当前位置:文档之家› 催化裂化装置的主要设备

催化裂化装置的主要设备

催化裂化装置的主要设备
催化裂化装置的主要设备

催化裂化装置的主要设备

百克网:2008-5-30 14:50:14 文章来源:本站

催化裂化装置设备较多,本节只介绍几个主要设备。

一、提升管反应器及沉降器

(一)提升管反应嚣

提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同 提升管反应器类型不同,常见的提升管反应器类型有两种:

(1)直管式:多用于高低并列式提升管催化裂化装置。

(2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。

图5—8是直管式提升管反应器及沉降器示意图

提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决 定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。

在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼 油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预 提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。 这种作用叫预提升。

为使油气在离开提升管后立即终止反应, 提升管出口均设有快速分离装置,其作用是使 油气与大部分催化剂迅速分开。快速分离器的 类型很多,常用的有:伞帽型,倒L型、T型、 粗旋风分离器、弹射快速分离器和垂直齿缝式 快速分离器(分州如图5—10中a、b、c、d、e、f所示)。

为进行参数测量和取样,沿提升管高度还 装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨 以及热膨胀等问题。

(二)沉降器

沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数 组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催 化荆后经集气室去分馏系统;由提升管快速分 离器出来的催化剂靠重力在沉降器中向下沉 降,落入汽提段。汽提段内设有数层人字挡板 和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。

沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所 需沉降高度确定,通常为9~12米。 汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般 是1.5~3分钟。

二、再生器

再生器是催化裂化装置的重要工艺设备,其作用是为催化剂再生提供场所和条件。它的

结构形式和操作状况直接影响烧焦能力和催化剂损耗。再生器是决定整个装置处理能力的关

键设备。图5—11是常规再生器的结构示意图。

再生器由简体和内部构件组成。

1.筒体

再生器筒体是由A3碳钢焊接而成的,由于经常处于高温和受催化剂颗粒冲刷,因此筒体 内壁敷设一层隔热、耐磨树里以保护设备材质。筒体上部为稀相段,下部为密相段,中间变 径处通常叫过渡段。

1)密相段 密相段是待生催化剂进行流化和再生反应的主要场所。在空气(主风) 的作用下,待生催化剂在这里形成密帽流化床层,密相床层气体线速度一般为O.6~1.O米/ 秒,采用较低气速叫低速床,采用较高气速称为高速床。 密相段直径大小通常由烧焦所能产生的湿烟气量(可计算得到)和气体线速度确定。密 相段高度一般由催化剂藏量和密相段催化剂密度确定,一般为6~7米。

2)稀相段 稀相段实际上是催化剂的沉降段。为使催化剂易于沉降,稀相段气体线 速度不能太高,要求不大于0.6~0.7米/秒, 因此,稀相段直径通常大于密相段直径。稀相 段高度应由沉降要求和旋风分离器料腿长度要求确定,适宜的稀相段高度是9~11米。

2.旋风分离器

旋风分离器是气固分离并回收催化剂的设 备,它的操作状况好坏直接影响催化剂耗最的大小,是催化裂化装置中非常关键的设备。图 5—12是旋风分离器示意图。

旋风分离器由内圆柱筒、外圆柱筒、圆锥筒以及灰斗组成。灰斗下端与料腿相连,料腿 出口装有翼阀。

旋风分离器的类型很多,常用的有杜康型,布埃尔型,PV型旋风分离器是我国新研制 出的一种高效旋风分离器。

旋风分离器的作用原理都是相同的,携带催化剂颗粒的气流以很高的速度(15~25米/ 秒)从切线方向进入旋风分离器,并沿内外圆柱筒间的环形通道作旋转运动,使固体颗粒产 生离心力,造成气固分离的条件,颗粒沿锥体下转进入灰斗,气体从内圆柱筒排出, 灰斗、料腿和翼闰都是旋风分离器的组成部分。

灰斗的作用是脱气,即防止气体被催化 剂带入料腿;料腿的作用是将回收的催化剂输送回床层,为此,料腿内催化剂应具有一定的 料面高度以保证催化剂顺利下流,这也就是要求一定料腿长度的原因;翼阀的作用是密封, 即允许催化剂流出而阻止气体倒窜。翼阀的结构如图5—13所示。

3.主风分布管

主风分布管是再生器的空气分配器,作用是使进入再生器的空气均匀分布,防止气流趋 向中心部位,以形成良好的流化状态,保证气固均匀接触,强化再生反应。 图5—14为分布管结构示意图

4.辅助燃烧室

辅助燃烧室是一个特殊形式的加热炉,设在再生器下面(可与再生器连为一体,也可分 开设置),其作用是开工时用以加热主风使再生器升温,紧急停工时维持一定的降温速度。 正常生产时辅助燃烧室只作为主风的通道。其结构形式有立式和卧式两种。图5—15是立式辅助燃烧室结构简图。

