当前位置:文档之家› 单级放大电路实验

单级放大电路实验

单级放大电路实验
单级放大电路实验

单级共射放大电路实验报告

一、实验目的

1.熟悉常用电子仪器的使用方法。

2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。

3.掌握放大器动态性能参数的测试方法。

4.进一步掌握单级放大电路的工作原理。

二、实验仪器

1.示波器

2.信号发生器

3.数字万用表

4.交流毫伏表

5.直流稳压源

三、预习要求

1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的正确使用方法。

2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。

3.估算电路的最大不失真输出电压幅值。

4.计算实验电路的输入电阻Ri和输出电阻Ro。

5.根据实验内容设计实验数据记录表格。

四、实验原理及测量方法

实验测试电路如下图1-1所示:

1.电路参数变化对静态工作点的影响:

放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。

○1用RB和RB2的分压作用固定基极电压UB。

由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)

式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。

○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓

2.静态工作点的理论计算:

图5-2-1电路的静态工作点可由以下几个关系式确定

U B=R B2·V CC/(R B+R B2)

I C≈I E=(U B-U BE)/R E

U CE=V CC-I C(R C+R E)

由以上式子可知,,当管子确定后,改变VCC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。

3.静态工作点的测量与调整:

调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实验为UCE为4V即可),这表明放大电路的静态工作点基本上已设置在放大区,然后再测量B极对地的电位并记录,根据测量值计算态工作点值,以确保三极管工作在导通状态。(2)放大电路接通直流电源,并在输入端加上正弦信号(幅度约为10mV,频率约为1kHz),使其工作在交直流状态,用示波器监视输出电压波形,调整基极电阻RP,使输出信号波形不失真,并在输入信号增大信号增大时,输出波形同时出现截止失真和饱和失真。这表明电路的静态工作点处于放大区的最佳位置。撤去输入正弦信号(即令UI=0),使电路工作在直流状态,用直流状态,用直流电压表测量三极管三个极对地的电压UB、UE、UC,即可计算出放大器的直流工作点ICQ、UCEQ、UBEQ的大小。

4.电压放大倍数的测量与计算

电压放大倍数是指放大电路输出端的信号电压与输入端的信号电压之比,即:AU=Uo/Ui

图上电路中

Au=-β(Rc//RL)/rbe

Rbe= rbb/+(1+β)26mV/IEQ

其中, r bb/一般取300Ω。

当放大电路的静态工作点设置合理后,在电路的输入端加入正弦信号,用示波器观察放大电路的输出波形,并调节输入信号幅度,使输出波形基本不失真。用交流毫伏表或示波器分别测量放大电路的输入、输出电压,按定义式计算即可得电路的电压放大倍数。

5.输入电阻Ri的计算

输入电阻的测量原理如下图所示。

Vi

Vs

'

Vs 被测放大电路

Ri

R

Rs

Ii

+-

+

--

+

图1-3 测试输入电阻原理图

电阻R 的阻值已知,只需用交流毫伏表分别测出R 两端的电压

'S V 和 i V ,即有:

''()/i i i i i S i S i

V V V R R I V V R V V =

==-- R 的阻值最好选取和i R 同一个数量级,过大易引入干扰;太小则易引起较大的测量误差。 6.输出电阻Ro 的测量

输出电阻的测量原理如图1-4所示。 用交流电压表分别测量出开路电压

o V 和负载电阻上的电压 oL V ,则输出电阻o R 可

通过计算求得。(取L R 和o R 的阻值为同一数量级以使测量值尽可能精确)

o

oL L o L V V R R R =?+ o o L o L oL

V V R R V -=?

