计PW法………………………………….. 页 5.2物体在有限距离时的P,W的规化……………………………………页5.5用C ,表示的初级像差系数………………………………………页 P, W 六.光学系统中的光栅分析……………………………………页

新手入门天文望远镜使用小常识

新手入门——天文望远镜使用小常识 一、如何调试寻星镜 1、白天,先将主镜筒对准远处的一个目标(约500米远),如烟囱、空调室外机等。装上低倍率目镜(如20MM目镜)寻找目标。将镜筒大致对准目标后,调节焦距系统直到目标清晰,并使之处于主镜中心点,然后将脚架全部锁紧。 2、小心调整寻星镜上的三个螺丝,将主镜看到的目标调到寻星镜的十字架中心。 3、更换高倍率目镜(如10MM目镜),重复上述的步骤。调试时,主镜里的目标始终控制在寻星镜的十字架中心。 *寻星镜调准后,千万不要动它。观测月亮,尽量选择在“弯月”,这时能更清晰的看到环形山、月海等。 二、赤道仪的简介和调整 (一)赤道仪简介 赤道仪有三个轴: 1、地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2、极轴(赤经轴)。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3、赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)赤道仪的调整 极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1、主镜与赤道仪、三角架连接好,把将有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2、松开极轴(赤经轴)螺钉,把主镜旋转到左边或右边。松开平衡锤螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3、松开地平螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。 4、松开极轴与地平轴连接螺钉,上下扳动极轴,使指针对准观测地点的地理纬度,制紧螺钉。 5、松开赤纬轴螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。 6、从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。 7、拧动时角刻度盘,零时(0h)对准指针;拧动赤纬刻度盘,90o对准指针。 至此,望远镜就与地球自转轴、观测点子午面完全平行。

天文望远镜的光学形式与优缺点简介

望远镜的光学形式与优缺点简介 望远镜的光学形式分为折射式、反射式、折反射式等三种。 折射望远镜 折射镜的镜片结构是由二片到三片所组合的消色差设计。 优点:焦距长、视野较大、解析力强、拍摄出的星点锐利,星像明亮,最适合于做天体测量方面的工作、观测月球、行星、双星表现出色,较大口径的产品易于地面观景、非常适合做月面及行星的扩大摄影。影像清晰锐利,高对比度、较好的消色差设计、极好的APO高消色差、好的镜片几乎无色差、使用寿命很长,但须注意不要让镜片发霉、易于设置和使用、保养容易,很少或不需要维护、底片比例尺大、对镜筒弯曲不敏感、简单和可靠的设计、密封的镜筒避免了空气扰动图像并保护光学镜片、物镜永久固定式安装,无需校正。 缺点:价格高昂。大口径规格比较昂贵、较重、长度和体积比同等口径和焦距的牛顿反射或折反望远镜更大、存在一些色彩畸变(消色差双胶合透镜)、有残余的色差,从而降低了分辨率、优质折射镜的物镜是2片双分离消色差物镜或3片复消色差物镜。不过,消色差或复消色差并不能完全消除色差,所谓消色差物镜只是对白光中7种色光的2种色光(红和兰光)消除色差,而复消色差物镜除了对2种色光

消色差之外,还对第3种色光(黄光)消除了剩余色差。短焦的折射镜有周边像差的现象,但这些缺点现已可解决。口径无法做太大,增大口径的成本因素限制了商业产品的最大尺寸,经济的设计大多为中小口径产品、巨大的光学玻璃浇制也十分困难,对紫外、红外波段的辐射吸收很厉害、到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。反射式望远镜: 优点:口径较大,影像明亮。成本低,没有色差,可做较大的口径,适合做星云、星团的摄影。没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。 缺点:口径越大,视场越小,光轴需常调整,反射镜面镀膜易氧化,物镜需要定期镀膜(三至五年),否则星星愈看愈暗,保养较为繁复。反射镜的慧差和像散较大,使得视野边缘像质变差,周边像差使星象肥大。彗形像差,这已被克服。 常用的反射镜有牛顿式和卡塞格林式2种。 牛顿反射望远镜 光学系统简单、价格便宜,球面反射镜在后端,目镜在前端侧面;牛顿反射望远镜采用一面凹面镜作为主要物镜,光进入镜筒的底端,然后折回开口处的第二反射镜,再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。牛顿反射望远镜用

