g-C3N4 MoO3 photocatalyst improved visible-light photoactivity
- 格式:pdf
- 大小:1.78 MB
- 文档页数:8
林业工程学报,2021,6(6):137-141JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202105004收稿日期:2021-05-07㊀㊀㊀㊀修回日期:2021-07-28基金项目:国家自然科学基金(21901119);中国博士后科学基金资助项目(2019M661850);江苏省博士后科研基金(2021K022A;2020Z098);江苏省高等学校大学生创新创业训练计划项目/南京林业大学大学生创新训练计划项目(202110298004Z,2020NFUSPITP0818,2020NFUSPITP0807)㊂作者简介:邢伟男,女,副教授,研究方向为能纳米材料的合成及在环境治理方面的应用㊂通信作者:吴光瑜,男,副教授㊂E⁃mail:gywuchem@njfu.edu.cn生物炭功能化g⁃C3N4光催化剂构筑及催化性能邢伟男1,2,3,程珂1,熊若帆1,薛樱涔1,韩建刚1,2,3,吴光瑜1,2,3∗(1.南京林业大学生物与环境学院,南京210037;2.南京林业大学南方现代林业协同创新中心,南京210037;3.江苏洪泽湖湿地生态系统国家定位观测研究站,江苏洪泽223100)摘㊀要:针对类石墨相氮化碳(g⁃C3N4)在光催化降解污染物过程中光生载流子复合严重,导致其光催化活性差的问题,研究中以稻壳为生物炭原料㊁三聚氰胺为g⁃C3N4原料,采用热缩聚法构筑了生物炭修饰的g⁃C3N4复合光催化剂㊂生物炭材料的引入,可以充当良好的光生电子转移通道,促进复合材料中光生载流子的分离与传输,进而提高光催化降解罗丹明B(RhB)的效率㊂利用X射线衍射仪(XRD)㊁傅里叶变换红外光谱仪(FT⁃IR)㊁紫外可见漫反射仪(UV⁃Vis⁃DRS)等,对所制备的复合材料的晶体结构㊁官能团组成及光学性质进行表征㊂通过在可见光下降解RhB,评价所制备材料的光催化性能㊂结果表明,所构筑的生物炭修饰g⁃C3N4复合光催化剂表现出优越的光催化降解RhB活性㊂探究了不同负载量生物炭对复合光催化剂降解RhB的影响,其中3%的生物炭添加量复合光催化剂具有最优的光催化性能,80min内就可以将RhB完全降解㊂此外,通过对复合光催化剂的循环性能测试表明所制备的材料具有良好的循环稳定性㊂该项研究工作不仅拓宽了生物炭材料的应用范围,同时也为高性能㊁高稳定的光催化材料的构筑提供了良好的思路,对实现农林废弃物的资源化利用具有重大意义和广泛的应用价值㊂关键词:生物炭;氮化碳;光催化;染料降解;稳定性中图分类号:X522㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:2096-1359(2021)06-0137-05Studyonbiocharfunctionalizedg⁃C3N4photocatalysttowardsimprovedphotocatalyticdegradationperformanceXINGWeinan1,2,3,CHENGKe1,XIONGRuofan1,XUEYingcen1,HANJiangang1,2,3,WUGuangyu1,2,3∗(1.CollegeofBiologyandtheEnvironment,NanjingForestryUniviersity,Nanjing210037,China;2.Co⁃InnovationCenterfortheSustainableForestryinSouthernChina,NanjingForestryUniviersity,Nanjing210037,China;3.NationalPositioningObservationStationofHungtseLakeWetlandEcosystem,Hongze223100,Jiangsu,China)Abstract:Asametal⁃freepolymericsemiconductormaterial,graphiticcarbonnitride(g⁃C3N4)hasbeenemergedasaparticularlypromisingphotocatalystduetoitsadvantagesofhighstability,lowcost,controllablestructureandper⁃formance.However,thebulkg⁃C3N4oftensuffersfromthesmallsurfacearea,insufficientopticalabsorption,andfastrecombinationofphotoexcitedelectronandhole,whichgreatlylimitsthephotocatalyticactivity.Todate,agooddealofstrategieshasbeenappliedtoimprovethephotocatalyticactivity;forexample,themorphologycontrol(nanosheets,hollowmicrospheres,nanotubesandnanoribbons);elementdoping(nonmetalelementdopingormetalelementdoping);semiconductorcompositeorcompositingwithothercarbonmaterials.Inviewofthefastrecombina⁃tionofthephotogeneratedchargecarrierofg⁃C3N4duringthephotocatalyticreaction,couplingwiththecarbonaceousmaterialsisagoodmethodfortheenhancementofphotocatalyticperformancesofbulkg⁃C3N4.Herein,anovelbio⁃charmodifiedg⁃C3N4compositephotocatalystswasconstructedbyhightemperaturepolycondensationusingricehuskandmelamineastheprecursors.Theintroductionofbiocharcouldactaseffectiveelectrontransferchannelstofacili⁃tatechargecarrierseparationinBCCNcomposites,thusgreatlyimprovingthephotocatalyticdegradationability.The林业工程学报第6卷X⁃raydiffractionXRD,Fouriertransforminfraredspectroscopy(FT⁃IR)andultravioletvisiblediffusereflectancespectroscopy(UV⁃Vis⁃DRS)wereusedtocharacterizethecrystalstructure,compositionandopticalpropertiesoftheas⁃preparedphotocatalysts.XRDandFT⁃IRresultsindicatedthattheoriginalcrystalstructureandchemicalconstruc⁃tionofg⁃C3N4waswell⁃maintainedaftertheincorporationofbiochar.TheUV⁃visDRSanalysisresultsshowedthatthebiocharmodifiedg⁃C3N4compositephotocatalystsimprovedlightabsorption.Theelementalanalysismeasurementssuggestedthatthebiocharhasbeenintroducedintothecompositephotocatalystandcausedtheincreasingofcarbonel⁃ementcontent.Atlast,thephotocatalyticactivitiesoftheas⁃preparedsampleswereevaluatedbythephotocatalyticdegradationofRhBunderthevisiblelight.Theas⁃preparedbiocharmodifiedg⁃C3N4photocatalystsshowedexcellentvisible⁃lightphotocatalyticdegradationactivityforRhB.Particularly,the3%biocharmodifiedphotocatalysthadthebestphotocatalyticperformance,andtheRhBcouldbecompletelydegradedwithin80min.Meanwhile,theBCCN3exhibitedhighstabilityandreusability.Keywords:biochar;g⁃C3N4;photocatalytic;dyesdegradation;stability㊀㊀近些年来,光催化技术作为一种 绿色㊁经济㊁有效 的技术,可以直接将太阳能转化为化学能从而实现光催化降解有机/无机污染物㊁光催化分解水及光催化有机合成等,特别是对环境中难以自降解的有害污染物有良好的去除效果[1-3]㊂经过几十年的探索研究,光催化材料的开发和应用已经取得了显著的成果,大量的新型光催化剂被报道㊂在众多的半导体催化剂中,一种新型的非金属聚合物光催化剂 类石墨相氮化碳(g⁃C3N4),由于其合成方法简单㊁化学稳定性好㊁能带位置合适(约2.7eV)等优点,被认为是一种很有前途的光催化剂[4]㊂然而,直接通过热缩聚法制备的g⁃C3N4,其对可见光的利用率较低,光生电子和空穴的复合效率高,从而极大限制了光催化活性的提高㊂目前,人们已经探索了一系列的策略以提高其光催化活性,例如电子结构调控㊁纳米结构设计㊁晶体结构工程和异质结构构建[5-7]等㊂生物炭材料以其良好的化学稳定性㊁优异的导电性和成本低廉等特点而备受关注㊂研究表明,将炭材料引入到光催化材料体系会对光催化材料的性能产生积极的影响㊂由于g⁃C3N4的特殊的结构和较好的导电性,研究者们将其与石墨烯㊁碳纳米管㊁富勒烯等碳质材料耦合[8-9],以提高其光生载流子的分离效率进而提高光催化性能㊂但由于这些材料原料昂贵㊁合成步骤复杂㊁处理溶剂有毒等缺点,仍需进一步的改良和优化㊂生物炭材料,尤其是以农林废弃物为原料所制备的材料,具有成本低廉㊁高表面积和多孔的结构㊁丰富的表面官能团等优点,在水体净化㊁土壤改良和环境污染整治方面潜力巨大[10-11]㊂此外,生物炭材料还具有良好的电导性和电子储存的能力,通过光激发产生的电子可以跃迁转移到生物炭材料中,促进光催化反应过程中电子⁃空穴对的分离,从而提高了对目标污染物的氧化去除效果[12]㊂我国是水稻生产大国,由此而产生的稻壳仅有少部分被堆积成肥料,大部分堆放在农田或者直接焚烧,造成土地资源浪费和环境污染㊂与其他生物质炭材料相比较,炭壳具有孔隙率高㊁比表面积大等优势㊂本课题以稻壳和三聚氰胺为原料,通过热缩聚法构筑生物炭和g⁃C3N4复合光催化剂,研究生物炭修饰的g⁃C3N4对罗丹明B(RhB)溶液的光催化降解性能,探讨染料工业废水治理更有效的技术途径㊂1㊀材料与方法1.1 材料制备方法1.1.1㊀生物炭的制备将稻壳用蒸馏水洗去除表面杂质,置于80ħ烘箱中烘干至含水率<1%㊂用研磨机将烘干的稻壳研磨成粉末,过筛,选用粒径小于0.25mm的颗粒㊂取一定量磨碎的稻壳放入管式加热炉中,以5ħ/min的速率升温至600ħ保温4h,冷却到室温后取出,用盐酸(浓度1mol/L)洗涤去除残渣,后用蒸馏水冲洗至中性,烘干备用[12-13],此稻壳生物炭标记为BC㊂1.1.2㊀g⁃C3N4的制备将三聚氰胺置于马弗炉中,以5ħ/min的速率升温至550ħ保温2h,冷却至室温后取出,研磨,过筛,选用粒径小于10μm的粉末,样品标记为CN㊂1.1.3㊀生物炭/g⁃C3N4的制备将不同比例的BC和CN混合均匀(质量分数分别为1%,3%和5%),置于马弗炉中以5ħ/min的速率升温至550ħ保温2h,再冷却至室温,不同比例的样品分别标记为BCCN1㊁BCCN3和BCCN5㊂831㊀第6期邢伟男,等:生物炭功能化g⁃C3N4光催化剂构筑及催化性能1.2㊀实验仪器样品的晶体结构信息用X射线衍射(XRD,RigakuD/max⁃2000)分析㊂样品的表面官能团信息用傅里叶变换红外光谱(FT⁃IR)仪进行检测㊂用元素分析仪来确定样品中元素含量㊂用紫外⁃可见分光光度计(日本日立,HitachiUV⁃3010)测定紫外⁃可见漫反射光谱(DRS)㊂1.3㊀光催化降解性能测试为了评价所制备材料的光催化性能,进行了光催化降解RhB的实验,具体内容如下:称取20mg的催化剂超声分散在50mL的罗丹明B溶液中(质量浓度10mg/L)㊂将混合溶液转移到光催化反应器中,用循环冷却水保持25ħ的恒温㊂光照前,将悬浮液在黑暗中搅拌30min,以达到吸附平衡㊂反应中用到的光源为带有滤光片的300W氙灯㊂为了监测光催化反应,每20min抽取3mLRhB溶液,离心去除催化剂㊂用紫外⁃可见分光光度计分析溶液(最大吸收554nm)㊂2㊀结果与分析2.1㊀材料的组成与结构图1㊀不同样品的XRD谱图Fig.1㊀XRDpatternsofdifferentsamples2.1.1㊀XRD分析采用XRD对所制备样品的晶体结构进行表征,结果如图1所示㊂由图1可见:CN在27.6ħ附近有一个较强的(002)衍射峰,对应于共轭芳香单元在层间堆垛的衍射峰;在13.1ħ处出现了一个微弱的(100)特征峰,归因于共轭芳香环在面内重复单元的衍射峰[14]㊂BC样品中,23.4和43.8ħ处的峰对应于无定型炭特征锋㊂生物炭修饰的样品XRD图谱与CN的类似,表明炭修饰并没有改变CN晶体结构㊂随着生物炭的引入,两个峰的衍射强度明显降低,根据Debye⁃ScherrerD=Kλ/(βcosθ)(式中,K为常数,λ为X射线波长,β为衍射峰半高宽,θ为衍射角)公式计算,表明生物炭的引入明显抑制了晶体的生长㊂此外,在生物炭/g⁃C复合材料中没有BC特征峰的出现,这是由于样品中生物炭含量过低导致㊂2.1.2㊀FT⁃IR分析通过FT⁃IR光谱可获得所制备样品的官能团结构信息㊂不同样品的FT⁃IR谱图如图2所示㊂由图2可见,在3000 3400cm-1范围内的特征峰对应于N H键和O H键的伸缩振动峰,在1200 1700cm-1范围内的尖锐特征峰是C N和C