当前位置:文档之家› g-C3N4 MoO3 photocatalyst improved visible-light photoactivity

g-C3N4 MoO3 photocatalyst improved visible-light photoactivity

g-C3N4 MoO3 photocatalyst   improved visible-light photoactivity
g-C3N4 MoO3 photocatalyst   improved visible-light photoactivity

Applied Surface Science 283 (2013) 25–32

Contents lists available at SciVerse ScienceDirect

Applied Surface

Science

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p s u s

c

Synthesis and characterization of g-C 3N 4/MoO 3photocatalyst with improved visible-light photoactivity

Liying Huang a ,b ,Hui Xu a ,Rongxian Zhang a ,Xiaonong Cheng b ,Jiexiang Xia a ,Yuanguo Xu a ,Huaming Li a ,?

a School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang 212013,PR China b

School of Material Science and Engineering,Jiangsu University,Zhenjiang 212013,PR China

a r t i c l e

i n f o

Article history:

Received 20March 2013

Received in revised form 10May 2013Accepted 22May 2013

Available online 30 May 2013

Keywords:g-C 3N 4/MoO 3Composite Photocatalyst

a b s t r a c t

A novel composite photocatalyst g-C 3N 4/MoO 3was prepared with a simple mixing-calcination method by tuning the amount of g-C 3N 4in the dispersion.The photocatalysts were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HRTEM),X-ray photoelectron spectroscopy (XPS),Fourier transform infrared spectroscopy (FT-IR),and diffuse re?ection spectroscopy (DRS).The g-C 3N 4/MoO 3composites showed high ef?ciency for the degradation of methylene blue (MB)dye under visible light.The optimum photocatalytic activity of g-C 3N 4/MoO 3at a g-C 3N 4weight content of 7%under visible light irradiation was almost 4.2and 1.9times as high as that of the pure MoO 3and g-C 3N 4,respectively.The enhancement of visible light photocatalytic activity in g-C 3N 4/MoO 3should be assigned to the effective separation and transfer of photogenerated charges originating from the well-matched overlapping band-structures.The photocatalytic degradation of M

B over g-

C 3N 4/MoO 3composites followed the pseudo-?rst-order reaction model.

? 2013 Elsevier B.V. All rights reserved.

1.Introduction

In recent years,semiconductor photocatalysts have attracted widespread interest as promising materials for they can remove environmental organic contaminants [1–3].Molybdenum trioxide (MoO 3),as a wide band gap n-type semiconductor,is an important electrochromic and photochromic sensitive material for optical devices and gas sensors [4–6].Recently,MoO 3photocatalyst has been reported [7–10].However,the high recombination rate of photogenerated electron–hole pairs has hampered the practical application of MoO 3.In order to enhance the photoactivity of the pure MoO 3,some efforts have been devoted to inhibiting the recombination of photogenerated electron–hole pairs,such as mor-phology control [7],deposition of Ag [8],and combination with TiO 2[9,10].Among them,MoO 3showed enhanced photocalytic perfor-mance after being combined with TiO 2.Therefore combining MoO 3with an appropriate semiconductor to form composite photocata-lysts may help increase the photocatalytic activity of MoO 3.To take better advantage of MoO 3,there is a need to develop novel materials for modifying MoO 3to further increase the photoactiv-ity.

Usually,a feasible route to improve the quantum ef?ciency is to promote the separation ef?ciency of photogenerated electron–hole

?Corresponding author.Tel.:+8651188791800;fax:+8651188791708.E-mail address:lihm@https://www.doczj.com/doc/0e9238433.html, (H.Li).

pairs by coupling the based-semiconductor photocatalysts with other semiconductors [11,12].Recently,a novel medium-bandgap semiconductor graphite-like carbon nitride (g-C 3N 4)has been reported,which is a layered material similar to the graphite and possesses a high thermal and chemical stability due to the strong covalent bonds between carbon and nitride atoms [13].In addition,it exhibits photocatalytic performance on hydrogen generation from water splitting and degradation of organic dyes under visible light irradiation [14,15].Different from the inorganic ?-conjugated materials (e.g.,graphite and C 60),g-C 3N 4is a soft polymer eas-ily coating on other compounds’surface,which facilitates for the transport of the photogenerated carriers.A series of compos-ite photocatalysts,such as g-C 3N 4/TaON [16],g-C 3N 4/ZnO [17]and g-C 3N 4/Bi 2WO 6[18]presented higher photocatalytic activ-ity than the pristine ones.Therefore,g-C 3N 4could be used as an ef?cient co-catalyst to enhance the photocatalytic activity of the semiconductor-based photocatalysts.

To the best of our knowledge,there are no reports on the modi?-cation of MoO 3with the g-C 3N 4material.It is expected that coating the surface of MoO 3with a preferred g-C 3N 4material will help decrease the electron–hole recombination of MoO 3and enable us to obtain higher ef?ciency photocatalysts.

Herein,a facile route to synthesize the visible-light-responsive g-C 3N 4hybridized MoO 3was developed.The visible light photoac-tivity was enhanced after MoO 3was hybridized by g-C 3N 4.The hybrid effect between MoO 3and g-C 3N 4and the possible mech-anisms of photocatalytic activity enhancement were put forward.

0169-4332/$–see front matter ? 2013 Elsevier B.V. All rights reserved.https://www.doczj.com/doc/0e9238433.html,/10.1016/j.apsusc.2013.05.106

26L.Huang et al./Applied Surface Science283 (2013) 25–32 2.Experimental

2.1.Preparation of photocatalysts

All starting regents(analytical grade purity)were purchased

from sinopharm company sources and used without further puri?-

cation.Distilled water was used throughout.

MoO3powder was synthesized by a solid-state decomposition

reaction of(NH4)6Mo7O24·4H2O at500?C for4h under air condi-

tion.The product was washed with distilled water three times and

dried at60?C for6h.

g-C3N4powder was prepared by directly heating dicyandiamide

at520?C in a muf?e furnace for4h in a semiclosed system to pre-

vent sublimation of dicyandiamide at a heating rate of20?C min?1

under air condition.The product was washed with distilled water

three times and dried at60?C for6h.

Typical preparation of g-C3N4/MoO3(1%)composite was as fol-

lows:0.01g g-C3N4and0.99g MoO3were added into50ml ethanol

in a beaker,and then the mixture was placed in an ultrasonic bath

for2h to completely disperse the powder.After volatilization of

ethanol and subsequent drying at100?C a gray-green powder was

obtained.The mixed powder was grounded for30min using a mor-

tar with a pestle and subsequent calcination at300?C for12h in a

muf?e furnace under air condition.After being cooled,the prod-

uct was obtained.According to this synthesis route,g-C3N4/MoO3

composites with different g-C3N4weight percents3wt%,5wt%,

7wt%,and10wt%were synthesized respectively through changing

the amount of g-C3N4and MoO3.All the g-C3N4/MoO3com-

posites were denoted as g-C3N4/MoO3(1%),g-C3N4/MoO3(3%),

g-C3N4/MoO3(5%),g-C3N4/MoO3(7%)and g-C3N4/MoO3(10%).

2.2.Characterization of photocatalysts

The crystalline phases of g-C3N4/MoO3composites were ana-lyzed by X-ray diffraction(XRD)using Bruker D8diffractometer with Cu K?radiation( =1.5418?A)within the range of2?=10–80?. The morphologies and structure of the as-prepared samples were examined by scanning electron microscopy(SEM)with JEOL JSM-7001F?eld-emission microscope and a transmission electron microscope(TEM,JEOL-JEM-2010).Fourier transform infrared(FT-IR)spectra of samples were recorded on a Nicolet Avatar-370 spectrometer at room temperature.Ultraviolet visible(UV–vis) diffuse re?ection spectra were measured using a UV–vis spec-trophotometer(Shimadzu UV-2450,Japan)within the range of 200–800nm.BaSO4was used as a re?ectance standard material.X-ray photoemission spectroscopy(XPS)was measured in a PHI5300 ESCA system.

2.3.Photocatalytic activity

The photocatalytic activity of the g-C3N4/MoO3composites was evaluated by the degradation of MB dye under visible light irra-diation.An aqueous solution of methylene blue(100mL,10mg/L) was placed into a glass,and then100mg photocatalyst was added. Photocatalytic activity of the sample was evaluated under a300W Xe lamp with a400nm cutoff?lter.Prior to irradiation,the sus-pensions were magnetically stirred in the dark for about30min to ensure the establishment of an adsorption-desorption equilibrium between the photocatalysts and MB dye.At certain time intervals, 3ml liquids were sampled and centrifuged to remove the photo-catalyst particles.Then the?ltrates were analyzed by recording variations of the absorption band maximum(663nm)in the UV–vis spectra of MB by using a spectrophotometer(Shimadzu UV-2450).

29.0

28.5

28.0

27.5

27.0

26.5

26.0

I

n

t

e

n

s

i

t

y

(

a

.

u

)

2θ(degree)

g-C

3

N

4

/MoO

3

(1%)

g-C

3

N

4

/MoO

3

(3%)

g-C

3

N

4

/MoO

3

(5%)

g-C

3

N

4

/MoO

3

(7%)

g-C

3

N

4

/MoO

3

(10%)

pure g-C

3

N

4

(

2

)

(

2

1

)

(B)

MoO

3

I

n

t

e

n

s

i

t

y

(

a

.

u

)

2θ(degree)

Fig.1.(A)XRD pattern of MoO3,g-C3N4and g-C3N4/MoO3composites.(B)Enlarged XRD pattern of MoO3,g-C3N4and g-C3N4/MoO3composites from26?to29?.