三、单动滑阀及双动滑阀

1.单动滑阀

单动滑阀用于床层反应器催化裂化和高低并列式提升管催化裂化装置。对提升管催化裂 化装置,单动滑阀安装在两根输送催化剂的斜管上,其作用是:正常操作对用来调节催化剂 在两器间的循环量,出现重大事故时用以切断再生器与反应沉降器之间的联系,以防造成更 大事故。运转中,滑阀的正常开度为40~60%。单动滑阀结构见图5—16。

2.双动滑阀

双动滑闯是一种两块阀扳双向动作的超灵敏调节阀,安装在再生嚣出口管线上(烟囱), 其作用是调节再生器的压力,使之与反应沉降器保持一定的压差。设计滑阀时,两块阀板都 留一缺口,即使滑阀全关时,中心仍有一定大小的通道,这样可避免再生器超压。图5—17是双动滑阀结构示意图

四、取热器

为保证能化裂化装置的正常运转,维持反应再生系统的热量平衡是至关重要的。通常, 以馏分油为原料时,反应再生系统能基本维持热量平衡;但加工重质原料时,生焦率大,会 使再生器提供的热量超过两器热平衡的需要,必须设法取出再生器的过剩热量。 再生器的取热方式有内、外取热两种,各有特点,但原理都是利用高温催化剂与水换热 产生蒸汽达到取热的目的。 内取热是直接在再生器内加设取热管,这种方式投资少,操作简便,传热系数高。但发 生故障时只能停工检修,另外,取热量可调范围小。 外取热是将高温催化剂引出再生器,在取热器内装取热水套管,然后再将降温后的催化 剂送回再生器,如此达到取热目的。外取热器具有热量可调范围大、操作灵活和维修方便等 优点。外取热器又分上流式和下流式两种,所谓上和下是指取热器内的催化剂是自下而上还 是自上而下返回再生器。如图5—18属下流式外取热器,催化剂从再生器流入取热器,沿取热器向下流动进行换热,然后从取热器底部返回再生器。

图5—19是上流式外取热器,情况正好相反。

除上述设备之外,催化裂化装置还有一些专用设备:主风机、气体压缩机、烟气轮机以 及CO锅炉、废热锅炉等;常规设备:加热炉、塔器、容器和机泵等,这里不再详述。

作者:佚名

【我要发布资讯】 【发表评论】 【大中小】 【推荐给朋友】 【打印】 【论坛】

催化裂化装置设计工艺计算方法

第一章 再生系统工艺计算 1. 1再生空气量及烟气量计算 烧碳量及烧氢量 烧焦量=8000 10101603 4??×%=1700kg/h H/C=7/93(已知) 烧碳量=17000×=15810kg/h=131705kmol/h 烧氢量=17000×=1190kg/h=595kmol/h 设两段烧碳比为85∶15且全部氢Ⅰ再生器中燃烧掉,又已知在I 段烟气中 CO 2% (O)= CO%(O)= Ⅱ段不存在CO 则Ⅰ段生成CO 2的C 为: ×× 5 .78.128 .12+=h=h Ⅰ段生成CO 的C 为××5 .78.125 .7+=h=h Ⅰ段烧焦量=++595=h=h Ⅱ生成CO 2的C 即为Ⅱ段烧焦量=×=h=h 理论干空气量的计算 Ⅰ段碳燃烧生成二氧化碳需O 2量×1=h Ⅰ段碳燃烧生成一氧化碳需O 2量×=h

Ⅰ段氢燃烧生成水需O 2量595×=h 理论需O 2量=++=h=38736kg/h 理论需N 2量=×79/21=h=h Ⅰ段理论干空气量=O 2+N 2 =h=h Ⅱ段碳燃烧生成CO 2需O 2量=h=h Ⅱ段碳燃烧生成CO 2需N 2=×79/21=h=h Ⅱ段碳燃烧生成CO 2需N 2== O 2+ N 2=941kmol/h=h 实际干空气量 Ⅰ段再生烟气中过剩量为%, 则%= 8.455321 79 7.4131.70622(2+?O +O ++O (过剩) (过剩)过剩) 过剩02量=h=h 过剩N 2量=× 21 79 =224kmol/h=h Ⅰ段实际干空气量=理论干空气量+过剩的干空气量 =h=h Ⅱ段烟气中过剩02为%=(过剩) (过剩) )(2221 79 14.7436.197O +++O 过剩O 2量= kmol/h=h 过剩N 2量=× 21 79 =h=h Ⅱ段实际干空气量=1300 kmol/h=h

重油催化裂化

对重油催化裂化分馏塔结盐原因分析及对策 王春海 内容摘要 分析了重油催化裂化装置发生分馏塔结盐现象的原因,并提出了相应的对策。分馏塔结盐是由于催化原料中的有机、无机氯化物和氮化物在提升管反应器中发生反应生成HCl和NH3 ,二者溶于水形成NH4Cl溶液所致。可采取尽可能降低催化原料中的含盐量、对分馏塔进行在线水洗、利用塔顶循环油脱水技术等措施,预防和应对分馏塔结盐现象的发生。 关键词: 重油催化裂化分馏塔结盐氯化铵水洗循环油脱水