N杂环的伸缩振动特征峰,在807cm-1处的强特征峰归因于3⁃s⁃三嗪单元的典型振动模式[15]㊂与CN相比,生物炭修饰的CN特征峰没有明显变化,说明生物炭的引入没有破坏CN的化学结构,这与XRD的分析结果一致㊂图2㊀不同样品的FT⁃IR谱图Fig.2㊀FT⁃IRspectraofdifferentsamples2.1.3㊀元素分析通过元素分析来确定所制备材料中C㊁N㊁H元素的含量㊂从表1可以看出,原CN中C元素的含量为35.79%(质量分数)㊂而在生物炭修饰的g⁃C3N4复合光催化剂中,C含量明显增加,增加的炭含量来自生物炭㊂此外,原CN中C/N的比值为0.59,小于理论值0.75㊂较低的C/N比值可能归因于CN中3⁃s⁃三嗪环的不完全聚合㊂生物炭修饰的g⁃C3N4复合光催化剂中C/N的数值明显变大,均高于原CN,表明生物炭的引入可以促进3⁃s⁃三嗪环的聚合㊂表1㊀CN㊁BCCN1㊁BCCN3和BCCN5中C㊁N和H的元素分析结果Table1㊀ElementalanalysisofC,andNcontentinCN,BCCN1,BCCN3andBCCN5样品名称C/%N/%C/NCN35.7960.260.59BCCN135.9860.030.60BCCN337.5459.910.63BCCN540.4258.350.692.2㊀材料的光学性质通常情况下,炭材料的引入会直接影响半导体材料的光吸收性能㊂为了探究生物炭的引入931林业工程学报第6卷对BCCN的光吸收的影响,对试样进行了紫外⁃可见漫反射光谱(UV⁃visDRS)测试,结果如图3所示㊂由图3可见,所有的样品在可见光区域内均有吸收㊂CN的最大吸收出现在460nm,这与有关文献的报道一致[16]㊂随着生物炭的引入,复合材料的吸收边带与CN相比出现了明显红移㊂同时,生物炭修饰的CN光催化剂的光吸收强度明显增强,说明生物炭材料的引入可以很好地促进光吸收㊂在光催化材料中波长的红移意味着禁带宽度变窄㊂通过(αhν)2对hν(注:α为摩尔吸收系数,h为普朗克常数,ν为入射光子频率)作图获得所制备材料的禁带宽度(图4)㊂随着生物炭含量增加,禁带宽度明显变窄,CN㊁BCCN1㊁BCCN3和BCCN5的禁带宽度分别2.78,2.68,2.65和2.59eV㊂禁带宽度变窄是因为生物炭与g⁃C3N4形成了强烈的相互作用,这种相互作用的存在,缩减禁带宽度,提高复合材料的光吸收能力㊂同时,禁带宽度变窄使得光生电子空穴对的跃迁更容易,促进了他们的分离,因此有利于光催化效率的提高㊂图3㊀不同样品的UV⁃visDRS谱图Fig.3㊀UV⁃visDRSspectraofdifferentsamples㊀㊀㊀㊀㊀㊀㊀图4㊀不同样品的(αhν)2对hν曲线Fig.4㊀(αhν)2versushνplotofdifferentsamples2.3㊀材料的光催化性能通过在可见光下降解RhB溶液评价所制备材料的光催化活性㊂为了探究光源催化剂在光催化反应中的作用,首先进行了单因素控制实验,结果如图5所示㊂由图5可见:在没有光照的条件下,BCCN3催化剂经过120min的吸附后,RhB仅有18%的去除率,说明BCCN3对RhB的去除率有一定的影响,但不是光催化反应的关键步骤;在有光源㊁不添加催化剂的条件下,RhB在120min的去除率仅为9%,说明在可见光照射下RhB仅有少部分的光解作用;而在添加了BCCN3催化剂后,催化活性急剧升高,120min内RhB的去除率可以达到100%,这表明催化剂在光催化降解RhB方面具有相当高的效率㊂图5㊀不同反应条件下RhB的去除效率Fig.5㊀DegradationrateofRhBunderdifferentreactionconditions不同生物炭添加量所制备的复合光催化剂对RhB光催化降解活性的影响见图6所示㊂由图6可见,CN光催化降解活性极低,120min内RhB的去除率仅为32%㊂相同条件下,生物炭修饰的CN材料的RhB去除率均大于CN,表明生物炭的引入可以很好地提高复合材料的光催化活性㊂随着生物炭含量从1%增加到3%,RhB去除率也随之增图6㊀不同的生物炭添加量对RhB去除效率的影响Fig.6㊀EffectsofdifferentamountsofbiomasscharcoalonthephotocatalyticdegradationofRhB加,但在更高的生物炭负载量下,其RhB的去除率反而降低,BCCN3的RhB去除率最高,在80min内几乎可以将RhB完全去除㊂这种光催化活性提高归因于生物炭材料的引入,生物炭可以充当良好的光生电子转移通道,促进了光生载流子的分离效率[17-18]㊂然而,当生物炭含量过高,黑色的生物炭会与CN竞争吸光,使得CN所吸收的有效光子数041㊀第6期邢伟男,等:生物炭功能化g⁃C3N4光催化剂构筑及催化性能降低,从而降低光催化效率㊂光催化材料的稳定性对光催化的实际应用至关重要,是评价光催化性能的一项重要指标㊂为此,以BCCN3为代表进行了光催化降解RhB的循环实验(与图5选用的降解时间一致,120min)㊂结果表明,在可见光下降解RhB时,3次循环后光催化活性没有明显的降低,这表明BCCN3具有良好的循环稳定性㊂3㊀结㊀论1)以三聚氰胺和稻壳为原料,通过简单的热缩聚法,成功制备了一系列生物炭修饰的g⁃C3N4复合光催化剂㊂2)所制备的复合材料表现出优异的光催化降解RhB性能,BCCN3在80min内可以将RhB完全降解,且具有良好的循环稳定性㊂3)生物炭的引入,可以充当良好的光生电子转移通道,促进光生载流子的分离与传输,提高了光催化降解RhB的性能㊂参考文献(References):[1]安涛,房国丽.TiO2/Bi2WO6复合光催化剂的制备及光催化性能研究[J].功能材料,2021,52(3):3122-3129.DOI:10.3969/j.issn.1001-9731.2021.03.018.ANT,FANGLG.PreparationandphotocatalyticperformanceofTiO2/Bi2WO6compositephotocatalyst[J].FunctionMaterials,2021,52(3):3122-3129.[2]SONGXH,LIX,ZHANGXY,etal.FabricatingCandOco⁃dopedcarbonnitridewithintramoleculardonor⁃acceptorsystemsforefficientphotoreductionofCO2toCO[J].AppliedCatalysisB:Environmental,2020,268:118736.DOI:10.1016/j.apcatb.2020.118736.[3]张金源,雷华健,周世萍,等.TiO2/核桃壳炭复合材料的制备及光催化降解苯酚研究[J].林业工程学报,2020,5(3):72-79.DOI:10.13360/j.issn.2096-1359.201907012.ZHANGJY,LEIHJ,ZHOUSP,etal.SynthesisofTiO2/wal⁃nutshellcarbonphotocatalystanditsactivityforphenoldegrada⁃tion[J].JournalofForestryEngineering,2020,5(3):72-79.[4]WANGXC,MAEDAK,THOMASA,etal.Ametal⁃freepoly⁃mericphotocatalystforhydrogenproductionfromwaterundervisi⁃blelight[J].NatureMaterials,2009,8(1):76-80.DOI:10.1038/nmat2317.[5]XINGWN,LICM,CHENG,etal.Incorporatinganovelmet⁃al⁃freeinterlayerintog⁃C3N4frameworkforefficiencyenhancedphotocatalyticH2evolutionactivity[J].AppliedCatalysisB:En⁃vironmental,2017,203:65-71.DOI:10.1016/j.apcatb.2016.09.075.