The photocatalytic degradation ef?ciency(E)of MB was obtained by the following formula:

E=

1?

C

C0

×100%=

1?

A

A0

×100%(1) where C is the concentration of the MB solution at the reaction time,C0is the adsorption/desorption equilibrium concentration of MB(at reaction time0).A and A0are the corresponding absorbance values.

3.Results and discussion

3.1.XRD analysis

Fig.1shows the XRD patterns of MoO3,g-C3N4and g-C3N4/MoO3composites.As can be seen from Fig.1A,all the diffraction peaks of MoO3can be exactly indexed as the ortho-rhombic structure(JCPDF35-0609)[7].The main peaks at12.78?, 23.33?,25.70?,25.88?,27.34?and38.97?correspond to the(020), (110),(040),(120),(021)and(060)planes.The diffraction peaks of pure g-C3N4appearing at27.5?and13.1?correspond to the (002)and(100)planes,which is in accordance with the char-acteristic interplanar staking peaks of aromatic systems and the inter-layer structural packing,respectively[19].However,in the case of g-C3N4/MoO3composites,the diffraction peaks of g-C3N4 cannot be obviously observed.To better investigate the diffraction

L.Huang et al./Applied Surface Science283 (2013) 25–32

27

Fig.2.SEM images of(A)g-C3N4,(B)MoO3,(C)g-C3N4/MoO3(7%)and(D)HRTEM image of g-C3N4/MoO3(7%)composite.

peaks,the enlarged XRD pattern from26?to29?is shown in Fig.1B.All the diffraction peaks of g-C3N4/MoO3composites at (021)planes(27.33?)can be observed gradually moving from 27.33?to27.45?with g-C3N4loading from1%to10%,which is attributed to the two lines overlapping with each other.Therefore, the presence of g-C3N4can be observed in the enlarged XRD pat-tern(Fig.1B),con?rming the coexistence of g-C3N4and MoO3in the g-C3N4/MoO3composites.

3.2.SEM and HRTEM analysis

Fig.2shows the morphology and structure of MoO3crystalline, pure g-C3N4and g-C3N4/MoO3(7%)composite.As shown in Fig.2A and B,it can be seen that pure g-C3N4samples are irregular parti-cles consisting of lamellar structures,while MoO3crystallines have obvious edges and seem to have a broader particle size distribution (from a few hundred nanometers to several micrometers).In the case of the g-C3N4/MoO3(7%)composite,it can be clearly observed that crystalline MoO3particles have been wrapped by thin amor-phous layers(Fig.2C).The amorphous layers are attributed to the carbon nitride polymers as supported by the XRD patterns (Fig.1).The HRTEM in Fig.2D shows the outer boundary of the MoO3crystallines is the g-C3N4layer,which forms a kind of het-erojunction structure.This structure improved the separation of photogenerated electron–hole pairs and reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction.This kind of heterojunction structure has been con?rmed by some recent reports,such as g-C3N4/ZnO[17],g-C3N4/Bi2WO6 [18].The lattice fringes have a spacing of0.196nm and0.299nm corresponding to interplanar spacing of(061)and(130)plane of orthorhombic MoO3respectively,which is consistent with the XRD result.From the XRD(Fig.1),SEM and HRTEM analysis(Fig.2),the results indicated that the heterojunction interface could be formed in the composite between MoO3and g-C3N4.

3.3.XPS analysis

XPS measurements were performed to determine the valence states of various species.Fig.3shows the survey scan XPS spec-trum of MoO3,g-C3N4and g-C3N4/MoO3(7%)composite.The result indicates the presence of O,Mo,C and N in the composite.High res-olution spectra of O1s,Mo3d,C1s and N1s are shown in Fig.4A–D.

1000

800

600

400

200

I

n

t

e

n

s

i

t

y

(

a

.

u

)

Binding Energy (eV)

C

1

s

N

1

s

O

1

s

M

o

3

d

g-C

3

N

4

MoO

3

g-C

3

N

4

/MoO

3

(7%)

Fig.3.XPS survey spectrum of MoO3,g-C3N4and g-C3N4/MoO3(7%)composite.

28L.Huang et al./Applied Surface Science 283 (2013) 25–32

300

295290285280I n t e n s i t y (a .u )

Binding Energy (eV)

g-C 3N 4

g-C 3N 4/MoO 3 (7%)

288.2 eV

284.8eV

C1s

(C)

I n t e n s i t y (a .u )

Binding Energy (eV)

I n t e n s i t y (a .u )

Binding Energy (eV)

I n t e n s i t y (a .u )

Binding Energy (eV)

Fig.4.XPS spectra of MoO 3and g-C 3N 4/MoO 3(7%)composite:(A)O 1s,(B)Mo 3d;high resolution XPS spectra of g-C 3N 4and g-C 3N 4/MoO 3(7%)composite:(C)C 1s and (D)

N 1s.

The O 1s peak

(Fig.4A)of MoO 3centered at 530.8eV is associated with the O 2?in the orthorhombic MoO 3[7,20].The O 1s peak of g-C 3N 4/MoO 3(7%)composite at 531.1eV is associated with the adsorbed oxygen on the surface of g-C 3N 4/MoO 3(7%)composite

T %

Wavelnumber( cm -1

)

Fig.5.FT-IR spectra of g-C 3N 4,MoO 3and g-C 3N 4/MoO 3composite.

[21,22].As can be seen from Fig.4B,the Mo 3d 5/2(233.0eV)and

the Mo 3d 3/2(236.1eV)are detectable in MoO 3sample,which shows the typical binding energies of Mo 6+and no apparent peak of Mo 5+and Mo 4+[20,21].However,the binding energies of the Mo 3d 5/2and the Mo 3d 3/2in the g-C 3N 4/MoO 3(7%)composite are observed at 232.8eV and 235.9eV,which are slightly lower than those for pure MoO 3.Such a negative shift may be attributed to the interaction between MoO 3and g-C 3N 4.The C 1s peaks of g-C 3N 4and g-C 3N 4/MoO 3(7%)composite remain unchanged and are both observed at 284.8eV and 288.2eV (Fig.4C).The C 1s peak at 284.8eV is attributed to the adventitious carbon on the surface of g-C 3N 4/MoO 3composite photocatalyst [23].The other C 1s peak at 288.2eV (Fig.6C)is assigned to a C N C coordination [24].The N 1s peak of g-C 3N 4at 398.7eV (Fig.4D)is typically attributed to N atoms sp 2-bonded to two carbon atoms (C N C)[24,25],sug-gesting the presence of sp 2-bonded graphitic carbon nitride.In the case of the g-C 3N 4/MoO 3(7%)composite,the binding energy of N 1s (399.0eV)shows a positive shift.The results suggest that the interaction between Mo and N atoms results from the coating of the g-C 3N 4,not the simple physical adsorption.Similar result has been found that the N 1s peak showed a shift resulting from the interaction between Bi and N atoms in C 3N 4/BiPO 4photocatalyst [26].Therefore,with the combination of the XRD,SEM,HRTEM and XPS investigation,the results have con?rmed that there are both MoO 3and g-C 3N 4species in the heterojunction structure.

L.Huang et al./Applied Surface Science 283 (2013) 25–32

29

A b s o r b a n c e

(h )2

h (eV)

(h )

1/2

Fig.6.(A)UV–vis spectra of g-C 3N 4,MoO 3and g-C 3N 4/MoO 3composites.(B)The plot of (ah )2versus energy (h )for the band gap energy of MoO 3and the plot of (ah )1/2versus energy (h )for the band gap energy of g-C 3N 4.

3.4.FT-IR analysis

Fig.5shows the FT-IR spectra of MoO 3,g-C 3N 4and various g-C 3N 4/MoO 3composites.As can be seen in Fig.5,for the pure g-C 3N 4,the peak at 1643cm ?1is attributed to C N stretching vibration modes,while the 1242,1322,1405cm ?1and 1563cm ?1are asso-ciated with aromatic C N stretching [27].The band near 808cm ?1is attributed to out-of plane bending modes C N heterocycles [25].For the pure MoO 3,three vibrations are detected at about 562,867and 993cm ?1,which are due to the stretching mode of oxygen linked with three metal atoms,the stretching mode of oxygen in the Mo O Mo units and the Mo O stretching mode (the speci?cation of a layered orthorhombic ?-MoO 3phase)[28,29],respectively.In the case of the g-C 3N 4/MoO 3composites,the characteristic vibra-tions for g-C 3N 4and MoO 3still remain and the typical g-C 3N 4absorption peaks in g-C 3N 4/MoO 3composites increase obviously with the increasing of g-C 3N 4content.