目前,催化裂化装置( FCCU)普遍通过掺炼渣油及焦化蜡油进行挖潜增效,但由于渣油中的氯含量和焦化蜡油中的氮含量均较高,势必导致FCCU 分馏塔发生严重的结盐现象。另外,近年来国内市场柴油消费量迅速增长,尽管其生产量增长也很快,但仍不能满足市场的需求。因此许多FCCU 采用降低分馏塔塔顶温度(以下简称顶温)的操作来增产柴油,但顶温低致使分馏塔顶部水蒸气凝结成水,水与氨(NH3)和盐酸(HCl)一起形成氯化铵(NH4Cl)溶液,从而加速分馏塔结盐。随着分馏塔内盐层的加厚,沉积在塔盘上的盐层会影响传质传热效果,致使顶温失控而造成冲塔;沉积在降液管底部的盐层致使降液管底部高度缩短,塔内阻力增加,最终导致淹塔.。可见,如何避免和应对分馏塔结盐现象的发生,是FCCU 急需解决的生产难题。 一、分馏塔结盐原因及现象分析 (一)原因 随着FCCU所用原料的重质化,其中的氯和氮含量增高。在高温临氢催化裂化的反应条件下,有机、无机氯化物和氮化物在提升管反应器中发生反应生成HCl和NH3 ,其反应机理可用下式表示: : 催化裂化反应生成的气体产物将HCl和NH3从提升管反应器中带入分馏塔,在分馏塔内NH3 和HCl与混有少量蒸汽的油气在上升过程中温度逐渐降低,当温度达到此环境下水蒸气的露点时,就会有冷凝水产生,这时NH3和HCl溶于水形成NH4Cl溶液。NH4Cl溶液沸点远高于水的沸点,其随塔内回流液体在下流过程中逐渐提浓,当盐的浓度超过其在此温度下的饱和浓度时,就会结盐析出,沉积在塔盘及降液管底部。 (二)现象 1.由于塔顶部冷凝水的存在,形成塔内水相内回流 ,致使塔顶温度难以控制 ,顶部循环泵易抽空,顶部循环回流携带水。 2.由于沉积在塔盘上的盐层影响传热效果,在中段回流量、顶部循环回流量发生变化时,塔内中部、顶部温度变化缓慢且严重偏离正常值。 3.由于沉积在塔盘上的盐层影响传质效果,导致汽油、轻柴油馏程发生重叠,轻柴油凝

(整理)催化裂化的装置简介及工艺流程

催化裂化的装置简介及工艺流程 概述 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: (一)反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 (二)分馏系统 分馏系统的作用是将反应/再生系统的产物进行分离,得到部分产品和半成

重油催化裂化基础知识

重油催化裂化基础知识 广州石化总厂炼油厂重油催化裂化车间编 一九八八年十二月

第一章概述 第一节催化裂化在炼油工业生产中的作用 催化裂化是炼油工业中使重质原料变成有价值产品的重要加工方法之一。它不仅能将廉价的重质原料变成高价、优质、市场需要的产品,而且现代化的催化裂化装置具有结构简单,原料广泛(从瓦斯油到常压重油),运转周期长、操作灵活(可按多产汽油、多产柴油,多产气体等多种生产方法操作),催化剂多种多样,(可按原料性质和产品需要选择合适的催化剂),操作简便和操作费用低等优点,因此,它在炼油工业中得到广泛的应用。 第二节催化裂化生产发展概况 早在1936年美国纽约美孚真空油公司(、)正式建立了工业规模的固定床催化裂化装置。由于所产汽油的产率与辛烷值均比热裂化高得多,因而一开始就受到人们的重视,并促进了汽车工业发展。如图所示,片状催化剂放在反应器内不动,反应和再生过程交替地在同一设备中进行、属于间歇式操作,为了使整个装置能连续生产,就需要用几个反应器轮流地进行反应和再生,而且再生时放出大量热量还要有复杂的取热设施。由于固定床催化裂化的设备结构复杂,钢材用量多、生产连续性差、产品收率与性质不稳定,后为移动床和流化床催化裂化所代替。 第一套移动床催化裂化装置和第一套流化床催化裂化(简称装置都是1942年在美国投产的。

固定床反应器 移动床催化裂化的优点是使反应连续化。它们的反应和再生过程分别在不同的两个设备中进行,催化裂化在反应器和再生器之间循环流动,实现了生产连续化。它使用直径约为3毫米的小球型催化剂。起初是用机械提升的方法在两器间运送催化剂,后来改为空气提升, 生产能力较固定床大为提高、 空气

催化裂化装置的主要设备

催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同 提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决 定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼 油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预 提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。 这种作用叫预提升。 为使油气在离开提升管后立即终止反应, 提升管出口均设有快速分离装置,其作用是使 油气与大部分催化剂迅速分开。快速分离器的 类型很多,常用的有:伞帽型,倒L型、T型、 粗旋风分离器、弹射快速分离器和垂直齿缝式 快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还 装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨 以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数 组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催 化荆后经集气室去分馏系统;由提升管快速分 离器出来的催化剂靠重力在沉降器中向下沉 降,落入汽提段。汽提段内设有数层人字挡板 和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所 需沉降高度确定,通常为9~12米。 汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般 是1.5~3分钟。 二、再生器