[6]ZHUYX,ZHENGXL,LUYQ,etal.Efficientupconvertingcarbonnitridenanotubesfornear⁃infrared⁃drivenphotocatalytichydrogenproduction[J].Nanoscale,2019,11(42):20274-20283.DOI:10.1039/c9nr05276c.[7]YANGXF,TIANL,ZHAOXL,etal.Interfacialoptimizationofg⁃C3N4⁃basedZ⁃schemeheterojunctiontowardsynergisticen⁃hancementofsolar⁃drivenphotocatalyticoxygenevolution[J].AppliedCatalysisB:Environmental,2019,244:240-249.DOI:10.1016/j.apcatb.2018.11.056.[8]WANWC,YUS,DONGF,etal.EfficientC3N4/grapheneox⁃idemacroscopicaerogelvisible⁃lightphotocatalyst[J].JournalofMaterialsChemistryA,2016,4(20):7823-7829.DOI:10.1039/c6ta01804a.[9]CHAIB,LIAOX,SONGFK,etal.FullerenemodifiedC3N4compositeswithenhancedphotocatalyticactivityundervisiblelightirradiation[J].DaltonTrans,2014,43(3):982-989.DOI:10.1039/c3dt52454j.[10]孟庆梅,孟迪,张艳丽,等.榴莲壳生物炭对磺胺嘧啶的吸附性能[J].化工进展,2020,39(11):4651-4659.DOI:10.16085/j.issn.1000-6613.2020-0699.MENGQM,MENGD,ZHANGYL,etal.Adsorptioncharac⁃teristicsofbiocharpreparedbydurianshellonSulfadiazine[J].ChemicalIndustryandEngineeringProgress,2020,39(11):4651-4659.[11]张隐,魏留洋,卢利明,等.CNC负载ZnO纳米复合材料的吸附光催化性能[J].林业工程学报,2020,5(3):29-35.DOI:10.13360/j.issn.2096-1359.201907044.ZHANGY,WEILY,LULM,etal.Adsorption⁃photocatalyticpropertiesofcellulosenanocrystalsupportedZnOnanocomposites[J].JournalofForestryEngineering,2020,5(3):29-35.[12]LIANGW,PANJH,DUANXJ,etal.Biomasscarbonmodifiedflower⁃likeBi2WO6hierarchicalarchitecturewithim⁃provedphotocatalyticperformance[J].CeramicsInternational,2020,46(3):3623-3630.DOI:10.1016/j.ceramint.2019.10.081.[13]陆丽丽,单锐,何明阳,等.新型TiO2/生物炭复合催化剂光催化降解甲基橙[J].太阳能学报,2021,42(4):32-39.DOI:10.19912/j.0254-0096.tynxb.2018-1249.LULL,SHANR,HEMY,etal.Noveltitaniumdioxide/bio⁃charcompositecatalystforphotocatalyticdegradationofmethylor⁃ange[J].ActaEnergiaeSolarisSinica,2021,42(4):32-39.[14]ZHUZ,MACC,YUKS,etal.SynthesisCe⁃dopedbiomasscarbon⁃basedg⁃C3N4viaplantgrowingguideandtemperature⁃programmedtechniquefordegrading2⁃Mercaptobenzothiazole[J].AppliedCatalysisB:Environmental,2020,268:118432.DOI:10.1016/j.apcatb.2019.118432.[15]XINGWN,TUWG,OUM,etal.AnchoringactivePt2+/Pt0hybridnanodotsong⁃C3N4nitrogenvacanciesforphotocatalyticH2evolution[J].ChemSusChem,2019,12(9):2029-2034.DOI:10.1002/cssc.201801431.[16]XINGWN,TUWG,HANZH,etal.Template⁃inducedhigh⁃crystallineg⁃C3N4nanosheetsforenhancedphotocatalyticH2evo⁃lution[J].ACSEnergyLetters,2018,3(3):514-519.DOI:10.1021/acsenergylett.7b01328.[17]TANGX,YUY,MACC,etal.Thefabricationofabiomasscar⁃bonquantumdot⁃Bi2WO6hybridphotocatalystwithhighperform⁃anceforantibioticdegradation[J].NewJournalofChemistry,2019,43(47):18860-18867.DOI:10.1039/c9nj04764f.[18]XIEKH,GUOPJ,XIONGZY,etal.Ni/NiOhybridnano⁃structuresupportedonbiomasscarbonforvisible⁃lightphotocata⁃lytichydrogenevolution[J].JournalofMaterialsScience,2021,56(22):12775-12788.DOI:10.1007/s10853-021-06129-0.(责任编辑㊀葛华忠)141。
g-C3N4基光催化剂的合成及性能优化的研究g-C3N4基光催化剂的合成及性能优化的研究近年来,光催化技术因为其在环境污染治理、能源转化和有机合成等方面的巨大潜力,受到了广泛的关注。
在这些应用中,g-C3N4基光催化剂因其可见光响应和较高的光催化活性而备受瞩目。
g-C3N4是一种类似于石墨烯的二维材料,由碳、氮元素组成。
由于其具有较高的可见光吸收能力和良好的电子传导性,因此成为制备光催化剂的有力候选材料。
然而,纯g-C3N4的光催化活性较低,主要原因是其带隙能量较大,不利于可见光的吸收。
因此,针对g-C3N4的合成和性能优化成为了当前研究的热点之一。
目前,研究者们通过一系列方法来合成g-C3N4光催化剂,并改善其光催化性能。
一种常见的方法是通过热聚合的方式制备g-C3N4。