3.5.DRS analysis

Fig.6shows the UV–vis DRS spectra of MoO 3,g-C 3N 4and g-C 3N 4/MoO 3composites.As can be seen in Fig.6A,MoO 3has an absorption edge at about 425nm,which corresponds to band gap energy of 2.92eV.The absorption edge of the g-C 3N 4/MoO 3com-posites shows a shift toward the visible region upon loading of g-C 3N 4.In addition,g-C 3N 4/MoO 3(7%)composite displays clear

C /C 0

Irra diation time (h)

Fig.7.Photocatalytic degradation ef?ciency of MB by MoO 3,g-C 3N 4and g-C 3N 4/MoO 3composites.

optical response in the visible region with an absorption edge of

approximate 450nm.The red shift of the absorption wavelength is favorable for the g-C 3N 4/MoO 3composites to generate more electron–hole pairs under visible-light irradiation,which can result in higher photocatalytic performance.

The band gap energy of a semiconductor can be calculated by the following formula:

ah =A (h ?E g )

n/2

(2)

where ?,h , ,E g and A are absorption coef?cient,Planck con-stant,light frequency,band gap energy and a constant,respectively.In addition,n is determined by the type of optical transition of a semiconductor (n =1for direct transition and n =4for indirect transition).For MoO 3and g-C 3N 4,the values of n are 1and 4,respec-tively [30,31].Therefore,as can be seen in Fig.6B,E g of MoO 3is estimated to be 2.92eV according to a plot of (?h )2versus energy (h ).Accordingly,E g of g-C 3N 4is determined from a plot of (?h )1/2versus energy (h )and is found to be 2.70eV.The obtained E g val-ues of MoO 3and g-C 3N 4is in accordance with what the literature reported [16,32].

3.6.Photocatalytic activity

The photocatalytic activity of g-C 3N 4/MoO 3composites was evaluated by decomposing MB under visible-light irradiation ( >400nm).Fig.7shows the photocatalytic activity of the g-C 3N 4/MoO 3composites with different g-C 3N 4concentrations.As can be seen in Fig.7,without a catalyst the absorbency of MB solution displays little difference,indicating that the photolysis is negligible.The photocatalytic activity of g-C 3N 4is higher than that of MoO 3under visible-light irradiation.The photocatalytic activity of g-C 3N 4/MoO 3composites is greatly in?uenced by the g-C 3N 4content.With the increase of g-C 3N 4from 1%to 5%the photo-catalytic activity of g-C 3N 4/MoO 3composites increased,showing higher activity than that of MoO 3and lower than that of g-C 3N 4.Further increasing the g-C 3N 4concentration to 7%and 10%,the photocatalytic activity of g-C 3N 4/MoO 3composites were higher than that of both MoO 3and g-C 3N 4.The results showed the intro-duction of g-C 3N 4was bene?cial to the photoactivity enhancement of MoO 3under visible light and there existed interaction between g-C 3N 4and MoO 3.From Fig.7,it can be observed that the g-C 3N 4/MoO 3(7%)composite has the optimal photocatalytic activity and the photocatalytic degradation ef?ciency of MB is 93%under visible light irradiation for 3h.It was known that g-C 3N 4coatings were bene?cial to charge transfer at heterojunction interfaces

30L.Huang et al./Applied Surface Science 283 (2013) 25–32

-l n (C /C 0)

Irradiation time (h)

Fig.8.Kinetic ?t for the degradation of MB with MoO 3,g-C 3N 4and g-C 3N 4/MoO 3composites.

[17,18].In view of the demands of both the charge transfer and light harvesting,photocatalytic activity of photocatalysts ?rst increases and then decreases with the increasing thickness of g-C 3N 4,such as g-C 3N 4/ZnWO 4[33]and C 3N 4/BiPO 4[26].Similarly,suitable con-tent of g-C 3N 4was needed in the g-C 3N 4/MoO 3system to obtain the best photocatalytic activity performance.

3.7.Kinetics

To investigate the reaction kinetics of the MB degradation,the experimental data were ?tted by a ?rst-order model as expressed by the following formula:

?ln

C C 0

=kt

(3)

where C 0and C are the dye concentration in solution at time 0and t ,respectively,and k is the apparent ?rst-order rate constant.As shown in Fig.8,the plot of the irradiation time (t )against ?ln (C /C 0)is nearly a straight line.

From the slope in Fig.8,the degradation rate constant (k )of the products were obtained.The rate constant (k )of MoO 3and g-C 3N 4is 0.2109h ?1and 0.4917h ?1,respectively.In the case of g-C 3N 4/MoO 3composites with g-C 3N 4contents of 1%,3%,5%,7%,and 10%,the corresponding rate constants (k )is estimated to be 0.2559h ?1,0.4178h ?1,0.4569h ?1,0.8837h ?1and 0.7318h ?1,respectively.The rate constant (k )of the g-C 3N 4/MoO 3(7%)com-posite is up to 4.2and 1.9times as high as that of the pure MoO 3and g-C 3N 4.As a result,the g-C 3N 4/MoO 3(7%)composite was selected for the recycling experiment.The rate constants (k )and relative coef?cients were summarized in Table 1.

Table 1

Degradation rate constant (k )for MB photocatalytic degradation under different photocatalysts.

Series

Photocatalysts

The ?rst order kinetic equation

k (h

?1

)

R

2

1MoO 3?ln(C /C 0)=0.2109t 0.21090.99682g-C 3N 4

?ln (C /C 0)=0.4917t 0.49170.99793g-C 3N 4/MoO 3(1%)?ln (C /C 0)=0.2559t 0.25590.99734g-C 3N 4/MoO 3(3%)?ln (C /C 0)=0.4178t 0.41780.99885g-C 3N 4/MoO 3(5%)?ln (C /C 0)=0.4569t 0.45690.99796g-C 3N 4/MoO 3(7%)?ln (C /C 0)=0.8837t 0.88370.99867

g-C 3N 4/MoO 3(10%)

?ln (C /C 0)=0.7318t

0.7318

0.9983

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0

D e g r a d a t i o n e f f i c i e n c y (C /C 0)

Cycling runs

Fig.9.Cycling runs of g-C 3N 4/MoO 3(7%)composite for photodegradation MB under visible light.

3.8.Stability evaluation

In addition to photocatalytic ef?ciency,the stability of photo-catalysts is also very important for practical application.To evaluate the stability and ef?ciency of the photocatalytic performance of g-C 3N 4/MoO 3composite,the circulating runs in the photocatalytic degradation of MB were carried out.As shown in Fig.9,it is found that the photocatalytic activity of g-C 3N 4/MoO 3(7%)composite does not exhibit a signi?cant loss after ?ve recycles for the pho-todegradation of MB,con?rming that g-C 3N 4/MoO 3is photostable during the photocatalytic oxidation of the pollutant molecules.

3.9.Mechanism of enhancement of photoactivity under visible light

In principle,phase structure,adsorption ability and separation ef?ciency of photogenerated charges are crucial factors for photo-catalytic activity.As can be seen from the XRD spectra,the crystal phase structure of MoO 3does not change during the hybridiza-tion.An adsorption experiment was performed to evaluate the adsorption ability of the MoO 3,g-C 3N 4and g-C 3N 4/MoO 3com-posites in the dark.After equilibration in the dark for 30min,34.5%,38.9%,37.2%,36.1%,44.4%,46.5%and 39.5%of MB removed from the solution with MoO 3,pure g-C 3N 4,g-C 3N 4/MoO 3(1%),g-C 3N 4/MoO 3(3%),g-C 3N 4/MoO 3(5%),g-C 3N 4/MoO 3(7%),and g-C 3N 4/MoO 3(10%)composite,https://www.doczj.com/doc/0e9238433.html,pared with MoO 3,the slight enhancement of adsorption in g-C 3N 4/MoO 3composites can be observed,which could be due to the ?–?stacking between g-C 3N 4and MB [34],suggesting a good supplement for the high photocatalytic activity of the hybridized g-C 3N 4/MoO 3composites.

As discussed above,the crystal phase structure was not evi-dently changed and the limited adsorptive enhancement was not the major factor of the signi?cant enhancement of the pho-tocatalytic activity of MoO 3(enhanced ablout 4.2times).The enhancement of photocatalytic activity was mainly due to the hybrid effect between the two semiconductors,which can accel-erate the separation of electrons and holes [35].However,whether it is valid to separate photogenerated electrons and holes depends on the suitable band-gap positions of the two semiconductors [36].The band positions of g-C 3N 4and MoO 3could be calculated by the following empirical formulas:

E CB =X ?E c ?

12

E g (4)

L.Huang et al./Applied Surface Science283 (2013) 25–32

31

Fig.10.Proposed mechanism for the photodegradation of MB on g-C3N4/MoO3 composites.