望远镜光路设计

至今没有一个光学系统是完美的。为了平坦且清晰的成像,往往必须把光学系统设计的十分复杂。如此一来,不但透光度变差,还得付出很高的制造成本。因此简单的镜片组而且能保有高品质成像的光学系统是光学设计的努力目标。 一个好的光学系统都出自设计者的巧思。它能在最简单的镜片组合下产生最佳的成像品质。不过在许多设计中,往往会遇到球面像差与彗形像差难以取舍的窘境(天文望远镜光学与机械)。当你能同时处理这些像差的时候,系统却又发生严重的色差。最后好不容易解决了所有的色像差,却又发生成像的变形。因此光学系统的设计在在考验设计者的经验与智力。希望透过以下的天文望远镜的演进,让你了解前人的成果。 折射式望远镜系统 由于白光经过透镜会有色散的现象(Dipersion),因此使得光学系统除了球面像差与彗形像差之外又多了影像不清晰的光源。由上图可知,蓝光的折射率较大,其次为绿光,最后为红光,因此不同颜色的入射光产生,却有不同的聚焦点。好的光学系统除了成像品质之外,还必须考虑消色差的效果。 基本上,我们在处理可见光的光路分析时,是用蓝色的F line(486.13nm)、红色的C line(656.27nm)与绿色的e line(546.07nm) 作为分析的主要光源。要查看镜片的色差情形,可以用色散数值V( Dispersion Number or Abbe number)。V越大表示镜片的色散的情况越小。 V=(ne-1) / ( nF-nC) 对於一个D= 5公分,f=20公分的两片镜片组合,我们可以由下图的光路分析了解他们各自聚焦的一致性。其实这就是球面像差的检测工作! D=5公分f=20公分 第一片镜片R1=18公分R2=-19公分中心厚度=0.84公分 间隙0.1公分 第二片镜片R3=-19公分R4=-22公分中心厚度=0.98公分

赤道仪详细使用方法

赤道仪的使用方法 追踪因日周运动而移动的天体,最简单的方法是使用赤道仪式台架,确实比经纬仪方便得多。只要明白了使用的要领,作目视观则或照相均会产生很好的效果。晚间的星空,以北天极和南天极联机的自转轴为中心,每日旋转一次,称为日周运动。在赤道仪的台架上,把极轴(或称赤经轴)向北天极延长(在南半球时向南天极),就能简单地追踪星星的移动。换句话说,让赤道仪的极轴和地球的地轴平行,这个作业称为极轴调整,使用赤道仪时绝不能忘记,事先要与极轴对准平。 赤道仪的台架分为附有赤经、赤纬微动杆的, 以及附装极轴马达追踪式两种。附有微动杆的比经纬台的星星追踪方便,但须连续手动以便继续追踪,如果预算许可,最好是采用马达追踪式,会方便得多。必须调整赤道仪赤纬轴和极轴全体的平衡。如果平衡状态调节良好,固定螺丝放松时镜筒会静止,赤道仪的运转就会很圆滑,使用起来很平稳。 近年生产商在高级的赤道仪加进了GOTO功能,使用者可以指令望远镜自动指向观察目标。但耗电量大,野外观星时要携带大型蓄电池。 赤道仪的种类有很多。业余天文爱好者最常用的赤道仪有两种:分别是德国式及叉式赤道仪。德国式赤道仪适合折射、反射及折反射望远镜。而叉式赤道仪一般配合折反射望远镜使用。叉式赤道仪比德国式优胜的是不须要平衡锤,减轻仪器重量,方便野外观星。但是业余级数的叉式赤道仪稳定性不及德国式赤道仪。博冠系列望远镜用的赤道仪是德国式的赤道仪(如图)。 那我们就主要讲讲德国式赤道仪的使用方法吧! (一)赤道仪简介 肉眼可见的天体,用寻星镜就可对准,赤道仪之作微调跟踪之用。而深空天体就必须利用赤道仪的时角、赤纬度盘才能找到。 赤道仪有三个轴: 1.地平轴。垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。绕地平轴旋转可调整望远镜的地平方位角。 2.极轴。一端与地平轴相连,上下扳动极轴可调整地平高度角。另一端与赤纬轴成90o角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。 3.赤纬轴。与极轴成90o相连,上端与主镜筒成90o相连,以保证镜筒与极轴平行。下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。 (二)对准、观测深空暗天体 第一步:极轴调整。使望远镜极轴和地球自转轴平行,指向北天极。 1.主镜与赤道仪、三角架连接好,把有“N”标志的一条腿摆在正北方。调整三角架高度,使三角架台水平。 2.松开极轴(赤经轴)制紧螺钉,把主镜旋转到左边或右边。松开平衡锤制紧螺钉,移动平衡锤,使望远镜与锤平衡。把望远镜旋回上方,制紧螺钉。 3.松开地平制紧螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。

