当前位置:文档之家› 2.1 勾股定理

2.1 勾股定理

2.1 勾股定理
2.1 勾股定理

2.1 勾股定理

[趣题导学]

动手做一做:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a 、b 、c ,如图2.1-1①.然后进行拼图:分别用4张直角三角形纸片,拼成如图2.1-1②③的形状,观察图2.1-1②③,图 2.1-1②中两个小正方形的面积之和与图 2.1-2③中小正方形的面积相等吗?你可以用怎样的关系式图 2.1-1表示?

解答:容易发现图2.1-1②中两个小正方形的面积之和与图

2.1-2③中小正方形的面积相等.可以用关系式222a b c +=表示,从中也说明了直角三角形两直角边的平方和等于斜边的平方,这也就是勾股定理. [双基锤炼] 一、选择题

1、一直角三角形的斜边长比直角边长大2,另一直角边长为6,

a

c b

① ②

则斜边长为( )

A. 4

B. 8

C. 10

D. 12

2、CD 为直角三角形ABC 斜边AB 上的高,若AB = 10,AC :BC =

3:4,则这个直角三角形的面积为( ) A. 6 B. 8 C.12 D.24

3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 发现下端刚好接触地面,则旗杆的高为( ) A. 8m B. 10m C. 12m D. 14m

4、一等腰三角形底边长为10cm ,腰长为13cm ,则腰上的高为 ( )

A. 12cm

B. cm 13

60

C.cm 13

120

D.cm 5

13

5、如图2.1-2,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬

到点B 处吃食,要爬行的最短路程( 取3)是 ( )

A.20cm;

B.10cm;

C.14cm;

D.无法确定. 二、填空题

A

B

6、已知在Rt △ABC 中,∠C=90°.

①若a=3,b=4,则c=________; ②若a=40,b=9,则c=________;

③若a=6,c=10,则b=_______; ④若c=25,b=15,则a=________.

7、在Rt ⊿ABC 中,斜边AB = 2,则______2

22=++CA BC AB .

8、直角三角形的周长为12cm ,斜边的长为 5 cm ,则其面积为 .

9、如果一个直角三角形的一条直角边是另一条直角边的2倍,

斜边长是 5 cm ,那么这个直角三角形的面积是 .

10、图2.1-3中所示的线段的长度或正方形的面积为多少.(注:下列各图中的三角形均为直角三角形)答:A=________,y=________,B=________.

17

8

B

y

36

15

64

289

A

图2.1-3

三、解答题

11、如图2.1-4,一根旗杆在离地面5m 处断裂,旗杆顶部落在

离旗杆底部12m 处,旗杆折断之前有多高?

12m

5m

C

B A

2.1-4

12、如图2.1-5求下列阴影部分的面积:

(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部

分是半圆.

(1) (2)

(3)

图2.1-5

[能力提升] 一、综合渗透

1、如图 2.1-6,有一张直角三角形纸片,两直角边AC=5cm ,

BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为( )

A B C D (252)

152

254

154

E

D

B

C

A

图 2.1-6 图

2.1-7

2、如图2.1-7,在Rt△ABC 中,∠ACB=90°,BC=6cm ,AC=8cm ,

D

C B

A

D 是斜边AB 的中点,则CD=_______.

3、△ABC 中,BC =a ,AC =b ,AB =c 、若90C ∠=?,如图l ,根据

勾股定理,则222a b c +=.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论、

图 1

C

B A

图 2

B

A

图 3

C

B

A

图2.1-8

二、应用创新

1、如图2.1-9,折叠矩形纸片ABCD ,得折痕BD ,再折叠AD 使

点A 与点F 重合,折痕为DG ,若AB=4,BC=3,求AG 的长.

G F

D C

B

A

图2.1-9

2、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上

方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,

飞机每小时飞行多少千米?

3、如图2.1-10,从电线杆离地面6 m处向地面拉一条长10 m

的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?

4、假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图

2.1-11,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A 到宝藏埋藏点B 的距离是多少千米?

三、探究发散

8

2

3

61A

B

1、小明的妈妈买了一部29寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只

有58厘米长和46厘米宽,她觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

2、为了丰富少年儿童的业余生活,某社区要在如图2.1-12所示

AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB = 25km ,CA = 15 km ,DB = 10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?