Vs

Rs

R L

Ro

Vo

+

+

-

-

S

测放大电路

L

Vo +

-

图1-4 测试输出电阻原理图

5)放大电路幅频特性的测量

放大电路的幅频特性是指放大电路的电压放大倍数A U 与输入信号频率f 之间的关系曲线。单管阻容耦合放大电路的幅频特性曲线如下图所示,A um 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的2/1倍,即0.707A um 所对应的频率分别称为下限频率f L 和上限频率f H ,则通频带 f BW =f H -f L

放大电路频率特性曲线

五.实验内容及步骤

1.用数字多用表检测实验箱中间的区域元器件三极管、电阻、电解电容的极性和性能好坏。调试电源为+12V。

2.按图1-1搭线,将Rp调到电阻最大位置。接线后仔细检查,确认电路无误后给实验箱接通电源。再从实验箱电源入口正极端接线到电路上方VCC等位点,负极端接线到电路下方GND等位点。此时在观察电源指示灯是否正常C.V灯亮,如果不正常:电源电压下降,电流增大,C.C灯亮,说明电路有短路故障,立即断电操作。然后检查线路。排除错误,再用数字多用表的电阻档为测量电路上方VCC和下方GND的各等位点之间的总电阻,如果总电阻值大于K级,说明短路故障以排除可以通电了。

3.静态工作点的调整测量

(1)放大电路接通直流电源,并在输入端加上正弦信号(幅度约为10mV,频率约为1kHz),使其工作在交直流状态,用示波器监视输出电压波形,调整基极电阻Rp,使输出信号波形不失真,并在输入信号增大信号增大时,输出波形同时出现截止失真和饱和失真。这表明电路的静态工作点处于放大区的最佳位置。

(2)保持静态工作点不变,撤去输入正弦信号(即令UI=0),使电路工作在直流状态,用直流状态,用直流电压表测量三极管三个极对地的电压UB、UE、UC,即可计算出放大器的直流工作点ICQ、UCEQ、UBEQ的大小,并和理论计算值比较。

电路仿真图如下图示:

保持Rp=34k Ω不变,测量值如下:

U B (V ) U E (V ) U C (V ) U CEQ (V ) U BEQ (V ) I CQ (mA )

2.16 1.54 7.91 6.44 0.62 0.81

理论计算值比较:

U B =R B2·V CC /(R B +R B2)=2.64V I C ≈I E =(U B -U BE )/R E= 0.73mA U CE =V CC -I C (R C +R E )=6.23V

误差:(6.44-6.23)/6.23=3.3% 4.放大倍数的测量

(1)放大电路的静态测量完毕后,输入端加上正弦信号,在输出波形不失真的情况下,测量空载时输入信号电压Ui 和输出信号电压Uo 的值。改变Ui 值,再测量Uo 的值,以计算电压放大倍数Au 的平均值,减小测量误差。给输出端接上负载,观察并记录输出波形的变化。

(2)保持放大电路输入信号频率不变,逐渐增加电压值,用示波器观察放大器的输出波形, 测量电路的最大不失真电压值和此时的输入电压值,并自拟表格记录测量数据。

测量值:Au=

Ui Uo =mV

V

1001.1=101 理论计算值:Au=Ui

Uo

=98

5.在放大电路的输入端串接一个Rs-5.1k Ω的电阻,测量电路输入电阻Ri 的值。 测量得到:Ui=

6.8mv Us=12mv 计算得到:

Ri =

Rs Ui

s U Ui

=6.7k Ω

6在电路的输出端接入负载电阻10k Ω.,测量输出电阻Ro 的值。 测量的值:Uo=0.4V Uol=0.26V

计算得到:Ro=

Rl Uol

l

Uo -Uo =5.38k Ω

7保持放大电路的输入信号幅值不变,在输出信号不失真的前题下改变输入信号的频率,测量各输出电压的大小,并自拟表格记录数据,绘出幅频特性趋势图,找出fL 、fH ,并计算BW= fH-fL 值。 仿真结果:

实际测量结果如下表: 输入信号频率(HZ ) 输出电压)(V ) 输入信号频率

(HZ ) 输出电压)(V ) 输入信号频率

(HZ ) 输出电压)(V ) 200 0.34 1300 0.75 2400 0.83 300 0.42 1400 0.76 2500 0.83 400 0.49 1500 0.77 2600 0.83 500 0.55 1600 0.78 2700 0.835 600 0.60 1700 0.79 2800 0.84 700 0.64 1800 0.797 2900 0.84 800 0.67 1900 0.80 3k 0.847 900 0.70 2k 0.81 3100 0.85 1k 0.72 2100 0.815 3200 0.85 1100 0.73 2200 0.82 3300 0.85 1200 0.74

2300

0.827

3400

0.85

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

实验1 单级放大电路

实验1 单级放大电路 1.实验目的 1)学习使用电子仪器测量电路参数的方法。 2)学习共射放大电路静态工作点的调整方法。 3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。2.实验仪器 示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)三极管及共射放大器的工作原理。 2)阅读实验内容。 4.实验内容 实验电路为共射极放大器,常用于放大电压。由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。 1)联接电路 (1)用万用表判断实验箱上的三极管的极性和好坏。由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。改用万用表测量二极管档测量。对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。这说明该三极管是好的。用万用表判断实验箱上电解电容的极性和好坏。对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。这说明该电解电容是好的。 ⑵按图1.1联接电路。 ⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。若正常,则将12V 电源接至图1.1的Vcc。 图1.1 共射极放大电路

⑷ 测量电阻R C 的阻值。将V i 端接地。改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。建议使用以下方法。 b B cc 2b B B R V V R V I -=+ p 1b b R R R += B C I I =β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。本实验用测电阻值、电 压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。 Vcc=11.992 V 图1.2是示意图。它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。通常, β随i B 增大而增大。 对于一个三极管,β随i B 的变化越小越好。用图 解法表示共发射极放大器放大小信号的原理可知,β 随i B 变化而变化是正弦波小信号经共发射极放大器放 大后产生非线性谐波失真的原因。若表1.1中β的数 值较接近,则表1.6中的非线性谐波失真应较小。使 用不同实验箱的同学之间可验证上述分析。由此可见, 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。 2) 调整静态 电压放大器的主要任务是使失真尽可能小地放大电压信号。为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。 将V i 端接地。调整R P ,使V C =6V ,测量计算并填写表1.2,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

单级放大电路实验

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.计算实验电路的输入电阻Ri和输出电阻Ro。 5.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图1-1所示: 1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。

由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 U B=R B2·V CC/(R B+R B2) I C≈I E=(U B-U BE)/R E U CE=V CC-I C(R C+R E) 由以上式子可知,,当管子确定后,改变VCC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实验为UCE为4V即可),这表明放大电路的静态工作点基本上已设置在放大区,然后再测量B极对地的电位并记录,根据测量值计算态工作点值,以确保三极管工作在导通状态。(2)放大电路接通直流电源,并在输入端加上正弦信号(幅度约为10mV,频率约为1kHz),使其工作在交直流状态,用示波器监视输出电压波形,调整基极电阻RP,使输出信号波形不失真,并在输入信号增大信号增大时,输出波形同时出现截止失真和饱和失真。这表明电路的静态工作点处于放大区的最佳位置。撤去输入正弦信号(即令UI=0),使电路工作在直流状态,用直流状态,用直流电压表测量三极管三个极对地的电压UB、UE、UC,即可计算出放大器的直流工作点ICQ、UCEQ、UBEQ的大小。 4.电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压与输入端的信号电压之比,即:AU=Uo/Ui 图上电路中 Au=-β(Rc//RL)/rbe Rbe= rbb/+(1+β)26mV/IEQ 其中, r bb/一般取300Ω。 当放大电路的静态工作点设置合理后,在电路的输入端加入正弦信号,用示波器观察放大电路的输出波形,并调节输入信号幅度,使输出波形基本不失真。用交流毫伏表或示波器分别测量放大电路的输入、输出电压,按定义式计算即可得电路的电压放大倍数。 5.输入电阻Ri的计算 输入电阻的测量原理如下图所示。

实验一 单级放大电路

实验一单级放大电路 学号:2015117329 姓名:史立昕专业:电子信息类 一、实验目的 1、熟悉电子元器件和模拟电路实验箱的使用。 2、学会测量和调整放大电路静态工作点的方法,观察放大电路的非线性失真。 3、学习测定放大电路的电压放大倍数。 4、掌握放大电路的输入阻抗、输出阻抗的测试方法。 5、学习基本交直流仪器仪表的使用方法。 二、实验仪器 示波器、信号发生器、万用表。 三、实验内容及步骤 1、连接电路,按图连好线路。仿真电路如下:

2、调整静态工作点 将函数信号发生器的输出通过输出电缆接至Us两端,调整函数信号发生器输出的正弦波形,使f=1khz,Ui=10mv。使放大电路工作在交直流状态,调整基极电阻Rp1,在示波器上观察Uo的波形,将Uo 调整到最大不失真输出,并在输入信号增大时,输出波形同时出现截止失真和饱和失真,表明电路的静态工作点处于放大区的最佳位置。用万用表测量静态工作点记录数据如下:(测量Uce和Ic时,应使用万用表的直流电压档和直流电流档) 3测量放大电路的电压放大倍数 调节函数信号发生器的输出,使f=1khz,Ui=10mv的正弦信号,用示波器观察输出的波形,调节Rp2,在波形最大不失真时,用晶体管毫伏表测量放大器空载时的输出电压及负载时的输出电压Uo的实测值。 4测放大器的输入、输出阻抗 (1)输入阻抗:断开电阻1R2,用万用表的欧姆档测量信号源与放大器之间的电阻1R1,用晶体管毫伏表测量信号源两端电压Us以及放大器输入电压Ui,可求得放大电路的输入阻抗:

经测量:1R1=5.1KΩ,Us=6.8mV,Ui=0.3V。 所以输入阻抗为:Ri=4.026kΩ。 (2)输出阻抗:在放大器输出信号不失真的情况下,断开RL,用晶体管毫伏表测量输出电压Uo,接上RL,测得UoL,则可求得放大电路的输出阻抗: 经测量:Uo=0.61V;UoL=0.92V;RL=5.1K。 所以输入阻抗为:Ro=12.98k. 5观察放大电路的非线性失真 (1)工作点合适,输入信号过大引起非线性失真:在静态工作点不变的情况下增大输入信号,用示波器观察输出波形的失真现象,用万用表测量Ic和Uce的值。 经测量:Uce=1.201V;Ic=0.54mA。 仿真波形如下: (2)工作点不合适,引起线性失真:在放大器输入电压Ui不变的情

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

实验1单级放大电路

实验 1 单级放大电路 1.实验目的 1)学习使用电子仪器测量电路参数的方法。 2)学习共射放大电路静态工作点的调整方法。 3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。2.实验仪器 示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)三极管及共射放大器的工作原理。 2)阅读实验内容。 4.实验内容实验电路为共射极放大器,常用于放大电压。由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈) ,所以温度稳定性较好。 1) 联接电路 (1) 用万用表判断实验箱上的三极管的极性和好坏。由于三极管已焊在实验电路板上,无法用万用表的h EF 档测量。改用万用表测量二极管档测量。对NPN 三极管,用正表笔接 基极,用负表笔分别接射极和集电极,万用表应显示PN 结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN 结截止。这说明该三极管是好的。用万用表判断实验箱上电解电容的极性和好坏。对于10μF 电解电容,可选择200k Ω电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。这说明该电解电容是好的。 ⑵ 按图1.1 联接电路。 ⑶ 接通实验箱交流电源,用万用表测量直流12V 电源电压是否正常。若正常,则将12V 电源接至图1.1 的Vcc 。 图1.1 共射极放大电路