E VB=E CB+E g(5) where X is the absolute electronegativity of the atom semi-conductor,expressed as the geometric mean of the absolute electronegativity of the constituent atoms,which is de?ned as the arithmetic mean of the atomic electro af?nity and the?rst ion-ization energy;E c is the energy of free electrons of the hydrogen scale(4.5eV);E g is the band gap of the semiconductor;E CB is the conduction band potential and E VB is the valence band poten-tial.The band gap of MoO3and the absolute electronegativity X were2.92eV and6.40eV[37],respectively.According to the above equation,the top of the valance band(VB)and the bot-tom of the conduction band(CB)of MoO3were calculated to be 3.36eV and0.44eV,respectively,which is similar to the reported literature[32].Accordingly,the band gap of g-C3N4was2.70eV (the top of the valance band was1.57V and the bottom of the conduction band was?1.13eV versus the normal hydrogen elec-trode,respectively)[16].As a result,a scheme for the separation and transport of photogenerated electron–hole pairs at the g-C3N4/MoO3interface is shown in Fig.10.MoO3and g-C3N4can be both excited and produce photogenerated electron–hole pairs. Since the CB edge potential of g-C3N4(?1.13eV)was more neg-ative than that of MoO3(0.44eV),the photoinduced electrons on g-C3N4particle surfaces transfer more easily to MoO3via the well developed interface.Similarly,the photo-induced holes on the MoO3surface move to g-C3N4due to the large difference in VB edge potentials.In the meantime,more ef?cient charge separa-tion and the lower electron-hole pair recombination are obtained, resulting in the photocatalytic activity enhancement.This effec-tive separation of photogenerated electron–hole pairs driven by band potentials between two semiconductors have been reported in other systems,such as g-C3N4/TaON[16],CdS/g-C3N4[38]and ZnGaNO/g-C3N4[39].Therefore,the obtained g-C3N4/MoO3were heterjunction materials and the higher photocatalytic activity was mainly due to the high separation and easy transfer of photogen-erated electron–hole pairs at the heterojunction interfaces derived from the match of band positions between the g-C3N4and MoO3.

4.Conclusions

A novel g-C3N4/MoO3composite was successfully synthe-sized via a mixing-calcination method.Results revealed that the obtained g-C3N4/MoO3composites were hybridization photocata-lysts,which have been evidenced by HRTEM,XPS and UV–vis DRS analysis.Under visible light irradiation for3h,the opti-mum photocatalytic degradation ef?ciency of M

B was93%for g-C3N4/MoO3(7%),which is much higher than that of MoO3(43%). The enhancement could be attributed to the suitable band-gap positions for g-C3N4/MoO3composite,which could improve the separation ef?ciency of photogenerated electron–hole pairs.g-C3N4hybridization is demonstrated to be a promising approach to design highly active and stable MoO3photocatalysts. Acknowledgments

The authors genuinely appreciate the?nancial support of this work from the National Nature Science Foundation of China (21007021,21076099,21177050and21206060),Natural Science Foundation of Jiangsu Province(BK2012717),Society Development Fund of Zhenjiang(SH2011011and SH2012020),and Foundation of Jiangsu University(CXLX12-0646,CXLX13-651and08JDG043). References

[1]M.N.Chong,B.Jin,C.W.K.Chow,C.Saint,Recent developments in photocatalytic

water treatment technology:a review,Water Research44(2010)2997–3027.

[2]H.J.Zhang,G.H.Chen, D.W.Bahnemann,Photoelectrocatalytic materials

for environmental applications,Journal of Materials Chemistry19(2009) 5089–5121.

[3]K.Rajeshwar,M.E.Osugi,W.Chanmanee, C.R.Chenthamarakshan,M.V.B.

Zanoni,P.Kajitvichyanukul,R.Krishnan-Ayer,Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media,Journal of Photochemistry and Photobiology C:Photochemistry Reviews9(2008)171–192.

[4]https://www.doczj.com/doc/0e9238433.html,ini,L.Yubao,Y.Brando,G.Sberveglieri,Gas sensing properties of MoO3

nanorods to CO and CH3OH,Chemical Physics Letters407(2005)368–371. [5]T.He,J.N.Yao,Photochromism of molybdenum oxide,Journal of Photochem-

istry and Photobiology C:Photochemistry Reviews4(2003)125–143.

[6]Z.Hussain,Optical and electrochromic properties of heated and annealed MoO3

thin?lms,Journal of Materials Research16(2001)2695–2708.

[7]Y.P.Chen, C.L.Lu,L.Xu,Y.Ma,W.H.Hou,J.J.Zhu,Single-crystalline

orthorhombic molybdenum oxide nanobelts:synthesis and photocatalytic properties,CrystEngComm12(2010)3740–3747.

[8]H.Sinaim,A.Phuruangrat,S.Thongtem,T.Thongtem,Synthesis and characteri-

zation of heteronanostructured Ag nanoparticles/MoO3nanobelts composites, Materials Chemistry and Physics132(2012)358–363.

[9]H.Natori,K.Kobayashi,M.Takahashi,Fabrication and Photocatalytic activity

of TiO2/MoO3particulate?lms,Journal of Oleo Science58(2009)203–211. [10]T.Kotbagi,D.L.Nguyen,https://www.doczj.com/doc/0e9238433.html,ncelot,https://www.doczj.com/doc/0e9238433.html,monier,K.A.Thavornprasert,W.L.

Zhu,M.Capron,L.Jalowiecki-Duhamel,S.Umbarkar,M.Dongare,F.Dumeignil, Transesteri?cation of diethyl oxalate with phenol over sol–gel MoO3/TiO2cat-alysts,ChemSusChem5(2012)1467–1473.

[11]J.Tersoff,Theory of semiconductor heterojunctions:the role of quantum

dipoles,Physical Review B30(1984)4874–4877.

[12]Z.I.Alferov,The history and future of semiconductor heterostructures,Semi-

conductors32(1998)1–14.

[13]Y.Wang,X.C.Wang,M.Antonietti,Polymeric graphitic carbon nitride as a het-

erogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry,Angewandte Chemie International Edition51(2012) 68–89.

[14]S.C.Yan,Z.S.Li,Z.G.Zou,Photodegradation performance of g-C3N4fabricated

by directly heating melamine,Langmuir25(2009)10397–10401.

[15]X.C.Wang,K.Maeda,X.F.Chen,K.Takanabe,K.Domen,Y.D.Hou,X.Z.Fu,

M.Antonietti,Polymer semiconductors for arti?cial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light,Journal of the American Chemical Society131(2009)1680–1681.

[16]S.C.Yan,S.B.Lv,Z.S.Li,Z.G.Zou,Organic-inorganic composite photocatalyst of

g-C3N4and TaON with improved visible light photocatalytic activities,Dalton Transactions39(2010)1488–1491.

[17]Y.J.Wang,R.Shi,J.Lin,Y.F.Zhu,Enhancement of photocurrent and pho-

tocatalytic activity of ZnO hybridized with graphite-like C3N4,Energy and Environmental Science4(2011)2922–2929.

[18]Y.J.Wang,X.J.Bai,C.S.Pan,J.He,Y.F.Zhu,Enhancement of photocatalytic

activity of Bi2WO6hybridized with graphite-like C3N4,Journal of Materials Chemistry22(2012)11568–11573.

[19]X.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,J.M.Carlsson,K.Domen,

M.Antonietti,A metal-free polymeric photocatalyst for hydrogen production from water under visible light,Nature Materials8(2009)76–80.

[20]P.Delporte,F.Meunier,C.Pham-Huu,P.Vennegues,M.J.Ledoux,J.Guille,Phys-

ical characterization of molybdenum oxycarbide catalyst;TEM,XRD and XPS, Catalysis Today23(1995)251–267.

[21]J.G.Choi,L.T.Thompson,XPS study of as-prepared and reduced molybdenum

oxides,Applied Surface Science93(1996)143–149.

[22]C.V.Ramana,V.V.Atuchin,V.G.Kesler,V.A.Kochubey,L.D.Pokrovsky,V.Shut-

thanandan,U.Becker,R.C.Ewing,Growth and surface characterization of sputter-deposited molybdenum oxide thin?lms,Applied Surface Science253 (2007)5368–5374.

[23]P.Niu,G.Liu,H.M.Cheng,Nitrogen vacancy-promoted photocatalytic activity

of graphitic carbon nitride,The Journal of Physical Chemistry C116(2012) 11013–11018.

32L.Huang et al./Applied Surface Science283 (2013) 25–32

[24]S.C.Yan,Z.S.Li,Z.G.Zou,Photodegradation of rhodamine B and methyl orange

over boron-doped g-C3N4under visible light irradiation,Langmuir26(2010) 3894–3901.

[25]X.F.Li,J.Zhang,L.H.Shen,Y.M.Ma,W.W.Lei,Q.L.Cui,G.T.Zou,Preparation

and characterization of graphitic carbon nitride through pyrolysis of melamine, Applied Physics A-Materials Science and Processing94(2009)387–392. [26]C.S.Pan,J.Xu,Y.J.Wang,D.Li,Y.F.Zhu,Dramatic activity of C3N4/BiPO4

photocatalyst with core/shell structure formed by self-assembly,Advanced Functional Materials22(2012)1518–1524.

[27]L.Liu,D.Ma,H.Zheng,X.J.Li,M.J.Cheng,X.H.Bao,Synthesis and characteri-

zation of microporous carbon nitride,Microporous and Mesoporous Materials 110(2008)216–222.

[28]H.Sinaim, D.J.Ham,J.S.Lee, A.Phuruangrat,S.Thongtem,T.Thongtem,

Free-polymer controlling morphology of alpha-MoO3nanobelts by a facile hydrothermal synthesis,their electrochemistry for hydrogen evolution reac-tions and optical properties,Journal of Alloys and Compounds516(2012) 172–178.

[29]H.C.Zeng,Chemical etching of molybdenum trioxide:a new tailor-made syn-

thesis of MoO3catalysts,Inorganic Chemistry37(1998)1967–1973.

[30]Y.Wang,Y.Di,M.Antonietti,H.Li,X.Chen,X.Wang,Excellent visible-light

photocatalysis of?uorinated polymeric carbon nitride solids,Chemistry of Materials22(2010)5119–5121.