通常,蓝薯、尿素等富含氮元素的有机物被选择为前身,经过简单的热处理即可得到g-C3N4材料。
此外,研究者们还探索了其他合成方法,如溶剂热法、微波辐射法和气相沉积法等。
这些方法在改善光催化性能方面发挥了积极的作用。
为了进一步提高g-C3N4光催化剂的性能,研究者们采用了多种方法对其进行改性。
一种常见的方法是通过掺杂其他元素来引入缺陷或能带调制。
例如,研究者们通过掺杂金属等元素,有效降低了g-C3N4的带隙能量,并增强了其可见光吸收能力。
此外,还有研究表明,通过改变g-C3N4的形貌和结构,也可以显著改善其光催化性能。
如采用纳米多孔结构、片状结构等形貌设计,可以增加催化剂的比表面积和光响应能力。
除了合成和形貌结构的改进,提高光催化性能还需要研究者们合理设计反应体系。
例如,在选择催化剂和底物的组合时,需要考虑其能级匹配和反应活性。
此外,还需要优化催化条件,如光照强度、反应温度、pH值等,以提高催化效率。
同时,研究者们也在不断探索新的催化机制,以深入理解g-C3N4光催化剂的工作原理。
综上所述,g-C3N4基光催化剂的合成及性能优化的研究是一个复杂而富有挑战性的领域。
g-C3N4光催化氧化还原性能调控及其环境催化性能增强g-C3N4(石墨相氮化碳)是一种新型的二维材料,具有片状结构和较高的光吸收能力,因此在光催化氧化还原性能调控和环境催化性能增强方面具有巨大的潜力。
本文将重点探讨g-C3N4的调控与增强,并分析其在环境催化中的应用。
首先,我们来看g-C3N4的光催化氧化还原性能调控。
光催化氧化还原反应是指在光照下,通过光生载流子的产生和迁移,将底物氧化或还原的反应过程。
g-C3N4作为一种光催化材料,其光催化性能主要受到其能带结构和表面缺陷的影响。
g-C3N4的能带结构中,价带和导带之间的带隙决定了光催化的吸光能力和载流子传输能力。
研究表明,通过控制g-C3N4的合成条件,可以调控其能带结构中的带隙大小和分布,进而调节其光催化性能。
例如,通过控制氮化温度和氮热处理条件,可以提高g-C3N4的带隙大小,使其对可见光的吸收能力增强。
此外,纳米结构和复合材料的调控也可以有效改善g-C3N4的光催化性能。
例如,将g-C3N4与其他半导体纳米材料复合,可以使其能隙气凝胶变窄,光吸收范围增广,从而提高光催化活性。
除了能带结构调控外,表面缺陷也是影响g-C3N4光催化性能的重要因素。
表面缺陷通常是指氮缺陷、碳缺陷和碳氮缺陷等,它们可以促进光生载流子的产生和迁移,提高光催化反应的效率。
因此,通过控制合成条件和引入适量的缺陷,可以增强g-C3N4的光催化活性。
例如,一些研究通过在g-C3N4的合成过程中引入硫、磷等掺杂原子,有效提高了其光催化氧化还原性能。
除了光催化氧化还原性能调控外,g-C3N4还具有良好的环境催化性能,特别适用于污水处理和空气净化等领域。
一方面,g-C3N4作为一种可见光响应的材料,可以通过光氧化、光还原或光催化降解等反应途径,将有机污染物转化为低毒或无毒的无机物。
另一方面,g-C3N4还具有一定的光催化氧化性能,可以将气体污染物如一氧化碳、二氧化氮等转化为无害物质。
第34卷 第2期 陕西科技大学学报 Vol.34No.2 2016年4月 JournalofShaanxiUniversityofScience&Technology Apr.2016* 文章编号:1000-5811(2016)02-0059-05g-C3N4/g-C3N4异质结结构的制备及其光催化性能李军奇,郝红娟,周 健,崔明明,孙 龙,袁 欢(陕西科技大学材料科学与工程学院,陕西西安 710021)摘 要:采用简单的热分解法,分别以硫脲、尿素及硫脲和尿素混合物等为原料,制备了三种具有不同能带结构的石墨相氮化碳(g-C3N4),并使用XRD、AFM、SEM、UV-vis等测试方法对所制备样品的晶相结构、形貌、以及光吸收能力等进行了表征,同时研究了不同能带结构的样品对甲基橙的光降解性能.结果表明:制备出的三种样品均是以三嗪环为基本结构单元的片层状化合物.其中,以硫脲和尿素混合物为原料制备出的g-C3N4/g-C3N4异质结厚度为1.05nm,禁带宽度为2.75eV,其对甲基橙的降解效率高于分别以硫脲、尿素为原料制备的g-C3N4,这是因为制备出的g-C3N4/g-C3N4异质结结构,促进了电荷的有效分离和传输,提高了可见光光催化活性.关键词:石墨相氮化碳;异质结;可见光;电荷的分离与传输中图分类号:O64 文献标志码:AConstructionofg-C3N4/g-C3N4heterojunctionforenhancedvisible-lightphotocatalysisLIJun-qi,HAOHong-juan,ZHOUJian,CUIMing-ming,SUNLong,YUANHuan(SchoolofMaterialsScienceandEngineering,ShaanxiUniversityofScience&Technology,Xi′an710021,China)Abstract:Thepresentworkdevelopedafacileinsitethermopolymerizationmethodtocon-structg-C3N4,g-C3N4sampleswerepreparedfromurea,thioureaandmolecularcompositeprecursorsofureaandthiourea.Theas-preparedsampleswerecharacterizedbyXRD,AFM,SEM,UV-visforcrystalstructure,morphologyandabsorptionabilityofvisiblelight.ThephotocatalyticactivitywastakenoutbythedegradationofMOsolution.Wediscussedthatthedifferentbandstructureofg-C3N4synthesizedbydifferentprecursors.Thisresultsshowedthatthethreekindsofsampleshavethesamecrystalstructure,theyalldemonstrates-Triazinesunitsinterlayerstructure.Thethicknessofg-C3N4/g-C3N4is1.05nmandthebandgapenergiesofg-C3N4/g-C3N4is2.75eV,g-C3N4/g-C3N4heterojunctionpossessex-*收稿日期:2015-10-28基金项目:国家自然科学基金项目(51203136);陕西科技大学学术骨干培育计划项目(XSGP201202);陕西科技大学自然科学基金项目(ZX11-14)作者简介:李军奇(1978-),男,陕西西安人,副教授,博士,研究方向:环境催化材料陕西科技大学学报第34卷cellentphotocatalyticactivitythanthesinglephaseg-C3N4(thiourea)andg-C3N4(urea)un-dervisiblelight.Ag-C3N4/g-C3N4heterojunctionpromotetheseparationandtransferofchargeandenhancevisiblelightphotocatalyticactivity.Keywords:g-C3N4;heterojunction;visiblelight;chargeseparationandtransfer0 引言石墨相氮化碳(g-C3N4)作为一种典型的聚合物半导体,因其独特的半导体能带结构和优异的化学稳定性,广泛应用于光催化领域,如光催化降解有机物[1]、光催化分解水制氢[2]等.