光学课程设计 ——望远镜系统

望远镜系统结构设计 指导教师: 张 翔 专 业:光信息科学与技术 班 级:光信息08级1班 姓 名: 学 号: 20080320 光学课程设计

目录 第一部分设计背景 (1) 第二部分设计目的及意义 (1) 第三部分望远镜介绍 (1) 3.1望远镜定义 (1) 3.2望远镜分类及相应工作原理 (2) 第四部分望远镜系统设计 (3) 4.1开普勒望远镜 (3) 4.2望远镜系统常用参数 (4) 4.3外形尺寸计算 (6) 4.4伽利略望远镜 (8) 4.5物镜组的选取 (9) 4.6望远镜像差类型及主要结构 (10) 4.7双胶物镜与双分离物镜分析 (12) 4.8内调焦望远物镜分析 (14) 4.9目镜组的选取 (14) 4.10目镜主要像差及分析 (17) 4.11棱镜转像系统 (17) 4.12转折形式望远镜系统 (18) 4.13光学系统初始结构参数计算方法 (18) 4.14应用光学系统中的光栅 (20) 第五部分设计总结 (21) 第六部分参考文献 (21)

一.设计背景 在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。 其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。 二.设计目的及意义 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、 物镜组、目镜组及转像系统的简易或远离设计。了解光学设计中的PW法基本原理。 三.望远镜介绍 3.1 望远镜定义 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽吗射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 【望远镜基本工作示意图】

WorldWide_Telescope_License 2007万维望远镜使用说明书

MICROSOFT PRE-RELEASE SOFTWARE LICENSE TERMS MICROSOFT WORLDWIDE TELESCOPE These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its affiliates) and you. Please read them. They apply to the pre-release software named above, which includes the media on which you received it, if any. The terms also apply to any Microsoft ? updates, ? supplements, ? Internet-based services, and ? support services for this software, unless other terms accompany those items. If so, those terms apply to those items. By using the software, you accept these terms. If you do not accept them, do not use the software. As described below, using some features also operates as your consent to the transmission of certain standard computer information for Internet-based services. If you comply with these license terms, you have the rights below. 1. INSTALLATION AND USE RIGHTS. ? You may install and test any number of copies of the software on your premises. ? You may create tours solely (a) for personal and/or non-commercial use or (b) for submission to Microsoft for consideration of inclusion in WorldWide Telescope, subject to a Tour Submission Agreement. 2. INTERNET-BASED SERVICES. Microsoft provides Internet-based services with the software. It may change or cancel them at any time. a. Consent for Internet-Based Services. The software feature described below connects to Microsoft or service provider computer systems over the Internet. In some cases, you will not receive a separate notice when they connect. By using this feature, you consent to the transmission of this information. Microsoft does not use the information to identify or contact you. i. Computer Information. The following feature uses Internet protocols, which send to the appropriate systems computer information, such as your Internet protocol address, the type of operating system, browser and name and version of the software you are using, and the language code of the device where you installed the software. Microsoft uses this information to make the Internet-based service available to you. ? Web Content Features. Features in the software can retrieve related content from Microsoft and provide it to you. To provide the content, these features send to Microsoft the type of operating system, name and version of the software you are using, type of browser and language code of the device where you installed the software. Examples of these features are tour authoring assistance, tour search webpage, and web help. You may choose not to use these web content features. ii. Use of Information. We may use the computer information, to improve our software and services. We may also share it with others, such as hardware and software vendors. They may use the information to improve how their products run with Microsoft software. b. Misuse of Internet-based Services. You may not use this service in any way that could harm it or impair anyone else’s use of it. You may not use the service to try to gain unauthorized access to any service, data, account or network by any means.

