当前位置:文档之家› 高考数学重点微专题新定义问题(定义一种性质、运算、符号、图形等)

高考数学重点微专题新定义问题(定义一种性质、运算、符号、图形等)

高考数学重点微专题新定义问题(定义一种性质、运算、符号、图形等)
高考数学重点微专题新定义问题(定义一种性质、运算、符号、图形等)

新定义问题

全国高考数学复习微专题:传统不等式的解法

传统不等式的解法 一、基础知识 1、一元二次不等式:()200ax bx c a ++>≠ 可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图像,再找出x 轴上方的部分即可——关键点:图像与x 轴的交点 2、高次不等式 (1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为 ()0f x >) ①求出()0f x =的根12,,x x L ② 在数轴上依次标出根 ③ 从数轴的右上方开始,从右向左画。如同穿针引线穿过每一个根 ④ 观察图像,()0f x >? 寻找x 轴上方的部分 ()0f x 的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()0 f x g x g x ?>???≠?? (化商为积),进而转化为整式不等式求解 4、含有绝对值的不等式 (1)绝对值的属性:非负性 (2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方

(3)若不等式满足以下特点,可直接利用公式进行变形求解: ① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同 ② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同 (4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理 5、指对数不等式的解法: (1)先讲一个不等式性质与函数的故事 在不等式的基本性质中,有一些性质可从函数的角度分析,例如:a b a c b c >?+>+,可发现不等式的两边做了相同的变换(均加上c ) ,将相同的变换视为一个函数,即设()f x x c =+,则()(),a c f a b c f b +=+=,因为()f x x c =+为增函数,所以可得:()()a b f a f b >?>,即a b a c b c >?+>+成立,再例如: 0,0,c ac bc a b c ac bc >>?>?? <时,()f x 为增函数,0c <时,()f x 为减函数,即()()()() 0,0,c f a f b a b c f a f b >>??>?? <,则11 ,a b 的关系如何?设()1f x x = ,可知()f x 的单调减区间为()(),0,0,-∞+∞,由此可判断出:当,a b 同号时,11 a b a b >?< (2)指对数不等式:解指对数不等式,我们也考虑将其转化为整式不等式求解,那么在指对数变换的过程中,不等号的方向是否变号呢?先来回顾指对数函数的性质:无论是x y a =还是()log 0,1a y x a a =>≠,其单调性只与底数a 有关:当1a >时,函数均为增函数,当01a <<时,函数均为减函数,由此便可知,不等号是否发生改变取决于底数与1的大小,规律如下:

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

高考数学微专题12答案

微专题12 例题1 证法1如图1,在四棱锥PABCD中, 取线段PD的中点M,连接FM,AM. 因为F为PC的中点,所以FM∥CD, 且FM=1 2CD. 因为四边形ABCD为矩形,E为AB的中点, 所以EA∥CD,且EA=1 2CD.所以 FM∥EA,且FM=EA. 所以四边形AEFM为平行四边形.所以EF∥AM. 又AM平面PAD,EF平面PAD, 所以EF∥平面PAD. 证法2如图2,在四棱锥PABCD中,连接CE并延长交DA的延长线于点N,连接PN. 因为四边形ABCD为矩形,所以AD∥BC. 所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB, 所以△CEB≌△NEA.所以CE=NE. 又F为PC的中点,所以EF∥NP. 又NP平面PAD,EF平面PAD,所以EF∥平面PAD. 证法3如图3,在四棱锥PABCD中,取CD的中点Q,连接FQ,EQ.在矩形ABCD 中,E为AB的中点, 所以AE=DQ,且AE∥DQ. 所以四边形AEQD为平行四边形,所以EQ∥AD. 又AD平面PAD,EQ平面PAD, 所以EQ∥平面PAD.因为Q,F分别为CD,CP的中点, 所以FQ∥PD. 又PD平面PAD,FQ平面PAD,所以FQ∥平面PAD. 又FQ,EQ平面EQF,FQ∩EQ=Q, 所以平面EQF∥平面PAD. 因为EF平面EQF,所以EF∥平面PAD. (2)在四棱锥PABCD中,设AC,DE相交于点G(如图4). 在矩形ABCD中,因为AB=2BC,E 为AB的中点. 所以 DA AE= CD DA=2, 又∠DAE=∠CDA,所以△DAE∽△CDA, 所以∠ADE=∠DCA. 又∠ADE+∠CDE=∠ADC=90°, 所以∠DCA+∠CDE=90°. 由△DGC的内角和为180°,得∠DGC =90°. 即DE⊥AC. 因为点P在平面ABCD内的正投影O 在直线AC上, 所以PO⊥平面ABCD. 因为DE平面ABCD,所以PO⊥DE. 因为PO∩AC=O,PO,AC平面PAC,