催化裂化的装置简介及工艺流程样本

催化裂化装置简介及工艺流程 概述 催化裂化技术发展密切依赖于催化剂发展。有了微球催化剂,才浮现了流化床催化裂化装置;分子筛催化剂浮现,才发展了提高管催化裂化。选用适当催化剂对于催化裂化过程产品产率、产品质量以及经济效益具备重大影响。 催化裂化装置普通由三大某些构成,即反映/再生系统、分馏系统和吸取稳定系统。其中反映––再生系统是全装置核心,现以高低并列式提高管催化裂化为例,对几大系统分述如下: (一)反映––再生系统 新鲜原料(减压馏分油)通过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提高管反映器下部,油浆不经加热直接进入提高管,与来自再生器高温(约650℃~700℃)催化剂接触并及时汽化,油气与雾化蒸汽及预提高蒸汽一起携带着催化剂以7米/秒~8米/秒高线速通过提高管,经迅速分离器分离后,大某些催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带催化剂后进入分馏系统。 积有焦炭待生催化剂由沉降器进入其下面汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部空气(由主风机提供)接触形成流化床层,进行再生反映,同步放出大量燃烧热,以维持再生器足够高床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后催化剂经淹流管,再生斜管及再生单动滑阀返回提高管反映器循环使用。 烧焦产生再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带大某些催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高并且具有约5%~10%CO,为了运用其热量,不少装置设有CO锅炉,运用再生烟气产

石油催化裂化系统设计

目录 第1章绘制控制工艺流程图 (1) 1.1 石油催化裂化工艺生产过程简介 (1) 1.2 催化裂化的工艺特点 (2) 1.3 CAD流程图 (3) 第2章节流装置的设计计算 (4) 2.1节流装置程序设计流程 (4) 2.3数据计算 (5) 第3章调节阀口径计算 (8) 3.1调节阀的选型 (8) 3.2调节阀口径计算 (8) 3.3 计算数据 (9) 第4章程序设计心得 (10) 参考文献 (11)

第1章 绘制控制工艺流程图 1.1 石油催化裂化工艺生产过程简介 该装置工艺流程分四个系统如图 提升管反应器 沉降器 再生器 回炼油浆 催化剂罐 主风机 加热炉 水蒸汽 新原料油 油浆 重柴油轻柴油 粗汽油 富气 气提塔 塔 馏分 回炼油罐 水蒸气 1 反应-再生系统:原料油经过加热汽化后进入提升管反应器进行裂化。提升管中 催化剂处于稀相流化输送状态,反应产物和催化剂进入沉降器,并经汽提段用过热水蒸气汽提,再经旋风分离器分离后,反应产物从反应系统进入分馏系统,催化剂沉降到再生器。在再生器中用空气使催化剂流化,并且烧去催化剂表面的焦炭。烟气经旋风分离器和催化剂分离后离开装置,使催化剂在装置中循环使用。 反应系统主要由反应器和再生器组成。原料油在装有催化剂的反应器中裂化,催化剂表面有焦炭沉积。沉积的焦炭的催化剂在再生器中烧焦进行再生,再生后的催化剂返回反应器重新使用。反应器主要为提升管,再生器为流化床。 再生器的主要作用是:烧去催化剂上因反应而生成的积炭,使催化剂的活性得以恢复。再生用空气由主风机供给,空气通过再生器下面的辅助燃烧室及分布管进入。 在反应系统中加入水蒸汽其作用为: (1)雾化——从提升管底部进入使油气雾化,分散,与催化剂充分接触; (2)预提升——在提升管中输送油气; (3)汽提——从沉降器底部汽提段进入,使催化剂颗粒间和颗粒内的油气汽提, 减少油气损失和焦炭生成量,从而减少再生器负荷。汽提水蒸气占总水蒸气量的大部分。

重油催化裂化装置安全基本常识

重油催化裂化装置安全基本常识 1.应急电话:火警:119;急救:120。 2.集团公司安全生产方针:安全第一、预防为主、全员动手、 综合治理。 3.三级安全教育:厂级安全教育、车间级安全教育、班组安 全教育。 4.三违:违章作业、违章指挥、违反劳动纪律。 5.三不伤害:不伤害自己、不伤害他人、不被他人伤害。 6.三不用火:没有经批准的用火作业许可证不用火、用火监 护人不在现场不用火、防火措施不落实不用火。 7.四不放过:事故原因分析不清不放过、事故责任者不受处 理不放过、事故责任者和群众没有受到教育不放过、防范措施不落实不放过。 8.三同时:一切新建、改建、扩建的工程项目,必须做到主 体工程与安全、环保、卫生技术措施和设施同时设计、同时施工、同时投用。