76700天文望远镜怎么装

76700天文望远镜怎么装 安装顺序:三脚架先支起来,。然后装上镜筒。镜筒固定后,在镜筒上面安装寻星镜(用来初步寻找目标物体),然后装上目镜(装在调焦筒中)。使用巴罗夫镜的时候,先装巴罗夫镜,再装目镜。(装巴罗夫镜,需要把安装目镜的装置上的盖子拿掉。) ★反射式/焦距:700mm,通光口径:76mm ★可组35倍,56倍,175倍加1.5x正像镜可组52倍,84倍,263倍加3x增倍镜可组156倍,252倍,789倍。(望远镜放大倍数=物镜的焦距

/目镜的焦距*搭配上的镜倍率(随不同目镜焦距配置不同而改变放大倍数) ★目视贯穿星等:11.40等 ★理论分辨率:1.842 角秒,这相当于可以看出1000米处相距0.893 厘米的两个物体。 ★光力:0.109 巴罗夫镜作用(Barlow lens) 它的作用就是延长主镜(物镜)的焦距,以达到增加放大率的效果。 物镜通光口径60mm,焦距900mm; 目镜三个,焦距分别为4mm,12.5mm,20mm,所以只用目镜的倍数分别为:225,72和45倍。 1.5倍正像镜一个,与三个目镜的组合倍数分别为:338,108和68倍。 3倍巴洛夫镜一个,与三个目镜的组合倍数分别为:675,216和135倍(巴洛夫镜与正像镜不能同时使用)。 90°反射镜一个(成倒像,适合看天体,不适合看风景) 45°反射镜一个(成正像,风景天体皆可) 5倍寻星镜一个(寻星镜成倒像,不适合单独拿下来做小望远镜,但它成像确实还不错) 月亮镜一个,能有效控制色散,适合看月亮时使用。 太阳镜一个,观测太阳时用,但基于对眼睛的爱护,不建议观测太阳,切记切记!

光学课程设计望远镜系统结构设计

光学课程设计 ——望远镜系统结构设计 姓名: 学号: 班级: 指导老师:

一、设计题目:光学课程设计 二、设计目的: 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW法基本原理。 三、设计原理: 光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统. 常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。 物镜组(入瞳)目镜组 视场光阑出瞳 1 '1ω 2 '2'ω3 'f物—f目'l z '3 上图为开普勒式望远镜,折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸

透镜形式。为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。 伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。伽利略望远镜的优点是结构紧凑,筒长较短,较为轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。其原理图如下: 物镜组 目镜组 出瞳 '1 F F 2 f 2 d '1 f 伽利略望远镜示意图 为了更好的了解望远镜,下面介绍放大镜的各种放大率: 望远镜垂轴放大率:代表共轭面像高和物高之比。计算公式如下 1 '2 'f f -=β 望远镜角放大率:望远镜共轭面的轴上点发出的光线通过系统后,与光轴夹角的正切之比。计算公式如下: 2 '1'f f -=γ 望远镜轴向放大率:当物平面沿着光轴移动微小距离dx 时,像平面相应地移动距离dx',

天文望远镜使用手册演示教学

学用户手册 很多天文爱好者在购买天文望远镜的时候都是很惘然,到底哪一款天文望远镜最适合自己,能否看到星星,能看清楚到什么程度,等等疑问,而且对于一些天文望远镜的型号,参数,光学系统也不了解。在购买天文望远镜之前,让我们大家一起来了解一下。首先来说说天文望远镜的光学系统吧。 天文望远镜有折射式天文望远镜、反射式天文望远镜和折反射式天文望远镜 1以透镜作为物镜的,称为折射望远镜.使用起来比较方便,视野较大,星像明亮,但是有色差,从而降低了分辨率。优质折射镜的物镜是两片双分离消色差物镜或3片复消色差物镜。不过,消色差或复消色差并不能完全消除色差。 折射望远镜用透镜系统聚光。小的时候大部分人有这样的经验,在晴天我们用放大镜点燃一片树叶或纸。这个实验的原理就是放大镜把表面的光聚焦成一点,使这一点的温度特别高,即光度特别大。一架折射望远镜用透镜组完成同样的事情。在折射望远镜大的一端有两片大小相等但不同类型的镜片。当光通过它们,它们共同工作把光聚焦在望远镜筒另一端。在这一点,不管望远镜指向哪里都会成像。 2用反射镜作为物镜的,称为反射望远镜.反射镜天文望远镜的优点是没有色差,但是,反射镜的彗差和像散较大,使得视野边缘像质变差。常用的反射镜有牛顿式和卡塞格林式两种。前者光学系统简单、价格便宜,球面反射镜在后端,目镜在前端侧面;后者光学系统的主、副镜为非球面,主镜和目镜都在后面,成像质量较好,价格也较贵。一般说来,对天文普及工作,特别是对观测经验不足的爱好者来说,牛顿式反射望远镜使用起来不太方便,其物镜又需经常镀膜,维护起来也麻烦 3既包含透镜,又有反射镜的称为折反射望远镜。折反射天文望远镜镜兼顾了折射镜天文望远镜和反射镜天文望远镜的优点:视野大、像质好、镜筒短、携带方便。与等焦距和同等口径的折射望远镜相比,价格还不及三分之一。折反射镜有施密特—卡塞格林式我们一般简称施卡和马克苏托夫—卡塞格林式,我们一般简称马卡。