⑷ 测量电阻 R C 的阻值。将 V i 端接地。改变 R P (有案可查 2 2k Ω、 100k Ω、 680k Ω三 个可变电阻可选择) ,测量集电极电压 V C ,求 I C =(V CC -V C )/R C 分别为 0.5mA 、1mA 、1.5mA 时三极管的 β值。建议使用以下方法。 I B 请注意,电路断电、 压值来计算电 流值, 误差较测量电压、 可能损坏万用表。 Vcc=11.992 V 表 1.1 测量 β 值 I C (mA) V C (V) 测量值 计算值 V B (V) R b (k ) I B ( A) 0.5 9.442 1.5821 147.436 4.685 106.72 1 6.892 2.5657 82.236 7.72 138.89 1.5 4.342 3.5445 52.950 11.85 126.58 图 1.2 是示意图。它示意 i C 并不严格等于 βi B , 只是近似等于 βi B ;或者说 β并不是一个常数。通常, β随 i B 增大而增大。 对于一个三极管, β随 i B 的变化越小越好。用图 解法表示共发射极放大器放大小信号的原理可知, β 随 i B 变化而变化是正弦波小信号经共发射极放大器放 大后产生非线性谐波失真的原因。若表 1.1中 β的数 值较接近,则表 1.6 中的非线性谐波失真应较小。使 用不同实验箱的同学之间可验证上述分析。由此可见, 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选 化尽可能小的三极管。 2) 调整静态 电压放大器的主要任务是使失真尽可能小地放大电压信号。为了使输出电压失真尽可 能小,一般地说,静态工作点 Q 应选择在输出特性曲线上交流负载线的中点。若工作 点选 得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。对 于小信号放大器而言, 若输出交流信号幅度较小, 电压放大器的非线性失真将不是主要问题, 因此 Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。例如,希望放大器 耗电省、噪声低,或输入阻抗高, Q 点可选得低一些。 将 V i 端接地。调整 R P ,使 V C =6V ,测量计算并填写表 1.2,绘制直流负载线,估算静 态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。 表 1.2 调整静态 测量值 测量计算值 V B V cc V B I C R R R b R b1 R p C (1-1) R b2 R b I B 电阻从电路中开路后才能用万用表测量电阻值。本实验用测电阻值、电 而不是直接测量电流, 是因为本实验电路的电流较小, 测量电流的测量 电阻的误差大。 同时还因为测量电流时万用表的内阻趋于零, 使用不当很 CE β值随 i B 变化 而变

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 2.放大电路静态和动态测量方法。 放大电路良好工作的基础是设置正确的静态工作点。因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。 放大电路的动态特性指对交流小信号的放大能力。因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。 四、实验内容及步骤 1.装接电路与简单测量 图1.1 工作点稳定的放大电路

(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。 测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。 三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V ,计算并填表1.1。 为稳定工作点,在电路中引入负反馈电阻Re ,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ 和管压降UCEQ 基本不变。 依靠于下列反馈关系: T ↑—β↑—ICQ ↑—UE ↑—UBE ↓—IBQ ↓—ICQ ↓,反过程也一样。其中Rb2的引入是为了稳定Ub 。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri 变大了,输出电阻ro 不变。 e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数约等于e L c R R R ,不受β值变化的 影响。 表1.1 注意:图1.1中b 为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R 1、R 2衰减(100倍),V i 点得到5mV 的小信号,观察V i 和V O 端波形,并比较相位。 图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

实验一单级共射放大电路SB

实验一 单级共射放大电路 电子信息工程 2011117105 徐博 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 信号发生器、数字万用表、交流毫伏表、直流稳压源。 三、预习要求 1.复习基本共射放大电路的工作原理,并进一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 1.电路参数变化对静态工作点的影响 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过三极管的直流电流IBQ 、ICQ 及管子C 、E 极之间的直流电压UCEQ 和B 、E 极的直流电压UBE 中的射极电阻R6、R7是用来稳定放大器的静态工作点。其工作原理如下。 ① 利用RB 和RB2的分压作用固定基极电压UB 。 由图可知,当RB 、RB2选择适当,满足I2远大于IB 时,则有 b2b=*2 R U Vcc Rb Rb + 式中,RB 、RB2和VCC 都是固定不随温度变化的,所以基极电位基本上为一定值。 ② 通过IE 的负反馈作用,限制IC 的改变,使工作点保持稳定。具体稳定过程如下: T Ic Ie Ue Ube Ib Ic ↑→↑→↑→↑→↓→↓→↓ 2.静态工作点的理论计算 电路的静态工作点可由以下几个关系式确定 b2b=*2R U Vcc Rb Rb + Re Ub Ube Ic -=