然而,纯的g-C3N4因其光生电子-空穴对的高复合率,其光催化活性受到了限制.因此,应通过对g-C3N4进行改性来提高其光催化活性.例如,通过金属掺杂[3](如Ag)、非金属掺杂(如S、B、O等)[4-7]、半导体复合(如CdS、Bi2WO6等)[8,9]来对其进行改性.但是,这些结果并不理想.对于这一问题,应寻找不同的方法,来提高半导体材料的电子和空穴的转移.通常情况下,g-C3N4都是用氮含量丰富的前驱体高温分解来制备.例如,氰胺、二聚氰胺、三聚氰胺、三聚硫氰酸、尿素[1,10,11]等.但是,上述前驱体原材料在制备g-C3N4过程中往往涉及到较为复杂的步骤或者制备出的样品催化性能不显著[12].同时,更重要的一点是,g-C3N4其本身类似于高分子的结构而不利于光生电子空穴的有效分离和传输,致使其光催化性能不够理想.针对这些问题,研究人员试图通过多种方法来调控g-C3N4的结构,以改进其性能[13].考虑到g-C3N4聚合物的性质,可使用不同的前驱体来调整g-C3N4的能带结构,从而提高光生电子空穴对的有效分离和传输[13].如果采用两种原料制备的氮化碳的能带结构能够匹配,形成异质结构,就可以提供一种新颖的方法来解决g-C3N4固有的缺陷,在没有依赖额外半导体的情况下促进电子空穴的分离以增强光催化性能.为此,本研究设计以硫脲和尿素混合物为原料制备出了石墨相氮化碳异质结结构,形成了同型异质结(n-n同型异质结),促进了半导体界面电子空穴转移,从而提高了光催化性能.1 实验部分1.1 实验药品硫脲(H2NCSNH2,≥99.0%,天津市滨海科迪化学试剂有限公司);尿素(H2NCONH2,≥99.0%,天津市福晨化学试剂厂);无水乙醇(EtOH,99.7%,天津市河东区红岩试剂厂);实验中所用水均为去离子水.1.2 样品的制备称取一定量的原料,加入30mL的去离子水,搅拌均匀得到黄色溶液,将混合均匀的溶液在60℃下干燥12h,转入氧化铝坩埚中并加盖,在马弗炉里面煅烧,以15℃/min的升温速率加热到550℃,保温2h.反应完全后,将氧化铝坩埚冷却至室温,最后得到黄色g-C3N4,并将其研磨收集并进一步使用.在冷却过程中生成的气体被稀释过的碱性溶液吸收.其中,以硫脲为原料制备的样品记为g-C3N4(硫脲),以尿素为原料记为g-C3N4(尿素),以尿素和硫脲按1∶1混合为原料记为g-C3N4/g-C3N4.1.3 样品的分析与表征采用日本Rigaku公司的D/Max-2200PC型X射线衍射仪(X-rayDiffraction,XRD)对样品的成分和结晶度等进行分析(CuKα辐射,λ=0.15418nm,管压40kV,管流40mA,狭缝DS、RS和SS分别为1°、0.3mm和1°);采用S-4800型日立扫描电子显微镜(ScanningElectronicMicrosco-py,SEM)对所制备样品的形貌进行表征;采用紫外可见吸收光谱仪(UV-VIS,Lambda950,PerkinElmer)对样品的吸附性能进行分析;采用SPI3800N/SPA400型日本精工原子力显微镜(A-tomicForceMicroscopy,AFM)对样品的厚度进行分析.1.4 催化剂的评价光催化降解实验采用氙灯作为光源,通过波长大于420nm的滤波片过滤掉紫外光部分.套杯外层通入冷凝水以确保催化反应的温度恒定.以浓度为10mg/L、体积为10mL的甲基橙溶液为目标降解物,催化剂加入量为0.01g.先暗反应30min,以确保达到吸附平衡,然后光反应,进行采点.取样后将样品离心,并取其上清液进行紫外测试,做出紫外吸收光谱.・06・第2期李军奇等:g-C3N4/g-C3N4异质结结构的制备及其光催化性能2 结果与讨论2.1 XRD测试图1为不同原料制备的g-C3N4的XRD衍射图.从图1可以看出,采用不同原料制备的g-C3N4具有两个明显的衍射峰,在2θ=13.8°、27.3°处,分别对应于g-C3N4(PDFNo.87-1526)卡片中的(100)和(002)晶面,说明所合成样品中有三-S-三嗪单元存在[1].位于13.8°处的峰是均三嗪单元的面内结构峰;而位于27.3°处的最强峰是芳香环系统典型的层间堆垛峰.同时,从图1还可以看出,没有杂相的衍射峰出现,说明实验过程中所得的产物为纯相的g-C3N4.图1 不同原料制备的g-C3N4的XRD图图2为三种样品(002)晶面对应衍射峰的放大图.从图2可以看出,g-C3N4(尿素)(002)晶面的衍射角(27.3°)相对于g-C3N4(硫脲)的衍射角(26.9°)向大角度偏移,这是因为尿素中额外留下的特征序列的氧促进了缩合过程,并确保了结构的完整性.通过计算,g-C3N4(硫脲)和g-C3N4(尿素)晶面间距分别是0.327nm和0.323nm,表明了g-C3N4(尿素)的晶体结构为密堆积形式.进一步从图2中观察到,g-C3N4/g-C3N4的衍射角(27.1°)位于g-C3N4(硫脲)和g-C3N4(尿素)之间,确认了g-C3N4/gC3N4异质结的形成[12].由于分子组合前驱体的使用,g-C3N4(硫脲)和g-C3N4(尿素)之间的电子的耦合发生在原子能级.2.2 SEM表征结果图3为以不同原料制备的g-C3N4的扫描电镜图.从图3(a)可以看出,g-C3N4(硫脲)是由密集的厚层组成的块状结构;从图3(b)可以看出,g-C3N4(尿素)是由片状薄层组成,结构类似于石墨烯纳米片.g-C3N4(硫脲)和g-C3N4(尿素)的形貌有所不同,是因为硫脲和尿素有不同的分子结构,硫脲中图2 (002)晶面对应衍射峰的放大图有硫原子,尿素中有氧原子,在氮化碳的缩合和纳米结构的形成中具有重要作用.图3(c)和3(d)是g-C3N4/g-C3N4的扫描照片,从图中可以看出它类似于g-C3N4(硫脲)和g-C3N4(尿素)片层状的结构.(a)g-C3N4(硫脲)(b)g-C3N4(尿素)(c)、(d)g-C3N4/g-C3N4异质结图3 g-C3N4(硫脲)、g-C3N4(尿素)、g-C3N4/g-C3N4异质结的SEM图2.3 AFM分析图4为以硫脲和尿素混合物为原料制备的g-C3N4纳米片的AFM图和厚度分析.从图4(a)中可以看到,g-C3N4普遍呈片状分布;从图4(b)和图4(c)中可以看到,谷底的位置位于6.51nm处,谷口的位置位于7.51nm处,这两个点的高度差为1.05nm,即为g-C3N4/g-C3N4纳米片的厚度.通常情况下,单层g-C3N4的厚度约为0.325nm.g-C3N4纳米片的厚度为1.05nm,与单层纳米片的厚度相比较,可以得知所测数据大概是两三层纳米片的厚度,虽然在SEM图上没有呈现出单层纳米片的形貌,这主要是因为在制样过程中纳米片之间会发生团聚和交叠的现象.AFM的结果表明,以硫脲和尿素混合物为原料成功地制备出了片层状g-C3N4/g-C3N4.2.4 紫外可见吸收光谱图5为以不同原料制备的g-C3N4的紫外-可・16・陕西科技大学学报第34卷(a)g-C3N4/g-C3N4的AFM图(b)、(c)g-C3N4/g-C3N4纳米片的厚度分析图图4 g-C3N4/g-C3N4的AFM图及g-C3N4/g-C3N4纳米片的厚度分析见漫反射图谱.从图5可以清楚地看出,三种样品在可见光区有较强的吸收.g-C3N4(硫脲)的吸收边在461nm处,g-C3N4(尿素)的吸收边在431nm处,g-C3N4/g-C3N4的吸收边(451nm)位于g-C3N4(硫脲)和g-C3N4(尿素)之间.从图5也可以看出,g-C3N4(硫脲)较于g-C3N4(尿素)有很强的吸收强度,这是因为硫脲和尿素不同的缩合度造成.