光学课程设计望远镜系统结构参数设计

光学课程设计 ——望远镜系统结构参数设计

一设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测及识别;激光大气传输、惯性约束聚变装置等等…… 二设计目的及意义 (1)、熟悉光学系统的设计原理及方法; (2)、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或相差;

(3)、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识(高斯公式、牛顿公式等)对望远镜的外型尺寸进行基本计算; (4)、通过本次光学课程设计,认识和学习各种光学仪器(显微镜、潜望镜等)的基本测试步骤; 三设计任务 在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。并介绍光学设计中的PW法基本原理。同时对光学系统中存在的像差进行分析。四望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。2.望远镜的一般特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体时, 物镜的像方焦点和目镜的物方焦点重合,光学间隔d=o。当月在观测有限距离的物体时, 两系统的光学问隔是一个不为零的小数量。作为一般的研究,可以认

望远镜4个不能选 望远镜小知识

常识关于倍 也就是望远镜的放率率大。人眼通望过远镜观远察方物时,由于望体远镜扩了大体对物人的张角眼,使眼人得觉物体象被拉好放大近了更容,易分清晰了。辨也这是远镜望的主用途要。所,选以择合的放大适倍是选择望远率的镜一项第要重指。一标般来说,远镜观望察倍率越大觉得物体就被拉得近,那望远镜越不是是率倍大越好越?呢当然不,用是于日自然常察观的远镜,倍率望越,观察高的舒适度就会低减,这因为人体是内部来本就一是微个环循动运体,手持着望镜远双的手为因呼吸脉博和跳动起微微引的规则颤不,带动整动观组透镜也微察微抖动加,气流的抖动上约("12"),~同被放时的大空气杂质望在远系镜统里也成形糊模动的影像运会,观给者察睛眼视造成不觉应适也就影响,观了察者的适度。舒此,因使1用0 以倍的上品产,手持观察,时最选好身择体和臂手依托有和撑物体支保证观察质以量。超过02 倍的持式望手镜远最采好用三架固定使用脚。关视于场望镜能够远到的看无限远区的域角径叫直视做场用。号符ω表示对于。一架远望来说,视镜同目镜场的焦距关,目有镜焦的距越,短远望的视镜越小场换句。说话望,镜远放大的越大率视场就,小越。与视场切相关的密还有物镜距焦望,远镜的对口径越大,聚光能力就相越强,通望过镜远看的到场内视物就体明越亮显。,然效有径越口,大望远镜性的就能好。越因此选,择好望远镜的,场指标很视重要。于关出距瞳为离了观察者让方便确眼定和镜望远镜之的间察观离距,每望远架镜都用一组眼会杯固定出瞳距来,离般一瞳距出不能小离于01 米,毫为避使用时免睫毛眼触镜面到影观响。测于军用仪器,为对了使瞄手准不摘防毒面掉具可进行观察,就瞳距离不应小出于20 毫米平。