2014年高考数学理科分类汇编专题03 导数与应用

1. 【2014江西高考理第8题】若1 2 ()2(),f x x f x dx =+? 则1 ()f x dx =?( ) A. 1- B.13- C.1 3 D.1 2. 【2014江西高考理第14题】若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32 430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9 [6,]8 -- C .[6,2]-- D .[4,3]--

4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( ) A .()2,+∞ B .()1,+∞ C .(),2-∞- D .(),1-∞- 5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2 b y ax x =+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-

6. 【2014高考广东卷理第10题】曲线25+=-x e y 在点()0,3处的切线方程为 . 7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3 8. 【2014全国2高考理第12题】设函数()x f x m π=.若存在()f x 的极值点0x 满足 ()2 22 00x f x m +

(完整版)2019届江苏省高考数学二轮复习微专题3.平面向量问题的“基底法”和“坐标法”

微专题3 平面向量问题的“基底法”与“坐标法” 例1 如图,在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上.若BE →=λBC →,D F →=19λDC →,则 AE →·A F → 的最小值为 ________. (例1) 变式1 在△ABC 中,已知AB =10,AC =15,∠BAC =π 3,点M 是边AB 的中点, 点N 在直线AC 上,且AC →=3AN → ,直线CM 与BN 相交于点P ,则线段AP 的长为________. 变式2若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________. 处理平面向量问题一般可以从两个角度进行: 切入点一:“恰当选择基底”.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算. 切入点二:“坐标运算”.坐标运算能把学生从复杂的化简中解放出来,快速简捷地达成解题的目标.对于条件中包含向量夹角与长度的问题,都可以考虑建立适当的坐标系,应用坐标法来统一表示向量,达到转化问题,简单求解的目的.

1. 设E ,F 分别是Rt △ABC 的斜边BC 上的两个三等分点,已知AB =3,AC =6,则AE →·A F → =________. 2. 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·A F →=2,则AE →·B F → =________. 3. 如图,在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE → =33 32 ,则AB 的长为________. (第2题) (第3题) (第4题) 4. 如图,在2×4的方格纸中,若a 和b 是起点和终点均在格点上的向量,则向量2a +b 与a -b 夹角的余弦值是________. 5. 已知向量OA →与OB →的夹角为60°,且|OA →|=3,|OB →|=2,若OC →=mOA →+nOB →,且OC → ⊥AB → ,则实数m n =________. 6. 已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13 AC →,则|BQ → |的最小值是________. 7. 如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP →=12 PC → ,点M ,N 在过点P 的直线上,若AM →=λAB →,AN →=μAC → ,λ,μ>0,则λ+2μ的最小值为________. (第7题) (第8题) (第9题) 8. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为线段AO 的中点.若BE → =λBA →+μBD → (λ,μ∈R ),则λ+μ=________. 9. 如图,在直角梯形ABCD 中,若AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1, 动点P 在边BC 上,且满足AP →=mAB →+nAD → (m ,n 均为正实数),则1m +1n 的最小值为________. 10. 已知三点A(1,-1),B(3,0),C(2,1),P 为平面ABC 上的一点,AP →=λAB →+μAC → 且AP →·AB →=0,AP →·AC → =3. (1) 求AB →·AC → 的值; (2) 求λ+μ的值.