9.消防三懂、三会:懂火灾危险性、懂预防措施、懂扑救方 法;会报警、会使用灭火器材、会扑救初起火灾。 10.四全监督管理原则:全员、全过程、全方位、全天侯。 11.安全气分析: 1)可燃气体浓度:当爆炸下限大于4.0%时,指标为小于 0.5%;当爆炸下限小于4.0%时,指标为小于0.2%。 2)氧含量:19.5%~23.5%。 3)有毒有害物质不超过国家规定的“空气中有毒物质最 高容许浓度”的指标。 注:进入设备作业应保证以上三项同时合格,取样要有代表性、全面性。 12.生产装置、罐区的防火间距: 1)液态烃储罐、可燃气体储罐,防火间距为22.5米。(设 备边缘起)。 2)其它各类可燃气体储罐,防火间距为15米。 3)含可燃液体的敞口设备,如水池、隔油池等,防火间 距为22.5米。

13.石化集团公司HSE目标是:追求最大限度地不发生事故、 不损害人身健康、不破坏环境,创国际一流的HSE业绩。 14.济南分公司HSE方针:安全第一,预防为主;全员动手, 综合治理。 济南分公司HSE目标:层层落实HSE责任制,加大隐患治理力度,狠抓“三基”工作,严格事故责任追究,杜绝重大事故,减少人员伤亡和一般事故,争创HSE新业绩。15.每个职工应具备的HSE素质和能力: 1)对本职工作认真、负责,遵章守纪,有高度的责任感 和事业心; 2)在异常情况下,处置果断,有较强的生产处理和事故 应变能力; 3)业务精通、操作熟练,能正确分析解决生产操作和工 艺设备问题; 4)有较强的安全、环境与健康意识,能自觉做好HSE工 作; 5)能正确使用消防气防、救护器材,有较强的自救互救

炼油生产安全技术—催化裂化的装置简介类型及工艺流程

编订:__________________ 单位:__________________ 时间:__________________ 炼油生产安全技术—催化裂化的装置简介类型及工 艺流程 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8978-61 炼油生产安全技术—催化裂化的装置简介类型及工艺流程 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占

一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。 2.装置的主要类型 催化裂化装置的核心部分为反应—再生单元。反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。 再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图

催化裂化装置工艺流程及设备简图

催化裂化装置工艺流程及设备简图 “催化裂化”装置简单工艺流程 “催化裂化”装置由原料预热、反应、再生、产品分馏等三部分组成~其工艺流程见下图~主要设备有:反应器、再生器、分馏塔等。 1、反应器,又称沉降器,的总进料由新鲜原料和回炼油两部分组成~新鲜原料先经换热器换热~再与回炼油一起分为两路进入加热炉加热~然后进入反应器底部原料集合管~分六个喷嘴喷入反映器提升管~并用蒸汽雾化~在提升管中与560,600?的再生催化剂相遇~立即汽化~约有25,30%的原料在此进行反应。汽油和蒸汽携带着催化剂进入反应器。通过反应器~分布板到达密相段~反应器直径变大~流速降低~最后带着3,4?/?的催化剂进入旋风分离器,使其99%以上的催化剂分离,经料腿返回床层,油汽经集气室出沉降器,进入分馏塔。 2、油气进入分馏塔是处于过热状态,同时仍带有一些催 化剂粉末,为了回收热量,并洗去油汽中的催化剂,分馏塔入口上部设有挡板,用泵将塔底油浆抽出经换热及冷却到 0200,300C,通过三通阀,自上层挡板打回分馏塔。挡板以上为分馏段,将反应 物根据生产要求分出气体、汽油、轻柴油、重柴油及渣油。气体及汽油再进行稳定吸收,重柴油可作为产品,也可回炼,渣油从分馏塔底直接抽出。

3、反应生焦后的待生催化剂沿密相段四壁向下流入汽提段。此处用过热蒸汽提出催化剂,颗粒间及表面吸附着的可汽提烃类,沿再生管道通过单动滑阀到再生器提升管,最后随增压风进入再生器。在再生器下部的辅助燃烧室吹入烧焦用的空气,以保证床层处于流化状态。再生过程中,生成的烟通过汽密相段进入稀相段。再生催化剂不断从再生器进入溢流管,沿再生管经另一单动滑阀到沉降器提升管与原料油汽汇合。 4、由分馏塔顶油气分离出来的富气,经气压机增压,冷却后用凝缩油泵打入吸收脱吸塔,用汽油进行吸收,塔顶的贫气进入二级吸收塔用轻柴油再次吸收,二级吸收塔顶干气到管网,塔底吸收油压回分馏塔。 5、吸收脱吸塔底的油用稳定进料泵压入稳定塔,塔顶液态烃一部分作吸收剂,另一部分作稳定汽油产品。 设备简图 反应器、再生器和分馏塔高、重、大。具体如:分馏塔高41.856m,再生器塔高31m,反应器安装后塔顶标高达57m。再生器总重为390t,反应器总重为177t,分馏塔总重为175t。 3再生器最大直径9.6m,体积为2518m。 1(两器一塔的主要外型尺寸及参数 再生器的外型尺寸参数见下图。