光学望远镜的发展简介

光学望远镜的发展简介 天文学是研究天体和宇宙的科学,观测是天文学研究的主要实验方法.在17世纪以前,天文学家只能用肉眼观测星空中几千个比较亮的天体.17世纪初,伽利略发明了天文望远镜,人类的眼界随之大为开阔,望远镜成了近代天文观测的眼睛.本文就光学天文望远镜的发展作一简单介绍. 一、折射式望远镜 1.伽利略望远镜 图1 第一个望远镜是荷兰的一位眼镜商人里帕席于1608年做成的.据说,里帕席无意间将两块镜片重叠并使其相隔一定的距离观看时,发现远处教堂上的风标明显地放大了.于是,他把两块镜片装在一个铜管的两头,发明了最初的望远镜,这引起了许多人的兴趣.1609年,当伽利略得知荷兰人发明了望远镜的消息后,他激动不已,立即亲自动手制作望远镜.他用一个凸透镜作为物镜,一个凹透镜作为目镜,于1609年7月初制成了倍率为3的望远镜,这种望远镜的构造如图1所示,这种光学系统现称为伽利略望远镜.经过进一步的改进,到1610年9月,将倍率提高到了33倍.伽利略用自制的望远镜观察天空,发现了月球表面的环行山、太阳黑子、木星的卫星等一系列重大的天文现象,从此天文学进入了望远镜时代. 2.开普勒望远镜 图2 鉴于伽利略望远镜放大倍数和视场都较小的缺点,1611年,德国天文学家开普勒设计了用两片双凸透镜分别作为物镜和目镜的望远镜,使得放大倍数和视场都有了明显的提高,如图2所示,这种光学系统现称为开普勒望远镜.用这种望远镜看到的像是倒立的,这会使人很不习惯,不过对于天文观测则毫无影响.从17世纪中叶起,开普勒望远镜在天文观测中得到了普遍的应用. 当时的望远镜都采用单个透镜作为物镜,存在着严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,因此镜身越来越长,最长的竟达65米.直至英国光学仪器商杜隆用冕牌玻璃和火石玻璃制造了消色透镜,从此,长镜身望远镜被消色差折射望远镜所取代. 二、反射式望远镜 图3 由于伽利略和开普勒望远镜均存在明显的色差,所以人们又发明了消色差的反射式望远镜.牛顿在清楚地解释了“色差”问题后,于1688年制作了一种与众不同的反射式望远镜.他采用球面镜作为主镜,将金属磨制成一块凹面镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,如图3所示,这种光学系统称为牛顿式反射望远镜.它的球面镜虽然会产生一定的相差,但用反射镜代替折射镜却是一个巨大的成功.

双筒棱镜望远镜设计

汉口学院 《应用光学》 课程设计报告 报告题目:双筒棱镜望远镜设计学生姓名: 学号: 专业班级: 授课老师:

二O一四年十一月 双筒棱镜望远镜设计 设计任务与要求 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=6倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D= 30mm); 3、望远镜的视场角2ω=8°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离>=14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz ′>8~10mm 目录 一、外形尺寸计算 二、初始结构的选型 三、物镜初始结构参数的计算 四、物镜zemax的初始上机数据及像差图示

五、物镜zemax 的校正数据及像差图示 设计步骤 一、 外形尺寸计算 已知望远镜参数: Γ=6,入瞳直径30D mm =,相对孔径 ' 1:4D f =,2ω=8°,L=110mm ; 视场边缘允许50%的渐晕; 棱镜最后一面到分划板的距离>=14mm 1、求1'f ,2'f 物镜焦距'14120f D mm =?= 目镜焦距''12 120 206 f f mm == =Γ 2、求'D 出瞳直径'5D D mm = =Γ 3、求视场直径 16.7824mm =tan4f 2=D '1 ??视 4、求目镜视场 5.452tan =tan ''=?Γωωω 2ω

该望远系统采用普罗I型棱镜转像,普罗I型棱镜如下图: 将普罗I型棱镜展开,等效为两块平板,如下图: 无渐晕时候,,现在有25%的渐目镜口径D 目 晕,所以 由设计要求:视场边缘允许50%的渐晕,可利用分划板拦去透镜下部25%的光,利用平板拦去透镜上部的25%的光,这样仅有透镜中间的50%的光能通过望远系统,使像质较好。