全国统考2022高考数学一轮复习素养提升微专题2_抽象函数的定义域的类型及求法学案理含解析北师大版2

抽象函数的定义域的类型及求法 抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是求其定义域时,许多同学解答起来总感觉棘手,下面结合实例具体探究一下抽象函数定义域问题的几种题型及求法. 类型一已知f (x )的定义域,求f [g (x )]的定义域 其解法是:若f (x )的定义域为[a ,b ],则在f [g (x )]中,令a ≤g (x )≤b ,从中解得x 的取值X 围即为f [g (x )]的定义域. 【例1】已知函数f (x )的定义域为[-1,5],求f (3x-5)的定义域. 【解题指导】该函数是由u=3x-5和f (u )构成的复合函数,其中x 是自变量,u 是中间变量,由于f (x )与f (u )是同一个函数,因此这里是已知-1≤u ≤5,即-1≤3x-5≤5,求x 的取值X 围. 解∵f (x )的定义域为[-1,5], ∴-1≤3x-5≤5,∴43≤x ≤103, 故函数f (3x-5)的定义域为43,10 3. 类型二已知f [g (x )]的定义域,求f (x )的定义域 其解法是:若f [g (x )]的定义域为m ≤x ≤n ,则由m ≤x ≤n 确定的g (x )的X 围即为f (x )的定义域. 【例2】已知函数f (x 2-2x+2)的定义域为[0,3],求函数f (x )的定义域.

【解题指导】令u=x 2-2x+2,则f (x 2-2x+2)=f (u ), 由于f (u )与f (x )是同一函数,因此u 的取值X 围即为f (x )的定义域. 解由0≤x ≤3,得1≤x 2-2x+2≤5. 令u=x 2-2x+2,则f (x 2-2x+2)=f (u ),1≤u ≤5. 故f (x )的定义域为[1,5]. 类型三已知f [g (x )]的定义域,求f [h (x )]的定义域 其解法是:先由f [g (x )]的定义域求得f (x )的定义域,再由f (x )的定义域求f [h (x )]的定义域. 【例3】函数y=f (x+1)的定义域是[-2,3],则y=f (2x-1)的定义域是() A.0,52 B.[-1,4] C.[-5,5] D.[-3,7] 答案A 解析因为f (x+1)的定义域是[-2,3],即-2≤x ≤3,所以-1≤x+1≤4,则f (x )的定义域是[-1,4].由-1≤2x-1≤4,得0≤x ≤52,所以f (2x-1)的定义域是0,5 2.故选A . 类型四运算型的抽象函数

2015届高考数学(理)二轮专题配套练习:解析几何(含答案)

解析几何 1.直线的倾斜角与斜率 (1)倾斜角的范围为[0,π). (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2 x 1-x 2(x 1≠x 2);③直 线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC . [问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗? (2)直线x cos θ+3y -2=0的倾斜角的范围是________. 2.直线的方程 (1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线. (2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线. (3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标 轴的直线. (4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +y b =1,它不包括垂直于坐标轴的直 线和过原点的直线. (5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式. [问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 3.点到直线的距离及两平行直线间的距离 (1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C | A 2+ B 2; (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d = |C 1-C 2|A 2 +B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 4.两直线的平行与垂直 ①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2?k 1=k 2;l 1⊥l 2?k 1·k 2=-1. ②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2?A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2?A 1A 2+B 1B 2=0. 特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1 C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解 析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线. [问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合. 5.圆的方程 (1)圆的标准方程:(x -a )2+(y -b )2=r 2. (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为1 2D 2+E 2-4F 的圆. [问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 6.直线、圆的位置关系 (1)直线与圆的位置关系 直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断: ①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0?相交;Δ<0?相离;Δ=0?相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r ?相离;d =r ?相切. (2)圆与圆的位置关系 已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1 +r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|b >0);焦点在y 轴上,y 2a 2+x 2 b 2=1(a >b >0).