石油化工催化裂化装置工艺流程图.docx

炼油生产安全技术一催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应--再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化 剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催 化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。再生器维持0.15MPa~0?25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经 淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部 分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的 装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电 能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分 馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应--再生系统进 行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走 分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460 C以上的带有催化 剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油 气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收--稳定系统: 从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3 C4甚至C2 组分。吸收--稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤ C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。 一、装置简介 (一)装置发展及其类型

催化裂化装置的主要设备催化裂化装置的主要设备

催化裂化装置的主要设备 催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。这种作用叫预提升。 为使油气在离开提升管后立即终止反应,提升管出口均设有快速分离装置,其作用是使油气与大部分催化剂迅速分开。快速分离器的类型很多,常用的有:伞帽型,倒L型、T型、粗旋风分离器、弹射快速分离器和垂直齿缝式快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催化荆后经集气室去分馏系统;由提升管快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入汽提段。汽提段内设有数层人字挡板和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所需沉降高度确定,通常为9~12米。汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般是1.5~3分钟。 二、再生器

催化裂化装置工艺流程

催化裂化装置工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: 一反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370?左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650?~700?)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650?~68 0?)。再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 二分馏系统

重油催化裂化装置长周期安全运行几点考虑

编号:SY-AQ-03170 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 重油催化裂化装置长周期安全 运行几点考虑 Considerations on long term safe operation of RFCC unit

重油催化裂化装置长周期安全运行 几点考虑 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 2002年10月,为了提高原油深度加工能力,提高轻油收率,第二催化裂化装置历时56天进行了由蜡油催化改为重油催化的技术改造,改造后的装置掺炼重油加氢渣油比例由原来20%提高到了50%以上。现在装置原料以减压馏份油、VRDS常压渣油、VRDS 减压渣油、焦化蜡油为主。装置改造后,装置操作相应发生比较大的变化,装置设备增多,设备管理难度加大,如何保证重油催化裂化装置长周期安全运行,成为生产管理中的难点和重点。 一、要确保关键转动设备的运行平稳度 催化裂化装置大机组较多,技术含量高,有主风机、烟机、气压机、增压机等,只有保证了大机组的连续高效运行,催化裂化装置才能长周期运行,所以我们首先要在检修中提高大机组的检修深

度和检修质量,确保大机组的机械部分、仪表部分、电气部分、自控部分和附属系统设备的可靠好用。在日常生产维护中加强对大机组的检查力度,组织安装投用了s8000大型旋转机械在线状态监测与分析系统,为机组的安全运行提供了有力保障。 二、要确保关键静设备——反再系统的运行平稳度 要保证公用系统的可靠性,尽量避免公用系统故障造成装置大面积操作波动,严格按照工艺指标平稳操作,不超温不超压,操作的平稳对催化裂化设备安全运行尤为关键。另外组织技术人员加强对反再系统壁温的检测和检查,及时发现避免衬里损坏超温、低温露点腐蚀等设备隐患。 三、要确保能量回收系统的运行平稳度 催化裂化装置最大的节能点在于能量回收系统,对于关键设备烟机、锅炉给水泵、外取热器、油浆蒸汽发生器等必须要管理好。从设备选型、设备制造、现场安装、日常运行等各个环节把握好,否则烟机振动问题、锅炉给水泵频繁串轴问题、余热锅炉炉管泄漏问题、油浆蒸汽发生器管束泄漏等问题将不可避免。能量回收系统

80万吨年催化裂化装置设计计算书

第1章绪论 1.1 概述 1.1.1 催化裂化工业的意义与作用 石油工业是国民经济中最重要的支柱产业之一,是提供能源,尤其是提供交通运输燃料和有机化工原料的最重要的工业。据统计,全世界总能源需求的40%依赖于石油产品[1]。然而作为一种不可再生资源,石油的产量在不断的下降,而社会生产,人民生活却需要大量的汽油,柴油等轻质油品,但是石油不能直接作为产品使用,必须经过各种加工过程,炼制成多种符合使用要求的各种石油产品。而原油经过第一步加工只能得到少部分轻质油,大部分仍为渣油,因此需要对重质油进一步加工,催化裂化是对重质油加工的主要手段。 以我国目前的需要情况为例,对轻质燃料油,重质燃料油和润滑油三者需要的比例是20:6:1。另一方面,由于内燃机的发展对汽油的质量提出更高的要求,而直馏汽油一般难以满足这些要求。同时由于石油价格上涨和石油资源逐渐枯竭,许多国家都在努力寻找能替代石油的新能源。寻找新能源的工作近年来虽然取得很大的进展,但是至少在几十年内,由石油生产的轻质液体燃料仍然是不可能被替代的,而且对它的需求量还不断增大。所有的这一切都促使了石油的催化裂化工业的产生和发展。 1.1.2 催化裂化技术国内外发展现状 催化裂化是最重要的重质油轻质化过程之一,在汽油和柴油等轻质油品的生产中占有重要的地位。在一些原油加工深度较大的国家,例如德国和美国,催化裂化的处理能力达原油加工能力的30%以上。在我国,由于多数原油偏重,氢碳比(H/C)相对较高而金属含量相对较低,因此催化裂化过程,尤其是重油催化裂化过程的地位就显得更为重要。 在我国国内最早的工业催化裂化装置出现于1936年。几十年来,无论