晶体管单级放大电路实验报告

晶体管单级放大电路 实验目的: 1.掌握放大电路的组成,基本原理及放大条件。 2.掌握放大电路静态工作点的测量方法。 3.观察晶体管单级放大电路的放大现象。 实验仪器: 1.双踪示波器 2.函数发生器 3.数字万用表 4.交流毫伏表 5.直流稳压电源 实验原理: 1.晶体管,又叫半导体三极管,其主要分为两大类:双极性晶体管(包含发射极,基极和集电极)和场效应晶体管(包括源极,栅极,漏极)。晶体管在电路中主要起放大和开关的作用。 2.共射放大电路原理图: 3.放大电路的本质为它利用晶体管的基极对集电极的控制作用来实现,即iC= iB。放大的前提是晶体管的发射极正偏,集电极反偏。 4.放大电路的电压放大倍数是指电压不失真时,输出电压U0与输入电压Ui振幅或有效值之比,即Au=U0/Ui 5.输出电阻R0是指从放大器输出端看进去的等效电阻,其反映了放大器带负载的能力,在被测放大器后加一个负载电阻RL,输入端加正弦信号,分别测空载时和加负载电阻RL时的输出电压U0与UL,则RL=(U0-UL)/UL。 6.输入电阻Ri是指从放大器输入端看进去的等效电阻,其大小表示放大器从信号源获取电流的多少。在信号源与放大器之间串入一个样电阻Rs,分别测出UA与UB,则:Ri=UAXRs/(UB-UA)。 实验内容: 1.静态工作点测量 实验电路: 实验步骤: 1.使用万用表检查三极管的好坏:红笔接三极管基极,黑笔接集电极或射极,此时PN 结正偏,若显示数字为“500~700”(PN结正向导通管压降的毫伏值),说明其正向导通。当

用黑笔接基极,红笔分别接集电极.射极,此时PN结反偏,如果显示“1”,说明其反向不导通。当红笔接射极,黑笔接集电极,显示“1”,表示不导通;交换红黑笔,显示“1”,表示不导通。测试三极管满足上述数值,基本可以认为三极管是好的。 2.按照实验电路图连接电路。稳压电源的+极接到电路的Vcc,-极接地。 3.将稳压电源调到+12V,用万用表直流电压档测量静态工作点 UBQ,UCQ,UEQ。 实验结果: 提示:,Ucq,Ueq分别为晶体管各极对地的电压 =Ieq=Ueq/(Re1+Re2); Ubeq=Ubq-Ueq; Uceq=Ucq-Ueq 3.静态工作点是载电路无输入信号下测量的 :晶体管的集电极c与发射极e之间的电压。 2.输入输出波形观察及放大倍数的测量 实验步骤 1.在第一个实验的基础上,在电路A点输入Ui=50mV(峰峰值),f=1kHz的正弦波信号。 2.用示波器的二通道分别观察输入输出波形。 实验结果: 3.输出电阻Ro的测量 实验电路:

单级放大电路,南京理工大学紫金学院eda实验报告

EDA(二)模拟部分电子线路仿真实验报告 实验名称:单级放大电路 姓名: 学号: 班级:通信 时间: 2013.4 南京理工大学紫金学院电光系

一.实验目的 1.三极管输入输出特性曲线分析; 2.掌握放大电路静态工作点的测试方法; 3.掌握放大电路动态参数的测试方法; 4.静态工作点对动态参数的影响以及失真分析 二、实验原理 分析静态工作点一般采用估算法求解,其步骤为: (1)画出电路的直流通路 (2)选择回路计算基极电位V B (3)选择合适的回路计算I E、I B、U CE 利用软件有两种方法求得电路的静态工作点,一种用万用表测量,另一种利用DC Operating Point仿真手段来得到。 放大电路的动态分析主要分析电路三个参量Au、Ri、Ro,首先应画出微变等效电路图。 三.实验内容 2.1 1.电路图

2、静态分析 理论分析:步骤 1.画出电路的直流通路 2.选择回路计算基极电位V B 3.选择合适的回路计算I E ,I B ,U CE 所用分压偏置电路直流通路如图所示:

基极电流I B 很小,故I B <

相关主题
文本预览
相关文档 最新文档