望远镜基本知识

望远镜基本知识 1.望远镜的表示方法 望远镜的基本表示方法是:倍率x物镜口径(直径,mm),不同类型的望远镜的规格表示方法只有一些细小的差距,但都不脱离这个模式,下面一一说明: 1.1、固定倍率的望远镜(也是最常见的望远镜)的表示方法:倍率x物镜口径(直径,mm),比如7x35表示该种望远镜的倍率为7倍,物镜口径35毫米;10×50表示该种望远镜的倍率为10倍,物镜口径为50 毫米。 1.2、连续变倍望远镜规格的表示方法:连续变倍望远镜是用“最低倍率-最高倍率x物镜口径(直径mm)”来表示,如8-25x25表示该种望远镜的最低倍率是8倍、最高倍率是25倍、在8倍和25倍之间可以连续变换、口径是25毫米。 1.3、固定变倍望远镜的表示方法:低倍率/高倍率(/更高倍率)x物镜口径(直径mm),有时候也用最低倍率-最高倍率x物镜口径(直径mm)的表示方法,例如15/30*80指倍率为15倍和30倍固定变倍、口径为80毫米的望远镜。 1.4、防水望远镜的表示方法:一般在望远镜型号的后面加WP (Water proof),如8X30WP指倍率为8倍,物镜口径为30毫米的防水望远镜。 1.5、广角望远镜的表示方法:一般在望远镜型号的后面加 WA(Wide Angle),如7X35WA指倍率为7倍,物镜口径35毫米的广角望远镜 一些经销商把前后两数字相乘的积当作望远镜的倍率来哄骗消

费者是不道德的,更有一些经销商随意扩大两个数字来欺骗消费者,我曾经见过一款10x25的DCF望远镜,标注的规格竟是990x99990,天!990倍的、口径是99990mm的望远镜是什么概念? 2.望远镜的倍率指的是什么 望远镜的倍率是指一架望远镜的倍率是指望远镜拉近物体 的能力,如使用一具7倍的望远镜来观察物体,观察到的700米远的物体的效果和肉眼观察到的100米远的物体的效果是相似的(当然,由于环境的影响效果要差一些)。很多人总认为倍率越高越好,一些经销商和厂家也以虚假的高倍来吸引、欺骗消费者,市场上有些望远镜竟然标为990倍!实际上,一架望远镜的合理倍率是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,带支架的的可以比手持的高些。倍率越大,稳定性也就越差,观察视场就越小、越暗,其带来的抖动也大增加,呼吸的气流和空气的波动对其影响也就越大。手持观测的双筒望远镜,7-10倍之间是最合适的,最好不要超过12倍,如果望远镜的倍率超过12倍,那么手持观察将会很不方便。世界各国军用的望远镜也大多以6-10倍为主,如我国的军用望远镜主要是7倍和8倍的,这是因为清晰稳定的成像是非常重要的。 3.望远镜的口径指的是什么 口径是指望远镜物镜的直径。口径越大,观测视场、亮度就越大,有利于暗弱光线下的观测,但口径越大体积就越大,一般可根据需要在 21-50mm之间选用。近年来市场上也出现了一些口径为70mm、80mm、100mm 的大口径望远镜产品,体积很大且配有支架。 4.什么是望远镜的视场 视场(Field of view)是指在一定的距离内观察到的范围的大小。视场越大,观测的范围就越宽广越舒适,视场一般用千米处视界(可观测的宽

实验一:天文望远镜原理与结构

实验一:天文望远镜原理与结构 一、实验目的: 1、熟悉天文望远镜的结构; 2、熟练掌握天文望远镜的使用; 3、熟悉天文台的基本设施以及日常使用; 二、实验条件和设施 天文望远镜、天文台 三、实验方案和步骤 (一)天文望远镜的结构 口径:物镜的直径,口径大小决定望远镜的集光力与解像力,口径愈大愈亮,解像力愈高; 焦距:从物镜到焦点距离,一般以“f”表示,单位为mm.如f=600mm表示焦距600mm; 焦比:口径(mm)=焦比;相当于镜头的光圈,以“F”表示;F值越低,亮度越高; 倍率:物镜焦距(mm)÷目镜焦距(mm),物镜焦距越长,或更换越短焦的目镜,倍率越大; 光轴:望远镜中光路的轴心,若光轴偏斜,望远镜便不能发挥最佳性能,严重时可能无法成像; 镀膜:在镜片表面镀上一层特殊的金属化合物,目的是减少反光,增加光线透射率; 寻星镜:是一支低倍的小望远镜同架在主镜上,利用其视野较广的特性,方便搜索天体; 导星镜:主镜在进行较长时间的观测时,为了及时纠正跟踪中的误差,在主镜旁设置一个起监视作用的望远镜,它就叫导星镜,导星镜的口径、焦距与放大倍数均要比寻星镜大,视场比寻星镜小(观测前同样需要校调导星镜光轴与主镜光轴平行)。这样,当观测目标偏离主镜中心时,在导星镜中就能反映出来,可以及时将它调回视场中心。 赤道仪 赤道仪的功能除了承载望远镜之外,最重要的是藉由步进马达带动赤经本体,使望远镜能跟随星体移动,常见的有德式与叉式两种,其中又以德式最普遍,以下就以德式赤道仪做简单介绍。 极轴望远镜:天球北极与南极的连线称为极轴,极轴望远镜的功能就是校正赤道仪赤经轴,使其与极轴平行,一般都是内藏在赤经本体之中。 赤经轴:赤道仪中与极轴平行的旋转轴称为赤经轴。 赤纬轴:赤道仪中与极轴垂直的旋转轴称为赤纬轴。 重锤:安装在赤纬轴底部,可上下调整,用来平衡望远镜的重量,平衡的步骤在德式赤道仪中是非常重要的,关系到赤道仪的寿命。 马达:带动赤经轴旋转使赤道仪转速与地球自转同步,需要配合控制器使用。 刻度盘:赤经轴与赤纬轴上都有刻度盘,受限于精度,刻度盘都仅供参考用。