3、小明的叔叔家承包了一个矩形养鱼池,已知其面积是482m ,

其对角线长为10m ,为建起栅栏,要计算这个矩形养鱼池的周长,你能帮小明算一算吗?

C B

D

E

A

x

1

S 2S

3S

4、如图2.1-13,分别以直角三角形的三边为边长向外作正方形,

边长分别a 、b 、c (c 表示斜边)然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆,三个圆的面积分别记为S 1、S 2、S 3,试探索三个圆的面积之间的关系.

2.1-13 [链接中考]

1、如图2.1-14,以Rt△ABC 的三边为边向外作正方形,其面积

分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为__ __. 2、如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,

那么这个直角三角形的面积是 cm 2

3、如图2.1-15,由Rt △ABC 的三边向外作正

方形,若最大正方形的边长为8cm,则正方形M与正方形N的

面积之和为2

cm.

参考答案

[双基锤炼]

一、选择题

1、C

2、 D

3、 C

4、B

5、 B

二、填空题

6、①5;②41;③8;④20

7、 8

8、2

6cm 9、2

5cm 10、15,39,15

三、解答题

11、解:∵222

512AB

+=,∴AB=13m,

∴旗杆折断之前高度为5+13=18m. 12、()()()222125,251,38cm cm cm π [能力提升] 一、综合渗透 1、C 2、5cm

3、解:若△ABC 是锐角三角形,则有222a b c +>

若△ABC 是钝角三角形,C ∠为钝角,则有222a b c +<. 当△ABC 是锐角三角形时,

b

a

c

B

证明:过点A 作AD ⊥BC ,垂足为D ,设CD 为x ,则有BD =a x - 根据勾股定理,得

22222

()b x AD c a x -==-- 即

222222b x c a ax x -=-+-.

∴2222a b c ax +=+

∵0,0a x >>, ∴20ax >. ∴222a b c +>. 当△ABC 是钝角三角形时,

证明:过B 作BD ⊥AC ,交AC 的延长线于D.

设CD 为

x

,则有

222

BD a x =- 根据勾股定理,得

2222()b x a x c ++-=、

即2222a b bx c ++=.

∵0,0b x >>, ∴20bx >, ∴222a b c +<. 二、应用创新

1、解:设AG=x ,在矩形ABCD 中,BC=AD=3;

在Rt△A DB 中,222BD AD AB =+,即2223425.BD =+=∴BD=5.

又∵Rt△DGA ≌Rt△DGF ,∴DF=AD=3,∠GFD=∠A=90°. GF=AG=x ,则4GB x =-,BF=BD-DF=5-3=2.

在Rt△GFB 中,222GB BF FG =+,即()22242, 1.5.x x x -=+∴= 因此AG 的长为1.5.

2、解:根据题意,在Rt △ABC 中,∠C =90°,AB =5000米,AC =4800米.

由勾股定理,得AB 2=AC 2+BC 2.即50002=BC 2+48002

, 所以BC =1400米.

飞机飞行1400米用了10秒, 那么它1小时飞行的距离为 1400×6×60=504000米=504千

米,

4800

5000

C

B

A

第2题

c

a

b

B

C

即飞机飞行的速度为504千米/时.

3、这条缆绳在地面的固定点距离电线杆底部8m.

4、10千米

三、探究发散

1、解:小明的想法是错误的.若设电视机屏幕对角线的长为x,

由勾股定理容易知道,2222

x x x

+=∴=∴≈也就是

5846,5480,74.

说,这个电视机的尺寸符合要求.

2、解:设,

=则25

AE x

=-.

BE x

由勾股定理可知222222

=+=+,

,

CE AC AE DE BE DB

∵CE=DE,∴2222.

+=+

AC AE BE DB

∴()2

222

+=-+,解之得10.

x x

152510

x=

∴图书室E应该建在距点A10km处.