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

(江苏专用)高考数学二轮复习微专题十七数列的通项与求和练习(无答案)苏教版

(江苏专用)高考数学二轮复习微专题十七数列的通项与求和练 习(无答案)苏教版 微专题十七 数列的通项与求和 一、填空题 1. 设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是________. 2. 已知数列{a n }满足a 1为正整数,a n +1=????? a n 2 , a n 为偶数,3a n +1,a n 为奇数. 若a 1=5,则a 1+a 2+a 3=________. 3. 已知数列{a n }满足a n = 1n +n +1,则其前99项和S 99=________.

4. 若数列{a n }满足12a 1+122a 2+123a 3+…+12n a n =2n +1,则数列{a n }的通项公式a n =________. 5. 已知数列{a n }中,a 1=1,a n +1= 2a n a n +2 (n ∈N *),则数列{a n }的通项公式a n =________. 6. 设数列{a n }的前n 项和为S n ,若a 2=12,S n =kn 2-1(n ∈N *),则数列??????1S n 的前n 项和为________.

7. 已知数列{a n }的通项公式为a n =(-1)n ·(2n -1)cos n π 2+1(n ∈N * ),其前n 项和为S n ,则S 60=________. 8. 如图,在平面直角坐标系中,分别在x 轴与直线y =33 (x +1)上从左向右依次取点A k ,B k ,k =1,2,…其中A 1是坐标原点,使△A k B k A k +1都是等边三角形,则△A 10B 10A 11的边长是________. 9. 定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则 a 2 019a 2 017=________.

高考数学(理)二轮配套训练【专题9】(2)数形结合思想(含答案)

第2讲数形结合思想 1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线. 3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围. (2)构建函数模型并结合其图象研究方程根的范围. (3)构建函数模型并结合其图象研究量与量之间的大小关系. (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式. (5)构建立体几何模型研究代数问题. (6)构建解析几何中的斜率、截距、距离等模型研究最值问题. (7)构建方程模型,求根的个数. (8)研究图形的形状、位置关系、性质等. 4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: (1)准确画出函数图象,注意函数的定义域. (2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.

全国高考数学复习微专题:函数的切线问题

函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。这样直线AB 的极限位置就是曲线在点A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数3 y x =在 ()1,1--处的切线,与曲线有两个公共点。 (3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点 A 处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如y x =在()0,0处, 通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当 0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相 同,故y x =在()0,0处不含切线 (4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边) 2、切线与导数:设函数()y f x =上点()() 00,,A x f x ()f x 在A 附近有定义且附近的点 ()()00,B x x f x x +?+?,则割线AB 斜率为: ()()()()() 000000 AB f x x f x f x x f x k x x x x +?-+?-= = +?-? 当B 无限接近A 时,即x ?接近于零,∴直线AB 到达极限位置时的斜率表示为: ()()000 lim x f x x f x k x ?→+?-=?,

高考数学真题专题(理数) 双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C .D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2, 过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则C 的 离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

江苏高考数学二轮复习微专题六解不等式及线性规划(课后练习作业)

微专题六 解不等式及线性规划 一、 填空题 1. 不等式|x 2-2|<2的解集是________. 2. 设实数x ,y 满足??? x ≥0, y ≥0, x +y ≤3, 2x +y ≤4, 则z =3x +2y 的最大值是________. 3. 已知实数x ,y 满足条件??? |x |≤1, |y |≤1,则z =2x +y 的最小值是________. 4. 已知函数f (x )=??? 2-|x +1|,x ≤1, (x -1)2, x >1,函数g (x )=f (x )+f (-x ),则不等式 g (x )≤2的解集为________. 5. 已知实数x ,y 满足约束条件??? x +y ≥3, y ≤3, x ≤3, 则z =5-x 2-y 2的最大值为 ________. 6. 已知函数f (x )=x +1 |x |+1 ,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集是________.