[31]M.Dhanasankar,K.K.Purushothaman,G.Muralidharan,Optical,structural and

electrochromic studies of molybdenum oxide thin?lms with nanorod struc-ture,Solid State Sciences12(2010)246–251.[32]S.H.Elder,F.M.Cot,Y.Su,S.M.Heald,A.M.Tyryshkin,M.K.Bowman,Y.Gao,

A.G.Joly,M.L.Balmer,A.C.Kolwaite,K.A.Magrini,D.M.Blake,The discovery

and study of nanocrystalline TiO2-(MoO3)core–shell materials,Journal of the American Chemical Society122(2000)5138–5146.

[33]Y.J.Wang,Z.X.Wang,S.Muhammad,J.He,Graphite-like C3N4hybridized

ZnWO4nanorods:synthesis and its enhanced photocatalysis in visible light, CrystEngComm14(2012)5065–5070.

[34]H.Zhang,X.Lv,Y.Li,Y.Wang,J.Li,P25-graphene composite as a high perfor-

mance photocatalyst,ACS Nano4(2009)380–386.

[35]H.Xu,J.Yan,Y.Xu,Y.Song,H.Li,J.Xia, C.Huang,H.Wan,Novel

visible-light-driven AgX/graphite-like C3N4(X=Br,I)hybrid materials with synergistic photocatalytic activity,Applied Catalysis B:Environmental129 (2013)182–193.

[36]C.Wang,J.Yan,X.Wu,Y.Song,G.Cai,H.Xu,J.Zhu,H.Li,Synthesis and character-

ization of AgBr/AgNbO3composite with enhanced visible-light photocatalytic activity,Applied Surface Science273(2013)159–166.

[37]N.Sahai,Is silica really an anomalous oxide?Surface acidity and aqueous

hydrolysis revisited,Environmental Science&Technology36(2002)445–452.

[38]L.Ge,F.Zuo,J.K.Liu,Q.Ma,C.Wang,D.Z.Sun,L.Bartels,P.Y.Feng,Synthesis

and ef?cient visible light photocatalytic hydrogen evolution of polymeric g-C3N4coupled with CdS quantum dots,The Journal of Physical Chemistry C116 (2012)13708–13714.

[39]M.Yang,Q.Huang,X.Jin,ZnGaNO solid solution–C3N4composite for improved

visible light photocatalytic performance,Materials Science and Engineering:B 177(2012)600–605.

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

1-2 常见的晶体结构及其原胞、晶胞

§1-2 常见的晶体结构及其原胞、晶胞 1) 简单晶体的简单立方(simple cubic, sc) 它所构成的晶格为布喇菲格子。例如氧、硫固体。基元为单一原子结构的晶体叫简单晶体。 其特点有: 三个基矢互相垂直(),重复间距相等,为a, 亦称晶格常数。其晶胞=原胞;体积= ;配位数(第一近邻数) =6。(见图1-7) 图1-7简单立方堆积与简单立方结构单元 2) 简单晶体的体心立方( body-centered cubic, bcc ) , 例如,Li,K, Na,Rb,Cs,αFe,Cr,Mo,W,Ta,Ba等。其特点有:晶胞基矢, 并且,其惯用原胞基矢由从一顶点指向另外三个体心点的矢量构成:(见图1-9 b) (1-2) 其体积为;配位数=8;(见图1-8)

图1-8体心立方堆积与体心立方结构单元 图1-9简单立方晶胞(a)与体心立方晶胞、惯用原胞(b) 3) 简单晶体的面心立方( face-centered cubic, fcc ) , 例如,Cu,Ag, Au,Ni,Pd,Pt,Ne, Ar, Xe, Rn, Ca, Sr, Al等。晶胞基矢, 并且每面中心有一格点, 其原胞基矢由从一顶点指向另外三个面心点的矢量构成(见图1-10 b): (1-3)

其体积=;配位数=12。,(见图1-10) 图1-10面心立方结构(晶胞)(a)与面心立方惯用原胞(b) 4) NaCl结构(Sodium Chloride structure),复式面心立方(互为fcc),配位数=6(图1-11 a)。 表1-1 NaCl结构晶体的常数 5) CsCl结构(Cesuim Chloride structure),复式简单立方(互为sc),配位数=8(图1-11 b)。 表1-2 CsCl结构晶体的常数

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

瑞舒伐他汀钙片说明书

瑞舒伐他汀钙片说明书 【药品名称】 商品名称:可定/Crestor 通用名:瑞舒伐他汀钙片 英文名:Rosuvastatin Calcium Tablet 拼音名:Ruishufatatinggai Pia 【成分】 本品主要成份为瑞舒伐他汀钙。 化学名称:双-[(E)-7-[4-(4-氟基苯基)-6-异丙基-2-[甲基(甲磺酰基)氨基]-嘧啶-5-基](3R,5S)-3,5-二羟基庚-6-烯酸]钙盐(2:1) 分子式:(C22H27FN3O6S)2Ca 分子量:1001.13 【性状】 瑞舒伐他汀钙片5mg 圆形,黄色薄膜衣片,一面压印有“ZD4522”字样以及“5”,另一面平滑。 瑞舒伐他汀钙片10mg

圆形,粉红色薄膜衣片,一面压印有“ZD4522”字样以及“10”,另一面平滑。 瑞舒伐他汀钙片20mg 圆形,粉红色薄膜衣片,一面压印有“ZD4522”字样以及“20”,另一面平滑。 【适应症】 本品适用于经饮食控制和其它非药物治疗(如:运动治疗、减轻体重)仍不能适当控制血脂异常的原发性高胆固醇血症(Ⅱa型,包括杂合子家族性高胆固醇血症)或混合型血脂异常症(Ⅱb型)。本品也适用于纯合子家族性高胆固醇血症的患者,作为饮食控制和其它降脂措施(如LDL去除疗法)的辅助治疗,或在这些方法不适用时使用。 【规格】按瑞舒伐他汀计 (1)5mg (2)10mg (3)20mg 【用法用量】 在治疗开始前,应给予患者标准的降胆固醇饮食控制,并在治疗期间保持饮食控制。本品的使用应遵循个体化原则,综合考虑患者个体的胆固醇水平、预期的心血管危险性以及发生不良反应的潜在危险性。 口服。本品常用起始剂量为5mg,一日一次。起始剂量的选择应综合考虑患者个体的胆固醇水平、预期的心血管危险性以及发生不良反应的潜在危险性。对于那些需要更强效地降低低密度脂蛋白胆固醇(LDL-C)的患者可以考虑10mg一日一次作为起始剂量,该剂量能控制大多数患者的血脂水平。如有必要,可在治疗4周后调整剂量至高一级的剂量水平。本品每日最大剂量为20mg。 本品可在一天中任何时候给药,可在进食或空腹时服用。 肾功能不全患者用药 轻度和中度肾功能损害的患者无需调整剂量。重度肾功能损害的患者禁用本品的所有剂量。

锂电池管理系统功能介绍

1.ABMS-EV系列电池管理系统 概述: ABMS-EV系列锂电池管理系统应用于纯电动大巴、混合动力大巴、纯电动汽车、混合动力汽车。采用层级设计,严格执行汽车相关标准,硬件平台全部采用汽车等级零部件,软件符合汽车编程规范。 2、ABMS-EV01电池管理系统: 2.1)概述: ABMS-EV01系列锂电池管理系统主要用于低速电动车,物流车,环卫车等,采用一体化设计,集电池电压温度检测,SOC估算,绝缘检测,均衡管理,保护,整车通信,充电机通信,及交流充电桩接口检测为一体,结构紧凑,功能完善。 2.2) 选型号说明: 2.3)技术参数: 2.4)产品外观:

3、ABMS-EV02电池管理系统: 3.1)概述: ABMS-EV02系列锂电池管理系统主要用于电动叉车,电动搬运车等快速充放电场合,采用一体化设计,集电池电压温度检测与保护,SOC估算,均衡管理,通信等功能。 3.2) 选型号说明: 3.3)技术参数:

3.4)产品外观:

4、ABMS-EV03电池管理系统: 4.1)概述: ABMS-EV03系列锂电池管理系统主要用于电动叉车,电动搬运车等需要快速充放电场合,采用一体化设计,集电池电压温度检测,SOC估算,均衡管理,保护,通信,LED电量指示,制热,制冷管理,双电源回路设计,充电机,车载电源独立供电。 4.2) 选型号说明:

4.3)技术参数: 4.4)产品外观: 5、ABMS-EK01电池管理系统:

5.1)概述: ABMS-EK01系列锂电池管理系统主要用于电动自行车,电动摩托车等,采用软硬件多重冗余保护等,充电MOS控制,放电继电器控制,实现慢充快放,一体化设计,集电池检测,SOC估算,保护,通信为一体。 5.2)选型说明: 5.3)技术参数:

瑞舒伐他汀依折麦布片产品情况

血脂调节药物 【简介】 现有研究认为,“胆固醇理论”即降低胆固醇水平是减少血脂异常相关性不良心血管事件的关键。 目前临床应用和处在研发阶段的降脂西药按其降脂机理和化学 结构又可分为他汀类,烟酸类,贝特类,胆酸鳌合剂类,多烯类以及新型降脂药和各种复方制剂。他汀类药物的不良反应相对于其它降血脂药较少,循证研究也奠定了他汀类药物在冠心病防治中的重要地位,故他汀类药物成为临床常用调脂药物,然而,他汀类药物单用时,并不能使所有冠心病患者的LDL-C降至目标值,随着用药剂量增加,不良反应风险也增加,因此,临床上需要考虑调脂药物联合用药。他汀类与贝特类药物联用时,肝脏毒性反应和肌病发生的危险性增大;而他汀类与烟酸类药物联用,患者的耐受性差,上述联合用药方案难以广泛应用。 胆固醇吸收抑制剂——依折麦布和他汀类有良好的协同作用,且安全性好,成为目前降低胆固醇治疗的常用联合用药方案。 瑞舒伐他汀钙片 【临床应用】 1.本品适用于经饮食控制和其它非药物治疗(如:运动治疗、减轻体重)仍不能适当控制血脂异常的原发性高胆固醇血症(IIa型,包括杂合子家族性高胆固醇血症)或混合型血脂异常症(IIb型)。 2. 本品也适用于纯合子家族性高胆固醇血症的患者,作为饮食控制和其它降脂措施(如LDL去除疗法)的辅助治疗,或在这些方法不适用时使用。 3. 用于高三酰甘油血症(国外资料)。 4. 用于减缓高胆固醇血症患者的动脉粥样硬化进程(国外资料)。【药理】 本品属他汀类药物,其结构上具有一个有极性的磺酰胺甲烷基团

而具有相对较强的亲水性,可使其高选择性被肝细胞摄取而不易进入其他组织细胞。有研究认为,本药抑制HMG-CoA还原酶的效能强于其他他汀类药物(阿托伐他汀、辛伐他汀、普伐他汀、洛伐他汀等)。【不良反应】 本品所见的不良反应通常是轻度的和短暂性的。同其他HMG-CoA还原酶抑制剂一样,不良反应出现有随剂量增加而增加的趋势。常见(1%~10%):头痛、头晕、恶心、便秘、腹痛、肌痛无力等症状;偶见(0.1%~1%):瘙痒、皮疹、荨麻疹; 罕见(0.01%~0.1%):过敏反应、胰腺炎、肌病和横纹肌溶解、关节痛、黄疸、肝炎; 【安全性】 瑞舒伐他汀能够避免肝细胞色素P450酶广泛代谢,降低药物相互作用。亲水性他汀肝脏选择性高,肌毒性小。 洛伐他汀、辛伐他汀、阿托伐他汀主经P450 3A4代谢,瑞伐他汀肝损伤、肌病发生率要低于其他他汀;对肾功能影响目前报道不一;有研究认为瑞舒伐他汀肾毒性高于阿托伐他汀,也有认为与其他他汀相似。总之,瑞舒伐他汀有良好的安全性。 同类竞品(他汀类药物) 国产:辛伐他汀片/咀嚼片/胶囊/分散片/滴丸/干混悬剂、洛伐他汀片/颗粒/胶囊/分散片、阿托伐他汀钙片/胶囊/分散片、氟伐他汀钠胶囊/缓释片、普伐他汀钠片/胶囊、匹伐他汀钙片/分散片。 进口:辛伐他汀片/无润滑剂颗粒、依折麦布辛伐他汀片、阿托伐他汀钙片、氨氯地平阿托伐他汀钙片、匹伐他汀钙片。 依折麦布片 【简介】 目前有数种此类药物处于研发阶段,依折麦布是唯一一个批准用于临床的选择性胆固醇吸收抑制剂。在降低LDL-C效果仅次于他汀类药物,可单独或联合用于以胆固醇升高为主的患者,特别适合作为不能耐受他汀类药物治疗者的替代。应用有他汀类药物与依折麦布组成的单片复方制剂可简化治疗方案,对于有相关适应症患者推荐首先选用。《选择性胆固醇吸收抑制剂临床应用中国专家共识》(2013版)

捷诺达说明书

捷诺达说明书 导读:我根据大家的需要整理了一份关于《捷诺达说明书》的内容,具体内容:捷诺达配合饮食和运动治疗,用于经二甲双胍单药治疗血糖仍控制不佳或正在接受二者联合治疗的2型糖尿病患者。下面是我整理的,欢迎阅读。捷诺达商品介绍捷诺达通用名:西格... 捷诺达配合饮食和运动治疗,用于经二甲双胍单药治疗血糖仍控制不佳或正在接受二者联合治疗的2型糖尿病患者。下面是我整理的,欢迎阅读。捷诺达商品介绍 捷诺达 通用名:西格列汀二甲双胍片(I) 生产厂家: 波多黎各Patheon Puerto Rico Inc. 批准文号:注册证号H20140774 药品规格:50mg:500mg*28片 【药品名】捷诺达西格列汀二甲双胍片(I) 【通用名】西格列汀二甲双胍片(I) 【英文名】SitagliptinPhosphate/metforminHydrochlorideTablets 【汉语拼音】JieNuoDaXiGeLieTingErJiaShuangGuaPian 【主要成分】捷诺达为复方制剂,其组份为磷酸西格列汀和盐酸二甲双胍。磷酸西格列汀化学名称:7-[(3R)-3-氨基-1-氧-4-(2,4,5-三氟苯基)丁基]-5,6,7,8-四氢-3-(三氟甲基)-1,2,4-三唑酮[4,3-a]吡嗪磷酸盐(1:1)一水合物,分子式:C16H15F6N5OH3PO4H2O,分子量:523.32。盐

酸二甲双胍化学名称:1,1-二甲基双胍盐酸盐,分子式:C4H11N5HCl,分子量:165.63。 【性状】为粉红色异形薄膜衣片,除去包衣后显白色。 【适应症】配合饮食和运动治疗,用于经二甲双胍单药治疗血糖仍控制不佳或正在接受二者联合治疗的2型糖尿病患者。 【用法用量】一般建议:用捷诺达进行降糖治疗时,应根据患者目前的治疗方案、治疗的有效程度、对药物的耐受程度给予个体化的剂量,但不能超过磷酸西格列汀100mg和二甲双胍2000mg的每日大推荐剂量。通常的给药方法是每日2次,餐中服药,并且在增加药物剂量时应当逐渐增量以减少二甲双胍相关的胃肠道副作用。根据患者目前的治疗方案来决定捷诺达的初始剂量。每日服药2次,餐中服药。对于单独服用二甲双胍血糖控制不佳的患者,捷诺达的初始剂量应当提供西格列汀的剂量为50mg每日2次(每日总剂量100mg)再加上目前正在服用的二甲双胍的剂量。对于正同时接受西格列汀和二甲双胍治疗,现需要更换治疗方案的患者,捷诺达的初始剂量可根据患者目前正在服用的西格列汀和二甲双胍的剂量选择。 【禁忌】磷酸西格列汀/盐酸二甲双胍的禁忌包括:-肾病或肾功能异常,即血清肌酐水平1.5mg/dL(男性)、1.4mg/dL(女性),或肌酐清除率异常,这些情况也有可能是由循环衰竭(休克)、急性心肌梗死和败血症引起。-已知对磷酸西格列汀、盐酸二甲双胍或捷诺达的任何其它成分过敏。-急性或慢性代谢性酸中毒,包括糖尿病酮症酸中毒在内,无论是否伴有昏迷。对于接受影像学检查需要血管内注射含碘造影剂的患者,应暂时停止捷诺

锂离子电池圆柱工艺流程图及电池英文词汇表

圆柱机械封口工艺流程

电池行业词汇表 国际电工委员会,International Electrical Commission 正级positive(cathode) 负极negative(anode) 电解液basis electrolyte 正极片positive plates 负极片negative plates 隔膜纸separators 盖帽caps 外壳cases 绝缘层insulation layers PVC膜商标管PVC、trademarked tubes 连接片Connections plates 不锈钢片stainless steel plates 纯镍片nickel plates 镀镍钢片nickel plating steel plates 引出片Lead plates 焊锡tin soldered 点焊spot welding 插头Plugs 温控开关thermal switches 过流保护器polyswitches 限流电阻current-limited resistances 纸箱纸盒Boxes and cases 塑料壳类Plastic shells 电池电压的限制Voltage limitation 电压voltage 内阻impedance 容量capacity 内压gas pressure 自放电率self-discharge rate 循环寿命cycle life 密封性能sealing 安全性能safety

储存性能storage 过充over-charge 过放over-discharge 可焊性soldering 耐腐蚀性causticity proof 温度震荡实验temperature shock test 开路open circuit 参数/变量parameters 安全筏safety vent 正极眼positive pin 鼓底bottom plumping up 凸肚belly protruding 漏液leakage

依折麦布辛伐他汀片说明书

亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档依折麦布辛伐他汀片说明书,这篇文档是由我们精心收集整理的新文档。相信您通过阅读这篇文档,一定会有所收获。假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。 依折麦布辛伐他汀片说明书 依折麦布辛伐他汀片(葆至能)是降脂治疗用药。用于降低胆固醇及降低血脂,利用其联合复方制剂在其他降脂治疗无效时用于降低HoFH患者的TC和LDL-C水平。下面是我们整理的,欢迎阅读。 依折麦布辛伐他汀片商品介绍 通用名:依折麦布辛伐他汀片 生产厂家:MSDTECHNOLOGYSINGAPOREPTELTD(新加坡)(杭州默沙东制药有限公司分装) 批准文号:国药准字Jxx0067 药品规格:10mg:20mg*10片 药品价格:¥126元 【通用名称】依折麦布辛伐他汀片 【商品名称】依折麦布辛伐他汀片(葆至能) 【拼音全码】YiZheMaiBuXinFaTaTingPian(BaoZhiNeng)