3、这个矩形养鱼池的周长为28m

4、S1+S2=S3

[链接中考]

1、3、30 3、64

勾股定理练习题及答案

一、 选择题 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2abc 2 D 、2ab ≤c 2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个 4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2 5、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、 4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。 10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 二.解答题 1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? A B D C 第7题图 A C D B E 第8题图 A B C D 第1题图 A D B C B ′ A ′ C ′ D ′ 第9题图

苏科版八年级数学上册 3.3勾股定理的简单应用 教学案(无答案)

§3.3勾股定理的简单应用教学案 学习目标: 1.能运用勾股定理及直角三角形的判定条件解决实际问题. 2.构造直角三角形及正确解出此类方程. 3.运用勾股定理解释生活中的实际问题. 自主学习 在Rt△ABC中,∠C=, (1)若BC=9,AC=12,则AB= ,(2)若BC=8,AC=10,则AC= (3)若AC=5,AB=13,则BC= ,(4)若AB+AC=9,BC=3,则AC= ,AB= 探究活动 例1、《九章算术》中有折竹问题:今有竹高一丈,末折抵地,去根三尺,问折高几何? 题意是:有一根竹子,原高一丈(1丈=10尺),中部有一处折断,竹梢触地面离竹根3尺,问折断处离地面多高 练习:在平静的湖面上,有一枝红莲高出水面1米,一阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是多少?(画出图形并解答) 例2. 如图,AD是△ABC的中线,AD=24,AB=26,BC=20,求AC.

练习:在四边形ABCD中,∠B=90度AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积是多少? 例3. “引葭赴岸”是《九章算术》中的一道题:“今有池一丈,葭生 其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个底面是边长为1O尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为l尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少?(画出几何图形并解答) 练习:1.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了多少米. 2.如图,折叠长方形纸片AB CD,使点D落在边B C上的点F处(折痕为AE).已知AB=D C=6c m,A D=B C=10cm.求E C的长

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理实际应用教学设计

勾股定理应用的教学设计教学目标 1.会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题。 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、复习旧知 复习勾股定理以及一些简单的计算 (1)勾股定理: (2)求出下列直角三角形中未知的边. A C B 二、合作探究 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理。 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为多少米.? 5 m处断裂,旗杆顶部落在离底部12 m处,问旗杆折断前 如下图,要将楼梯铺上地毯,则需要米长的地毯. 5米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为3米. ①球梯子的底端B距墙角O多少米? ②如果梯的顶端A沿墙下滑1米至C,请同学们猜一猜,底端B也将滑动1米吗? 算一算,底端滑动的距离。(结果保留1位小数). 6 1 A C B 2 30° C B 2 2

三.深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴 岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树的顶 端飞到另一棵树的顶端,小鸟至少要飞米。 2如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离 是。 4、一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米。 3、小东拿着一根长竹竿进一个宽为三米的城门,他先横着拿不进去,又竖起来拿,结果竿比城 门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米。 六、课后反思 我学到了什么—————— 还想知道什么——————

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边 a 、 b 、 c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x = 4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++() y x 212-+=-1, 又()()2121-+=-1,∴()122 1++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1 221+-n , 解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(4 1〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕). 四、后两数为连续奇数的勾股数 如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) . 五、其它的勾股数组公式: 1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数). 2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2 )(其中m>n 且是互质的奇数). 3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数). 下面我们把100以内的勾股数组列出来,供同学们参考: 3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20; 12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65 17 144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

勾股定理

尊敬的各位评委、老师,您们好。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。 一、教材分析: (一)教材的地位与作用 从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法发现勾股定理确定为本节课的难点,我将引导学生动手实验突

出重点,合作交流突破难点。 二、教法与学法分析 教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。 学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。 三、教学过程 我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。 首先,情境导入 给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。 第二步追溯历史解密真相 勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。 从上面低起点的问题入手,有利于学生参与探索。学生很容

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

勾股定理(基础)

勾股定理(基础) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想; ● 能够运用勾股定理求解三角形中相关的边长(只限于常用的数); ● 通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 学习策略: ● 体验勾股定理的探索过程,掌握方程思想; ● 牢记直角三角形中两条直角边的平方和等于斜边的平方. 二、学习与应用 1. 正数的平方根有 ,它们互为 ,其中正的那个叫它的____;负数 ,0的平方根是 . 2. 324的算术平方根是 , 256的平方根是 . 3.196= ,144 = . 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长 分别为a b ,,斜边长为c ,那么 . 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的 线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目 的. (3)理解勾股定理的一些变式: “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记. 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习.课堂笔记或者其它补充填在右栏. 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