图5 以不同原料制备的g-C3N4的紫外-可见漫反射光谱图6为以不同原料制备的g-C3N4的禁带宽度.通过公式Eg=1240.8/λ(Eg为禁带宽度,λ为最强吸收峰的波长)计算出,g-C3N4(硫脲)的禁带宽度为2.69eV,g-C3N4(尿素)的禁带宽度为2.87eV,g-C3N4/g-C3N4的禁带宽度为2.75eV,计算结果与图6一致.从图6可以看出,g-C3N4(尿素)的禁带宽度相对于g-C3N4(硫脲)发生了蓝移,这是因为热处理过程中量子效率的限制导致g-C3N4(尿素)形成薄片结构,另一方面是由于g-C3N4(硫脲)和g-C3N4(尿素)不同的缩合度和尺寸大小引起.而g-C3N4/g-C3N4的禁带宽度位于g-C3N4(硫脲)和g-C3N4(尿素)之间,进一步证明了g-C3N4/g-C3N4异质结的形成.图6 以不同原料制备的g-C3N4的禁带宽度2.5 光催化性能为了评价所合成的催化剂的光催化性能,在可见光的照射下,使用甲基橙溶液(10mg/L)作为模拟污染物进行光催化降解实验.图7为以不同原料制备的g-C3N4对甲基橙的降解图.由图7可知,三种样品在3h内对甲基橙的降解效率分别是8%、33%和48%.很明显,g-C3N4/g-C3N4异质结比g-C3N4(硫脲)和g-C3N4(尿素)的光催化性能好.图7 在可见光下以不同原料制备的g-C3N4对甲基橙的降解随时间变化的曲线图影响光催化性能的原因很多,而本次实验主要与以不同原料制备出能带结构不同的g-C3N4密切相关.已有相关文献报道[12],g-C3N4(尿素)的价带位置比g-C3N4(硫脲)更正,g-C3N4(硫脲)的导带位置比g-C3N4(尿素)更负,g-C3N4(硫脲)和g-C3N4(尿素)导带位置分别位于-0.85eV和-0.75eV,价带位置位于1.58eV和1.98eV.基于g-C3N4(硫脲)和g-C3N4(尿素)的导带和价带位置,其能带结构相互匹配,形成g-C3N4/g-C3N4异质结,有利于光生电子空穴对的有效分离和传・26・第2期李军奇等:g-C3N4/g-C3N4异质结结构的制备及其光催化性能输.促进电子空穴分离的机理如图8所示.g-C3N4/g-C3N4异质结在可见光照射下,光生电子从g-C3N4(硫脲)的导带转移到g-C3N4(尿素)的导带,而光生空穴从g-C3N4(尿素)的价带转移到g-C3N4(硫脲)的价带,电荷的转移过程有利于克服Frenkel激子的电离以及使得电子和空穴稳定.电子流向异质结(g-C3N4(尿素))的一侧,而空穴流向异质结(g-C3N4(硫脲))的另一侧,减少了电子空穴对的结合.内部电子领域的建立从图8中也可以看出,两种不同晶相的g-C3N4光生电子空穴的分离以及电荷的结合得到了抑制,这有利于增强光催化性能.此外,电荷的快速转移和光生电荷载流子寿命的延长,致使与催化剂载体得到充分的反应.图8 g-C3N4/g-C3N4异质结的机理图3 结论通过简单的热分解法,基于g-C3N4(硫脲)和g-C3N4(尿素)能带结构不同,成功地制备出了g-C3N4/g-C3N4光催化异质结.利用各种表征手段对样品的结构、组成、形貌、降解效率和形成机理等进行了仔细分析并认为:以硫脲和尿素混合物为原料制备出的g-C3N4/g-C3N4异质结催化剂,具有很好的光催化性能.这主要是因为g-C3N4(硫脲)和g-C3N4(尿素)有不同的能带结构,使得价带和导带位置能够很好地匹配,通过能带的不连续性,g-C3N4/g-C3N4异质结结构促进了电荷的分离传输并延长了电荷的寿命,导致在可见光照射下,g-C3N4/g-C3N4异质结催化剂具有很好的光催化性能.参考文献[1]YanSC,LiZS,ZouZG.Photodegradationperformanceofg-C3N4fabricatedbydirectlyheatinmel[J].Langmuir,2009,25(17):10397-10401.[2]CaoSW,YuJG.g-C3N4Basedphotocatalystsforhydro-gengeneration[J].JPhyChemLett,2014,5:2101-2107.[3]WangX,ChenX,ThomasA,etal.Metal-containingcar-bonnitridecompounds:Anewfunctionalorganicmetalhy-brid[J].AdvMater,2009,21(16):1609-1621.[4]LiuG,NiuP,SunCH,etal.Uniqueelectronicstructureinducedhighphotoreactivityofsulfur-dopedgraphiticC3N4[J].JAmChemSoc,2010,132(33):11642-11648.[5]YanSC,LiZS,ZouZG.Photodegradationofrhodaminebandmethylorangeoverboron-dopedg-C3N4undervisi-blelightirradiation[J].Langmuir,2010,26(6):3894-3901.[6]LiJH,ShenB,HongZH,etal.Afacileapproachtosyn-thesizenoveloxygen-dopedg-C3N4withsuperiorvisible-lightphotoreactivity[J].ChemCommun,2012,48(98):12017-12019.[7]RuanLW,QiuLG,ZhuYJ,etal.Analysisofelectricalandopticalpropertiesofg-C3N4withcarbon-positiondo-ping[J].AntaPhysChimSin,2014,30(1):43-52.[8]GeL,ZuoF,LiuJK,etal.Synthesisandefficientvisiblelightphotocatalytichydrogenevolutionofpolymericg-C3N4coupledwithCdSquantumdots[J].JPhysChemC,2012,116(25):13708-13714.[9]TianYL,ChangBB,LuJL,etal.Hydrothermalsynthe-sisofgraphiticcarbonnitride-Bi2WO6heterojunctionswithenhancedvisiblelightphotocatalyticactivities[J].ACSApplMaterInterfaces,2013,5:7079-7085.[10]XCWang,KMaeda,AThomas,etal.Ametal-freepoly-mericphotocatalystforhydrogenproductionfromwaterundervisiblelight[J].NatMater,2009,8(1):76-80.[11]NiuP,ZhangLL,LiuG,etal.Graphene-likecarbonni-tridenanosheetsforimprovedphotocatalyticactivities[J].AdvFunctMater,2012,22(22):4763-4770.[12]李 明,李雪飞,李秀艳,等.具有高催化和吸附活性的片层状石墨相氮化碳的制备与表征[J].吉林师范大学学报,2013,34(4):12-14.[13]DongF,ZhaoZW,XiongT,etal.Insituconstructionofinsituconstructionofg-C3N4/g-C3N4metal-freehetero-junctionforenhancedvisible-lightphotocatalysisen-hancedvisible-lightphotocatalysis[J].ApplMaterInter,2013,5(21):11392-11401.【责任编辑:晏如松】・36・。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 10 期非金属元素掺杂石墨相氮化碳光催化材料的研究进展宋亚丽1,李紫燕1,杨彩荣1,黄龙2,张宏忠1(1 郑州轻工业大学材料与化学工程学院,环境污染治理与生态修复河南省协同创新中心,河南 郑州 450001;2郑州大学生态与环境学院,河南 郑州 450001)摘要:石墨相氮化碳(g-C 3N 4)是一种非金属光催化材料,其具有制备成本低、制备过程简单、绿色、无二次污染、带隙能可调控、热稳定性高等特点,使其成为人们在能源与环境领域研究和关注的焦点。