【主要成份】主要成分依折麦布、辛伐他汀两种。 【性状】依折麦布辛伐他汀片(葆至能)为白色至类白色胶囊形压制片,双面凸形。 【适应症/功能主治】葆至能是降脂治疗用药。用于降低胆固醇及降低血脂,利用其联合复方制剂在其他降脂治疗无效时用于降低HoFH患者的TC和LDL-C水平。 【规格型号】(10mg+20mg)*10s 【用法用量】每天一次,晚上服用;或遵医嘱执行。 【不良反应】同依折麦布、辛伐他汀两种的不良反应。 【禁忌】对依折麦布辛伐他汀片(葆至能)过敏者禁用。 【注意事项】同依折麦布、辛伐他汀两种的不良反应。 【儿童用药】尚不明确。 【老年患者用药】尚不明确。 【孕妇及哺乳期妇女用药】尚不明确。 【药物相互作用】如与其他药物同时使用可能会发生药物相互作用,详情其咨询医师或药师。 【药物过量】尚不明确。 【药理毒理】葆至能为复方制剂,依折麦布是一种口服、强效的降脂药物,其作用机制与其它降脂药物不同。附着于小肠绒毛刷状缘,抑制胆固醇的吸收,从而降低小肠中的胆固醇向肝脏

依折麦布片及原料简介

依折麦布片及原料简介 一、项目基本信息 1、中文名:依折麦布片 2、化学名称:1-(4-氟苯基)-3(R)-[3-(4-氟苯基)-3(S)-羟丙基]-4(S)-(4-羟苯基)-2-吖丁啶(氮杂环丁烷)酮 3、结构式: 4、申报类别:原料药(化药3)+片(化药6) 5、规格:单方:依折麦布片剂:10mg.复方制剂:依折麦布辛伐他汀片依折麦布:辛伐他汀:10:10mg、10:20mg、10:40mg. 6、适应症:原发性高胆固醇血症:本品作为饮食控制以外的辅助治疗,可单独或与HMG-CoA还原酶抑制剂(他汀类)联合应用于治疗原发性(杂合子家族性或非家族性)高胆固醇血症,可降低总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、载脂蛋白B(Apo B)。 纯合子家族性高胆固醇血症(HoFH):本品与他汀类联合应用,可作为其他降脂治疗的辅助疗法(如LDL-C血浆分离置换法),或在其他降脂治疗无效时用于降低HoFH患者的TC和LDL-C水平。纯合子谷甾醇血症(或植物甾醇血症):本品作为饮食控制以外的辅助治疗,用于降低纯合子家族性谷甾醇血症患者的谷甾醇和植物甾醇水平。 7、用法用量:患者在接受本品治疗的过程中,应坚持适当的低脂饮食。 本品推荐剂量为每天一次,每次10mg,可单独服用或与他汀类联合应用。本品可在一天之内任何时间服用,可空腹或与食物同时服用。 二、国内外研制开发情况、专利及行政保护情况 依折麦布(Ezetimibe)别名依折替米贝、依替米贝,由先灵葆雅(Schering-Plough)公司和默克(Merck)公司共同研制开发的首个选择性胆固醇吸收抑制剂,本品是第一个获得美国FDA批准上市的胆固醇吸收选择性抑制剂类

锂电池英文生产过程

Mixing(配料) Mix solvent and bound separately with positive and negative active materials. Make into positive and negative pasty materials after stirring at high speed till uniformity. Coating(涂布) Now, we are in coating line. We use back reverse coating. This is the slurry-mixing tank. The anode(Cathode)slurry is introduced to the coating header by pneumaticity from the mixing tank. The slurry is coated uniformly on the copper foil, then the solvent is evaporated in this oven. There are four temperature zones, they are independently controlled. Zone one sets at 55 degree C, zone two sets at 65 degree C, zone three sets at 80 degree C, zone four sets at 60 degree C. The speed of coating is 4 meters per minute. You see the slurry is dried. The electrode is wound to be a big roll and put into the oven. The time is more than 2 hours and temperature is set at 60 degree C. Throughout the coating, we use micrometer to measure the electrode thickness per about 15 minutes. We do this in order to keep the best consistency of the electrode. Vocabulary: coating line 涂布车间 back reverse coating 辊涂 coating header 涂布机头 Al/copper foil 铝/铜箔 degree C 摄氏度 temperature zones 温区 wind to be a(big)roll 收卷 evenly/uniformly 均匀 oven 烘箱 evaporate 蒸发 electrode 极片 Cutting Cut a roll of positive and negative sheet into smaller sheets according to battery specification and punching request. Pressing Press the above positive and negative sheets till they become flat. Punching Punching sheets into electrodes according to battery specification, Electrode After coating we compress the electrode with this cylindering machine at about 7meters per minute. Before compress we clean the electrode with vacuum and brush to eliminate any particles. Then the compressed electrode is wound to a big roll. We use micrometer to measure the compressed electrode thickness every 10 minutes. After compressing we cut the web into large pieces. We tape the cathode edge to prevent any possible internal short. The large electrode with edge taped is slit into smaller pieces. This is ultrasonic process that aluminum tabs are welded onto cathodes using ultrasonic weld machine. We tape the weld section to prevent any possible internal short. And finally, we clean the finished electrodes with vacuum and brush. Vocabulary: cylindering 柱形辊压 vacuum 真空 particle 颗粒 wound 旋紧卷绕 micrometer 千分尺 internal short 内部短路 slit 分切 ultrasonic 超声波 weld 焊接

磷酸西格列汀片说明书模板

精心整理磷酸西格列汀片说明书,让您了解捷诺维(磷酸西格列汀片)副作用、磷酸西格列汀片(捷诺维)效果、不良反应等信息。百济新特药房—全国连锁专科药房,医保定点药房,消费者信得过商店,专家指导用药,磷酸西格列汀片(捷诺维)说明书如下: 【捷诺维药品名称】 商品名:捷诺维 通用名:磷酸西格列汀片 英文名:JANUVIA 【捷诺维成份】 磷酸西格列汀 【捷诺维性状】 捷诺维为浅褐色薄膜衣片,除去包衣后显白色或类白色。 【捷诺维规格】 100mg 【捷诺维适应症】 捷诺维配合饮食控制和运动,用于改善2型糖尿病患者的血糖控制。 【捷诺维用法用量】 捷诺维单药治疗的推荐剂量为100mg每日1次。捷诺维可与或不与食物同服。 【捷诺维不良反应】 可能出现超敏反应;肝酶升高;上呼吸道感染;鼻咽炎。 【捷诺维禁忌】 对捷诺维中任何成份过敏者禁用。(参见注意事项,超敏反应和不良反应,上市后经验。)【捷诺维注意事项】 捷诺维不得用于1型糖尿病患者或治疗糖尿病酮症酸中毒。 肾功能不全患者用药:捷诺维可通过肾脏排泄。由于捷诺维适用于中重度肾功能不全患者的规格尚未上市,因此捷诺维不建议使用于中重度肾功能不全的患者(肌酐清除率[CrCl]<50mL/min)。

与磺酰脲类药物联合使用时发生低血糖:在捷诺维单药治疗或与已知不导致低血糖的药物(即二甲双胍或吡格列酮)进行联合治疗的临床试验中,接受捷诺维治疗的患者报告的低血糖发生率与安慰剂组相似。与其它抗高血糖药物和磺酰脲类药物联合使用时的情况相似,当捷诺维与已知可导致低血糖的磺酰脲类药物联合使用时,磺酰脲类药物诱导的低血糖发生率高于安慰剂组(参见不良反应)。因此,为了降低磺酰脲类药物诱导发生低血糖的风险,可以考虑减少磺酰脲类药物的剂量。目前尚未充分研究捷诺维与胰岛素的联合使用。 超敏反应:捷诺维上市后在患者的治疗过程中发现了以下严重超敏反应。这些反应包括过敏反应、血管性水肿和剥脱性皮肤损害,包括Stevens-Johnson综合征。由于这些反应来自人数不定的人群自发性报告,因此通常不可能可靠地估计这些反应的发生率或确定这些不良反应与药物暴露之间的因果关系。这些反应发生在使用捷诺维治疗的开始3个月内,有些报告发生在首次服用之后。如怀疑发生超敏反应,停止使用捷诺维,评估是否有其他潜在的原因,采用其他方案治疗糖尿病。(参见禁忌和不良反应“上市后经验”部分。) 【捷诺维儿童用药】 目前,尚未确定捷诺维在18岁以下儿童患者中使用的安全性和有效性。 【捷诺维老年患者用药】 临床研究中,捷诺维在老年患者(≥65岁)中使用的安全性和有效性与较年轻的患者(<65岁)是相当的。不需要依据年龄进行剂量调整。由于不建议中重度肾功能不全的患者使用捷诺维,因此建议在开始使用捷诺维前及使用过程中定期评估患者的肾功能。(见用法用量,“肾功能不全的患者”的部分)。 【捷诺维孕妇及哺乳期妇女用药】 孕妇及哺乳期妇女禁用 【捷诺维药物相互作用】 在药物相互作用研究中,西格列汀对以下药物的药代动力学不存在具有临床意义的影响:二甲双胍、罗格列酮、格列本脲、辛伐他汀、华法林以及口服避孕药。根据这些数据,西格列汀不会对CYP同工酶CYP3A4、2C8或2C9产生抑制作用。根据体外研究数据,西格列汀也不会抑制CYP2D6、1A2、2C19或2B6或诱导CYP3A4。 在2型糖尿病患者中进行了人群药代动力学分析显示,联合用药不会对西格列汀的药代动力学产生具有临床意义的影响。接受评估的药物是2型糖尿病患者常用的药物,其中包括降胆固醇药物(例如他汀类药物、贝特类药物、依折麦布);抗血小板药物(例如氯吡格雷);抗高血压药物(例