天文望远镜的光学性能

天文望远镜的光学性能 在天文观测的对象中,有的天体有视面,有的没有可分辨的视面;有的天体光极强,有的又特微弱;有的是自己发光,有的是反射光。观测者应根据观测目的,选用不同的望远镜,或采用不同的方法进行观测;一般说来,普及性的天文观测多属于综合性的,要考虑"一镜多用"。选择天文望远镜时,一定要充分了解它的基本光学性能。评价一架望远镜的好坏,首先要看它的光学性能,其次看它的机械性能(指向精度与跟踪精度)是否优良。光学望远镜的光学性能一般用下列指标来衡量: 1.有效口径(D)--指物镜的有效直径,常用D来表示; 指望远镜的通光直径,即望远镜入射光瞳直径。望远镜的口径愈大,聚光本领就愈强,愈能观测到更暗弱的天体,它反映了望远镜观测天体的能力,因此,爱好者在经济条件许可的情况下,应选择较大口径的望远镜。 2.焦距(F) 望远镜的焦距主要是指物镜的焦距。物镜焦距F是天体摄影时底片比例尺的主要标志。对于同一天体而言,焦距越长,天体在焦平面上成的像就越大。 3.相对口径(A) 相对口径又称光力,它是望远镜的有效口径D与焦距F之比,它的倒数叫焦比(F/D)。有效口径越大对观测行星、彗星、星系、星云等延伸天体是非常有利的,因为它们的成像照度与望远镜的口径平方成正比;而流星等所谓线形天体的成像照度与相对口径A和有效口径D的积成正比。故此,作天体摄影时,应注意选择合适的有效口径A或焦比。一般说来,折射望远镜的相对口径都比较小,通常在1/15~1/20,而反射望远镜的相对口径都比较大,通常在1/3.5~1/5。 4.视场(ω) 能够被望远镜良好成像的区域所对应的天空角直径称望远镜的视场。望远镜的视场与放大率成反比,放大率越大,视场越小。不同的口径、不同的焦距、不同的光学系统与质量(像差),决定了望远镜的视场的大小(CCD的像数尺寸有时也会约束视场的大小);一般科普用反射望远镜的视场小于1度,而施密特望远镜消像差比较好,故它的视场可达几十度。 5.放大率(M)--指目视望远镜的物理量,即角度的放大率。 目视望远镜的放大率等于物镜焦距与目镜焦距之比,也等于物镜入射光瞳与出射光瞳之比。因此,只要变换不同的目镜就能改变望远镜的放大倍数,但由于受物镜分辨本领,大气视宁静度及出瞳直径不能过小等因素的影响,望远镜的放大倍率也不是可以无限制的增大;一般情况应控制在物镜口径毫米数的1-2倍(最大不要超过300倍)。不少人提到天文望远镜时,首先考虑的就是放大倍率。其实,天文望远镜和显微镜不一样,地面天文观测的效果如何,除仪器的优劣外,还受地球大气的明晰度和宁静度的影响,受观测地的环境等诸因素的制约。而且,一架天文望远镜有几个不同焦距的目镜,也就是有几个不同的放大倍率可用。观测时,绝不是以最大倍率为最佳,而应以观测目标最清晰为准。

相关主题
文本预览
相关文档 最新文档