________. 8. 已知函数f (x )=x 2-kx +4,对任意x ∈[1,3],不等式f (x )≥0恒成立,则实数k 的最大值为________. 9. 设实数n ≤6,若不等式2xm +(2-x )n -8≥0对任意x ∈[-4,2]都成立,则m 4-n 4 m 4n 的最小值为________. 10. 已知函数f (x )=2x -1+a ,g (x )=bf (1-x ),其中a ,b ∈R .若关于x 的不等式f (x )≥g (x )的解的最小值为2,则a 的取值范围是________. 二、 解答题 11. 解下列不等式: (1) |x 2-2|<2; (2) x -12x +1≤0.

高考数学(理)大题分解专题10 大题训练小卷03

专题10 大题训练小卷03 1.(本小题满分12分)(2020四川省资阳市高三第一诊)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b , c .已知π sin sin()3b A a B =+. (1)求角B 的大小; (2)若4b =,求a c +的最大值. 【解析】(1)由πsin sin()3b A a B =+,根据正弦定理,有π sin sin sin sin()3B A A B =+, 即有π1sin sin()sin 32B B B B =+=,则有tan B ,又0πB <<, 所以,π 3 B =. (2)由(1)π3B = ,根据余弦定理,得22162cos 3 a c ac π =+-,即216()3a c ac =+-, 所以22221 16()3()3( )()24 a c a c ac a c a c +=+-+-?=+≥, 所以,8a c +≤,当且仅当4a c ==时,取=.故a c +的最大值为8. 2.(本小题满分12分)(2020吉林省榆树市第一高级中学期末)我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为,,x y z ,并对它们进行量化: 0表示不合格,1表示临界合格,2表示合格,再用综合指标x y z ω=++的值评定人工种植的青蒿的长 势等级:若4ω≥,则长势为一级;若23ω≤≤,则长势为二级;若01ω≤≤,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果: (1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率;

全国高考数学复习微专题:存在性问题

圆锥曲线中的存在性问题 一、基础知识 1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在 2、存在性问题常见要素的代数形式:未知要素用字母代替 (1)点:坐标()00,x y (2)直线:斜截式或点斜式(通常以斜率为未知量) (3)曲线:含有未知参数的曲线标准方程 3、解决存在性问题的一些技巧: (1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。 (2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。 (3)核心变量的求法: ①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解 ②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。 二、典型例题: 例1:已知椭圆()2222:10x y C a b a b +=>>的离心率为3,过右焦点F 的直线l 与C 相交 于,A B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为2 。 (1)求,a b 的值 (2)C 上是否存在点P ,使得当l 绕F 旋转到某一位置时,有OP OA OB =+u u u r u u u r u u u r 成立?若存 在,求出所有的P 的坐标和l 的方程,若不存在,说明理由 解:(1)::3 c e a b c a = =?=

则,a b = =,依题意可得:(),0F c ,当l 的斜率为1时 :0l y x c x y c =-?--= 2 O l d -∴= = 解得:1c = a b ∴== 椭圆方程为:22 132 x y += (2)设()00,P x y ,()()1122,,,A x y B x y 当l 斜率存在时,设():1l y k x =- OP OA OB =+u u u r u u u r u u u r Q 012 012 x x x y y y =+?∴?=+? 联立直线与椭圆方程:()221236 y k x x y =-???+=?? 消去y 可得:()222 2316x k x +-=,整理可得: ()2 222326360k x k x k +-+-= 2122632k x x k ∴+=+ ()312122264223232 k k y y k x x k k k k +=+-=-=-++ 22264,3232k k P k k ?? ∴- ?++?? 因为P 在椭圆上 2 2 2 22 642363232k k k k ????∴?+-= ? ?++???? ()()()2 2 42222272486322432632k k k k k k ∴+=+?+=+ ( )2224632k k k ∴=+?= 当k = ):1l y x =- ,3,2 2P ? ?? 当k = ):1l y x =- ,322P ?? ??? 当斜率不存在时,可知:1l x = ,1, ,1,33A B ??- ??? ?,则()2,0P 不在椭圆上

相关主题
文本预览
相关文档 最新文档