催化裂化装置工艺条件一览表

催化裂化装置工艺条件一览表 一、催化裂化装置主要工艺指标 1、反应再生单元 序号工艺指标名称单位仪表位号控制范围 1 重油提升管出 口温度℃TRCA22101 A 500~530 2 芳烃提升管出 口温度 芳烃提升管出 口温度 ℃ ℃ TRCA22101 B TRCA22101 B 440~480 (低硫) 480~530 (高硫) 3 反应压力MPa PR22102 0.13~0.19 4 再生压力MPa PRCA22101 0.16~0.22 5 两器压差MPa PdRCA2210 4A 0.03~0.05 6 再生器温度℃TRCA22102 660~710 7 再生器稀相温 度 ℃TIA22123 ≤730 8 沉降器藏量t WRCA22101 35~48 9 再生器藏量t WR22105 90~130 10 原料油预热温 度 ℃TRCA22103 180~225 11 主风流量Nm3/h FRCA22604 140000~

160000 12 待生套管流化 Nm3/h FRCA22110 3000~6000 风量 Nm3/h FRCA22109 3500~8000 13 外取热流化风 量 14 烟气氧含量v%AR22101 ≤3 15 过热蒸气温度℃TIC22461 380~410 MPa PRA22421 3.5~4.1 16 外取热汽包压 力 ℃TI22468 >122 17 省煤器上水温 度 18 外取热汽包液 %LRC22421 50±20 位 2、分馏单元 序号工艺指标名称单位仪表位号控制范围 1 重油分馏塔塔顶℃TRCA2220120~150 2 芳烃分馏塔塔顶℃TRCA2222125~150 3 重油分馏塔16层℃TI22209 220~240 4 芳烃分馏塔16层℃TI22238 210~230 5 重油分馏塔塔底℃TRC22217 ≤350 6 芳烃分馏塔塔底℃TRC2223 7 ≤340 7 油浆外甩温度℃TR22250 ≤95 8 油浆固体含量g/l ≤6 9 V22201液位%LIK22209 50±20 10 T22201A液位%LC22201 50±20

重油催化裂化装置主要工艺流程说明

重油催化裂化装置主要工艺流程说明 一. 反再系统 1.反应部分 混合蜡油和常(减)压渣油分别由罐区原料罐送入装置内的静态混合器(D-214)混合均匀后,进入原料缓冲罐(D-203/1),然后用原料泵(P-201/1.2)抽出,经流量控制阀(8FIC-230)后与一中回流换热(E-212/1.2),再与油浆(E-201/1.2)换热至170~220℃,与回炼油一起进入静态混合器(D-213)混合均匀。在注入钝化剂后分三路(三路设有流量控制)与雾化蒸汽一起经六个进料喷嘴进入提升管,与从二再来的高温再生催化剂接触并立即汽化,裂化成轻质产品(液化气、汽油、柴油)并生成油浆、干气及焦炭。 新增焦化蜡油流程:焦化蜡油进装后先进焦化蜡油缓冲罐(D-203/2),然后经焦化蜡油泵(P-201/3.4)提压至1.3MPa 后分为两路:一路经焦化蜡油进提升管控制阀(8FIC242)进入提升管反应器的回炼油喷嘴或油浆喷嘴,剩余的焦化蜡油经另一路通过D-203/2的液位控制阀(8LIC216)与进装蜡油混合后进入原料油缓冲罐(D-203/1)。 新增常压热渣油流程:为实现装置间的热联合,降低装置能耗,由南常减压装置分出一路热常渣(约350℃),经8FIQC530直接进入D-213(原料油与回炼油混合器)前,与原料混合均匀后进入提升管原料喷嘴。

反应油气、水蒸汽、催化剂经提升管出口快分器分离出大部分催化剂,反应油气经过沉降器稀相沉降,再经沉降器(C-101)内四组单级旋风分离器分离出绝大部分催化剂,反应油气、蒸汽、连同微量的催化剂细粉经大油气管线至分馏塔人档下部。分馏塔底油浆固体含量控制<6g/L。 旋分器分出的催化剂通过料腿返回到汽提段,料腿装有翼阀并浸没在汽提段床层中,保证具有正压密封,防止气体短路,汽提蒸汽经环形分布器进入汽提段的上中下三个部位使催化剂不仅处于流化状态,并汽提掉催化剂夹带的烃油气,汽提后的催化剂通过待生滑阀进入一再催化剂分布器。 2.再生部分 第一再生器在比较缓和的条件下进行部分燃烧,操作压力为0.15~0.25MPa(表),温度660~690℃,在床层中烧掉焦炭中绝大部分氢和部分碳。由于有水蒸汽存在,一再温度要控制低一些,以减轻催化剂的水热失活。烧焦用风分别由一再主风及过剩氧较高的二再烟气提供。 从一再出来的半再生催化剂通过半再生滑阀进入二再下部,并均匀分布。二再压力在0.27MPa(表),720~760℃温度下操作,催化剂上剩余碳用过量的氧全部生成CO2。由于一再烧掉绝大部分氢,从而有效降低了二再水蒸汽分压,使二再可在较高的温度下操作。二再烟气由顶部进入一再,热再生催化剂从二再流出,通过再生滑阀进入提升管底部,实