2______ a=,2______ b=,()2 2____ c a b =+- 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形. ,所以. 要点三、勾股定理的作用 1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3. 与勾股定理有关的面积计算; 4. 勾股定理在实际生活中的应用. 类型一、勾股定理的直接应用 例1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a=5,b=12,求c; (2)若c=26,b=24,求a. 典型例题——自主学习 认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

3.3勾股定理的简单应用.doc

3.3 勾股定理的简单应用 学习目标:1、巩固勾股定理及其逆定理; 2、会用勾股定理及其逆定理解决问题。 教学重点:用勾股定理及其逆定理解决问题 教学难点:用勾股定理及其逆定理解决问题 【复习回顾】 问题1:勾股定理是如何描述的?符号语言如何表示? 问题2:你能说出这个定理的逆命题吗?符号语言如何表示? 【情境创设】 从远处看,斜拉桥的索塔、桥面与拉索组成许多直角 三角形.已知桥面以上索塔AB的高,怎样计算AC、AD、AE、 AF、AG的长? 思考,讨论并交流线段的长的计算. 【例题1】 【课堂练习1】 “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭 生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各 几何?”(有一个边长为10尺的正方形池塘,在水池正中央有 一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池 边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水 池的深度和这根芦苇的长度各是多少?) 【例题2探究】 【课堂练习2】 1、在△ABC中,AB=AC=17,BC=16,求△ABC的面积. 2、在△ABC中,AD⊥BC,AB=15,AD=12,AC=13,求△ABC的周长和面积. 【课堂小结】 本节课2个目标你达成个?分别是: :

3.3 勾股定理的简单应用练习 1、在一块平地上,离张大爷家屋前9m 处有一棵大树.在一次强风中,这棵树从离地面6m 处折断倒下,量得倒下部分的长是10m ,则大树倒下时能砸到张大爷的房子吗?() A.一定不会 B.可能会 C.一定会 D.无法确定 2、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 3、如图,是一个人字形屋架,为等腰三角形ABC ,跨度AB =24?m ,上弦AC =13m ,则中柱CD =________m . 4、如图,要在高AC 为6米,斜坡AB 长10米的楼梯表面铺地毯,地毯的长度至少需要多少米? 5、如图,一圆柱体的底面周长为40cm ,高AB 为15cm ,BC 是上底面的直径,一只蚂蚁从 点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程. 6、某校A 与直线公路距离为3000m ,又与该公路上某车站D 的距离为5000m ,现要在公路 这边建一个小商店C ,使之与学校A 及车站D 的距离相等,那么该店与车站D 的距离是多少? D C B A

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法 ——拼图法、定理法 江苏省泗阳县李口中学沈正中 据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧! 一、拼图法证明(举例12种) 拼法一:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图2拼法。 问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么? 分析图2:S 正方形=(a+b )2= c 2 + 4×2 1ab 化简可得:a 2+b 2 = c 2 拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像左 图那样拼成两个正方形。 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 a 2+ b 2+4×21ab = c 2+4×21ab 整理得 a 2+b 2 = c 2 拼法三:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图3拼法。 问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a 2+b 2=c 2吗? 分析图3:S 正方形= c 2 =(a-b )2+ 4×21ab 化简可得:a 2+b 2 = c 2 图1 图2 图3 图4 b a b a b a b a c b a c b a c b a c b a c b a c b a

勾股定理的简单应用教案

课题 3.3勾股定理的应用第1课时 学习目标1、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想, 2、进一步发展有条理思考和有条理表达的能力。 3、通过对勾股定理应用,培养解决实际问题的能力和审美能力。 教学重点解斜三角形问题转化为解直角三角形的问题 教学难点勾股定理及直角三角形的判定条件的应用的区别 教法教具自主探究合作交流 教师活动二次备课 一创设情境 勾股定理在生活中的应用 从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形 二探索活动 已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的 长. A B C E F G D

二.例题教学 例1 九章算术中的“折竹”问题:今有竹高一丈,末折抵地,去根三尺,问折者高几何? 意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高? 练习 “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?” 题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少? A C B 例2 如图,在△ABC中,AB=26,BC=20,BC边上的中线AD =24,求AC.