设计动力锂电池组的的智能管理系统

动力锂电池组智能管理系统设计 锂电池由于具有体积小、质量轻、电压高、功率大、自放电少以及使用寿命长等优点,逐渐成为动力电池的主流。但是由于锂离子电池具有明显的非线性、不一致性和时变特性,因此在应用时需要进行一定的管理。另外锂电池对充放电的要求很高,当出现过充电、过放电、放电电流过大或电路短路时,会使锂电池温度上升,严重破坏锂电池性能,导致电池寿命缩短。当锂电池串联使用于动力设备中时,由于各单节锂电池间内部特性的不一致,会导致各节锂电池充、放电的不一致。一节性能恶化时,整个电池组的行为特征都会受到此电池的限制,降低整体电池组性能。为使锂电池组能够最大程度地发挥其优越性能,延长使用寿命,必须要对锂电池在充、放电时进行实时监控,提供过压、过流、温度保护和电池间能量均衡。 本文设计的动力锂电池组管理系统安装在锂电池组的内部,以单片机为控制核心,在实现对各节锂电池能量均衡的同时,还可以实现过充、过放、过流、温度保护及短路保护。通过LCD显示电池组的各种状态,并可以通过预留的通信端口读取各节锂电池的历史性能状态。 系统总体方案设计 动力锂电池智能管理系统主要由充电模块、数据采集模块(包括电压、电流、温度数据采集)、均衡模块、电量计算模块、数据显示模块和存储通信模块组成。系统框图如图1所示。 图1 管理系统结构框图 整个系统以单片机为主控制器,通过采集电流信息,判断出电池组是在充电、放电还是在闲置状态及是否有过流现象,并对其状态做出相应处理。对各节电池电压进行采集分析后,系统决定是否启动均衡模块对整个电池组进行能量均衡,同时判断是否有过充或过放现象。温度的采集主要用于系统的过温保护。整个系统的工作状态、电流、各节电压、剩余电量及温度信息都会通过液晶显示模块实时显示。下面对其各个模块的实现方法进行介绍。 微控制器ATmega8

依折麦布片(益适纯)的说明书

依折麦布片(益适纯)的说明书 心脑血管疾病是老年病当中最常见的一种了,人体预防的再到位,也很难预防到血管当中,心脏和血管一旦出现问题,人的生命就很危险了。像心脑血管这种会致命的疾病一旦发现就要马上治疗,延误的话后果不堪设想。目前,治疗心脑血管的药物中,依折麦布片(益适纯)是效果非常不错的,下边我们就来了解下它的功效。 【药品名称】 通用名称:依折麦布片 商品名称:依折麦布片(益适纯) 英文名称:Ezetimibe Tablets 拼音全码:YiZheMaiBuPian(YiShiChun) 【主要成份】化学名:1-(4-氟苯基)-3(R)-[3-(4-氟苯基)-3(S)-羟丙基]-4(S)-(4-羟苯基)-2-吖丁啶(氮杂环丁烷)酮分子式: C24H21F2NO3分子量:409.4

【性状】本品为白色或类白色片。 【适应症/功能主治】原发性高胆固醇血症:本品作为饮食控制以外的辅助治疗,可单独或与HMG-CoA还原酶抑制剂(他汀类)联合应用于治疗原发性(杂合子家族性或非家族性)高胆固醇血症,可降低总胆固醇(TC)、低密度脂蛋白胆固醇 【规格型号】10mg*5s 【用法用量】患者在接受本品治疗的过程中,应坚持适当的低脂饮食。本品推荐剂量为每天1次,每次10mg,可单独服用或与他汀类联合应用。本品可在1天之内任何时间服用,可空腹或与食物同时服用。老年患者不需要调整剂量。年龄大于等于10岁的儿童及青少年不需要调整剂量。不推荐小于10岁儿童应用本品。轻度肝功能受损患者不需要调整剂量(Child-Pugh评分在5或6)(见药代动力学)。肾功能受损患者不需要调整剂量。与胆酸螯合剂合用:应在服用胆酸螯合剂之前2小时以上或在服用之后4小时以上服用本品。 【不良反应】为期8-14周的临床研究中,3366位患者每天单独或与他汀类联合应用本品10mg,研究结果表明:患者普遍对本

基于STM32的锂电池充放电系统的设计

基于STM32的锂电池充放电系统的设计——硬件部分 专业:电子科学与技术学号:111100630 姓名:许金科 指导老师:曾益彬 摘要 锂电池的使用越来越广泛,为了能够充分发挥锂电池的性能,提高电池使用效率并延长电池寿命,需要设计一个锂电池充放电管理系统,该系统是以STM32为控制核心,通过使用RT9545来实现对电池保护。通过使用电源管理芯片BQ24230实现对锂电池充放电路径管理,通过使用电池电量检测芯片BQ27410来实现对电池剩余电池容量SOC、充电状态、电池电压、电池充放电电流、电池温度等参数的检测。通过使用DC-DC升压芯片LMR62421能够输出稳定的电压,实现对整个系统的供电,最后通过STM32实现对电池状态信息的读取与显示。 关键词:电池管理系统,SOC,充电方式 Lithium Battery Charging and Discharging System Design Based on STM32———Hardware Abstract More widespread use of lithium batteries, in order to give full play to the performance of lithium batteries, to improve battery efficiency and extend battery life, it need to design a lithium battery charge and discharge management system, which is based STM32 control core, through the use of RT9545 to realization of battery protection. By using the power management chip BQ24230 lithium battery charge and discharge path to achieve the management, through the use of battery detection chip BQ27410 to achieve the battery remaining battery capacity SOC, detection current, temperature and other parameters of the battery state of charge, battery voltage, battery charge and discharge. By using the DC-DC boost chip output stable voltage LMR62421 able to achieve power to the entire system, and finally through STM32 achieve read and display the battery status information. Key words:Battery Management System,SOC,Charge Mode

锂电池管理系统BMS项目商业计划书

某锂电池管理系统(BMS)项目 商业计划书 项目名称:某锂电池管理系统(BMS)项目商业计划书 编制单位:成都中哲企业管理咨询有限公司【引言】 《某锂电池管理系统(BMS)项目商业计划书》充分地展示了公司的基本情况、产品与技术、行业及市场分析、竞争对手分析、商业模式、运营策略、公司战略、公司管理、融资计划、财务预测与分析、风险分析及控制等内容。该商业计划书无论是用于寻找战略合作伙伴、寻求风险投资资金或其他任何投资信贷来源均能够做到内容完整、意愿真诚、基于事实、结构清晰、通俗易懂。该商业计划书准确把握行业市场现状和发展趋势、项目商业模式、项目运营策略、公司战略规划、财务预测等基本内容,深度分析了项目的竞争优势、盈利能力、生存能力、发展潜力等,充分体现项目的投资价值。 【项目简介】 某锂电池管理系统(BMS)项目,项目提供动力锂电池系统全面管理解决方案,目前已形成新能源汽车动力电池管理系统和传统燃油汽车启停电源管理系统两大系列产品。拥有绝缘检测技术、继电器控制及诊断技术、

均衡技术、SOC算法技术、SOP算法技术、其他算法技术等核心技术,本项目本轮融资1000万元,项目预计于2015年6月开始实施。 【市场行业分析】 根据中国汽车工业协会、工信部机动车整车出厂合格证统计数据分析,新能源汽车的产销量从2014年开始便体现出快速增长的势头。据中国汽车工业协会统计,2014年我国新能源汽车产销量分别为万辆和万辆,分别同比增长倍和倍;2015年6月,我国新能源汽车生产万辆,同比增长3倍。其中,纯电动乘用车生产万辆,同比增长2倍,插电式混合动力乘用车生产6663辆,同比增长7倍;纯电动商用车生产6218辆,同比增长5倍,插电式混合动力商用车生产1645辆,同比增长148%。 2012年全球电池管理系统(BMS)市场产值成长逾10%,2013年至2015年成长幅度将大幅跃升至25-35%。现阶段不论是整车厂、电池厂、还是相关车电零组件厂均投入电池管理系统(BMS)研发,以求掌握新能源汽车产业的关键技术,由于车厂是电池管理系统的使用者,车厂多偏好使用本身的软件处理,并以专门的厂规控管,以维持操作弹性。电池管理系统(BMS)产业发展可能类似锂电池,车厂为掌握关键技术,会与长期合作供货商密切合作产品开发,对新进厂商切入难度高。因此,未来新进厂商欲切入车厂供应链,除与相关供应链强化合作关系外,针对需求打造客制化方案,才有机会抢得先机。

相关主题
文本预览
相关文档 最新文档