催化裂化装置

催化裂化装置 一、催化裂化在炼油工业中的作用 催化裂化是重要的石油二次加工手段之一,催化裂化是现代化炼油厂用来改质重质馏分和渣油的核心技术。 一般原油经过一次加工(即常减压蒸馏)后可得到10~40%的汽油,煤油及柴油等轻质油品,其余的是重质馏分和残渣油。如果不经过二次加工它们只能作为润滑油原料或重质燃料油。但是国民经济和国防上需要的轻质油量是很大的,但市场对轻质油的需求量是很大的,以我国目前为例,对轻质燃料油、重质燃料油和润滑油的需求比例大约是20:6:1;另一方面,由于内燃机的发展,对汽油的质量提出了更高的要求,而一般直馏汽油则难以满足这些要求。如目前我国车用汽油标准里面所有汽油的研究法辛烷值都在90以上,随着我国高标号汽油(指研究法辛烷值为93及以上汽油)的消费量不断增长,高标号汽油产量所占的比例已由2003年的28.5%上升到2006年的56.5%。而直馏汽油的辛烷值一般只有40~60,不能满足上述要求。 催化裂化是目前石油炼制工业中最重要的二次加工过程,也是重油轻质化(生产汽、柴油)的核心工艺。催化裂化以各种重质油(VGO、CGO、AR、VR等)为原料,在500℃左右、0.2~0.4MPa及催化剂的作用下,通过催化裂化反应得到气体(干气和LPG)、高辛烷值汽油、催化柴油(LCO)、重质油及焦炭。因此,催化裂化是提高原油加工深度、增加轻质油收率的重要手段。就加工能力来说,我国的催化裂化位居其它二次加工过程之首,催化裂化几乎是所有石化企业最重要的二次加工手段。 催化裂化过程有以下几个特点: 轻质油收率高,可达70%~80%; 催化裂化汽油的辛烷值较高,安定性好; 催化裂化汽柴油十六烷值较低,常与直馏柴油调合才能使用; 催化裂化气体产品中,80%是C3和C4烃类(称为液化石油气LPG),其中丙烯和丁烯占一半以上,因此这部分产品是优良的石油化工和生产高辛烷值汽油组分的原料。 二、工艺原理概述

重油催化裂化装置工艺流程简述

重油催化裂化装置工艺流程简述 重油催化裂化装置:包括反应—再生部分、分馏部分、吸收稳定部分、主风机部分、气压机部分、余热回收部分。 1.1 反应-再生部分 自装置外来的常压渣油进入原料油缓冲罐(V1201),由原料油泵(P1201AB)升压后经循环油浆—原料油换热器(E1215AB )加热至280C左右,与自分馏部分来的回炼油混合后进入提升管中部,分4路经原料油进料喷嘴进入提升管反应器(R1101A)下部,与通过预提升段整理成活塞流的高温催化剂进行接触完成原料的升温、汽化及反应,反应油气与待生催化剂在提升管出口经粗旋风分离器得到迅速分离后经升气管进入沉降器单级旋风分离器,在进一步除去携带的催化剂细粉后,反应油气离开沉降器,进入分馏塔。 待生催化剂经粗旋及沉降器单级旋风分离器料腿进入位于沉降器下部的汽提段,在此与蒸汽逆流接触以置换催化剂所携带的油气。汽提后的催化剂沿待生立管下流,经待生塞阀并通过待生塞阀套筒进入再生器(R1102)的密相床,在 700r左右的再生温度、富氧(3%)及CO助燃剂的条件下进行逆流完全再生。再生后的再生催化剂通过各自的再生立管及再生单动滑阀,进入两根提升管反应器底部,以蒸汽和干气作提升介质,完成催化剂加速、分散过程,然后与雾化原料接触。来自蜡油再生斜管的再生催化剂与来自汽油待生循环管的汽油待生催化剂通过特殊设计的预提升段整理成活塞流。 轻重汽油分离塔顶回流油泵出口来的轻汽油,分两路进入汽油提升管反应器(R1104A)。R1104A 的反应油气在提升管出口经粗旋迅速分离,油气经单级旋风分离器进一步除去携带的催化剂细粉,最后离开汽油沉降器,进入分馏塔。 来自R1104 粗旋以及汽油沉降器单级旋风分离器回收的催化剂进入汽油汽提

相关主题
文本预览
相关文档 最新文档