勾股定理与它的逆定理在应用上有什么区别? 三.展示交流 1.如图,在△ABC 中, AB =AC =17,BC =16,求△ABC 的面积. 2如图,在△ ABC 中,AD ⊥BC ,AB =15,AD =12,AC =13,求△ABC 的周长和面积. 3、如图,以△ABC 的三边为直径向外作半圆,且S 1+S 3=S 2,试判断△ABC 的形状? 四.总结 从勾股定理的应用中我们进一步体会到直角三角形与等腰三角形有着密切的联系;把研究等腰三角形转化为研究直角 D C B A D C B A

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理典型分类练习题

勾股定理典型分类练习题 题型一:直接考查勾股定理 例1.在ABC C ∠=?. ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AC=,求BC的长 AB=,15 变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC 是等腰三角形。 变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗? 题型二:利用勾股定理测量长度 例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0. 5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.

题型三:勾股定理和逆定理并用 例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 那么 △DEF 是直角三角形吗?为什么 题型四:旋转中的勾股定理的运用: 例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能及 △ACP ′重合,若AP=3,求PP ′的长。 变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 题型五:翻折问题 例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. P A P C B

14.2 勾股定理的应用

14.2 勾股定理的应用 教学目标 教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题. 能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念. 2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣. 2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学. 教学重点难点: 重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题. 难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题. 教学过程 1、创设问题情境,引入新课: 前几节课我们学习了勾股定理,你还记得它有什么作用吗? 例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子? 根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC 中,AB2=AC2+BC2=122+52=132;AB=13米. 所以至少需13米长的梯子. 2、讲授新课:①、蚂蚁怎么走最近

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的的最短路程是多少?(π的值取3). (1)同学们可自己做一个圆柱,尝试从A 点到B 点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论) (2)如图,将圆柱侧面剪开展开成一个长方形,从A 点到B 点的最短路线是什么?你画对了吗? (3)蚂蚁从A 点出发,想吃到B 点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果) 我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA ′将圆柱的侧面展开(如下图). 我们不难发现,刚才几位同学的走法: (1)A →A ′→B ; (2)A →B ′→B ; (3)A →D →B ; (4)A —→B. 哪条路线是最短呢?你画对了吗? 第(4)条路线最短.因为“两点之间的连线中线段最短”. ②、做一做。李叔叔随身只带卷尺检测AD ,BC 是否与底边AB 垂直,也就是要检测 ∠DAB=90°,∠CBA=90°.连结BD 或AC ,也就是要检测△DAB 和△CBA 是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题. ③、随堂练习 出示投影片 A B A B

勾股定理 例题详解

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为 的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、 40、41.

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

北师大版八年级数学上册1.1.2勾股定理的简单应用 同步训练卷

北师版八年级数学上册 1.1.2勾股定理的简单应用 同步训练卷 一、选择题(共10小题,3*10=30) 1.直角三角形的周长为12,斜边长为5,则面积为() A.12 B.10 C.8 D.6 2.如图,三个正方形围成一个直角三角形,64,100分别为所在正方形的面积,则图中字母M所代表的正方形的边长是() A.6 B.8 C.36 D.164 3.《九章算术》中的“折竹抵地”问题(如图):今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为() A.x2-6=(10-x)2B.x2-62=(10-x)2 C.x2+6=(10-x)2D.x2+62=(10-x)2 4.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是() A.48 B.60 C.76 D.80 5.如图,在长方形ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()

A.35 B.53 C.73 D.54 6. 如图所示是一段楼梯,高BC 是3 m ,斜边AB 是5 m ,如果在楼梯上铺地毯,那么地毯的长至少需要( ) A .5 m B .6 m C .7 m D .8 m 7. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( ) A .4 B .6 C .16 D .55 8.有长度为9 cm ,12 cm ,15 cm ,36 cm ,39 cm 的五根木棒,用其中的三根首尾连接可搭成直角三角形的个数为( ) A .1 B .2 C .3 D .4 9.如图,长方形ABCD 的对角线AC =10,BC =8,则图中五个小长方形的周长之和为( ) A .14 B .16 C .20 D .28 10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的较长直角边长为a ,较短直角边长为b.若ab =8,大正方形的面积为25,则小正方形的边长为( ) A .9 B .6 C .4 D .3 二.填空题(共8小题,3*8=24)

相关主题
文本预览
相关文档 最新文档