然而,g-C 3N 4还存在比表面积小、禁带宽度较大、光生电子和空穴复合过快等缺点,限制了其发展。
非金属元素掺杂可以对g-C 3N 4进行改性以有效解决以上问题,使其带隙减小,拓宽光谱响应范围,抑制光生电子-空穴对的复合,提高光吸收能力,来提高其光催化性能。
本文对非金属元素掺杂g-C 3N 4的合成方法、应用等方面进行综述,从非金属单元素掺杂(单元素自掺杂和其他单元素掺杂)、非金属多元素共掺杂方面进行了总结。
最后指出了在非金属元素掺杂g-C 3N 4方面,仍需要关注g-C 3N 4产量偏低、可见光利用效率不足、回收较难等问题,并强调了非金属元素掺杂g-C 3N 4在治理环境污染和应对能源危机方面的重要作用。
关键词:石墨相氮化碳;非金属元素;掺杂改性;光催化性能中图分类号:TQ314.2 文献标志码:A 文章编号:1000-6613(2023)10-5299-11Research progress of non-metallic element doped graphitic carbonnitride photocatalytic materialsSONG Yali 1,LI Ziyan 1,YANG Cairong 1,HUANG Long 2,ZHANG Hongzhong 1(1 Henan Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration, College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China;2College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China)Abstract: Graphitic carbon nitride (g-C 3N 4) is a non-metallic photocatalytic material. It has the advantages of low cost, simple preparation process, green, no secondary pollution, adjustable band gap energy and high thermal stability. It has become the research hotspot in the field of energy and environment. However, g-C 3N 4 possesses the disadvantages of small specific surface area, large band gap and fast recombination rate of photogenerated electrons and holes, which limits its application. Non-metallic element doping can effectively solve the above problems by reducing the band gap, broadening the spectral response range, inhibiting the recombination of photogenerated electron-hole pairs and improving the light absorption capacity. In this work, the synthesis methods and application of non-metallic element doped g-C 3N 4 were reviewed. The non-metallic single element doping (single element self-doping and other single element doping) and non-metallic multi-element co -doping were综述与专论DOI :10.16085/j.issn.1000-6613.2022-2180收稿日期:2022-11-23;修改稿日期:2023-06-04。
可见光催化剂g-C3N4在光催化还原CO2中的应用
毛劲李侃柴波曾鹏张小虎彭天右
武汉大学化学与分子科学学院 武汉 430072
近年来,g-C3N4作为一种新型高分子聚合物半导体受到了广泛的关注。
g-C3N4具有良好的力学、电学和光学性能,不仅能用于多种催化反应,而且在光催化降解化学污染物和分解
水制氢和制氧方面也有良好的发展潜力[1]。
目前,Dong等人合成了介孔g-C3N4催化剂并对其在水蒸气存在下光催化还原CO2性质进行了研究[2]。
本文采用简单的热处理方法[3],以廉价的尿素和三聚氰胺为原料高效地合成了g-C3N4催化剂,并对两者在水溶液体系中光催化还原CO2行为进行了研究。
关键词:g-C3N4;可见光光催化;光催化还原CO2
Graphitic carbon nitride as visible-light catalyst for
photocatalytic reduction of CO2
Jin MaoKan LiBo ChaiPeng ZengXiaohu Zhang Tianyou Peng
可见光催化剂g-C3N4在光催化还原CO2中的应用
作者:毛劲, 李侃, 柴波, 曾鹏, 张小虎, 彭天右
作者单位:武汉大学化学与分子科学学院 武汉 430072
引用本文格式:毛劲.李侃.柴波.曾鹏.张小虎.彭天右可见光催化剂g-C3N4在光催化还原CO2中的应用[会议论文] 2012。
第42卷第10期2023年10月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.10October,2023g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展柏林洋1,蔡照胜2(1.江苏旅游职业学院,扬州㊀225000;2.盐城工学院化学化工学院,盐城㊀224051)摘要:光催化技术在太阳能资源利用方面呈现出良好的应用前景,已受到世界各国的广泛关注㊂g-C 3N 4是一种二维结构的非金属聚合物型半导体材料,具有合成简单㊁成本低㊁化学性质稳定㊁无毒等特点,在环境修复和能量转化方面应用潜力较大㊂但g-C 3N 4存在对可见光吸收能力差㊁比表面积小和光生载流子复合速率高等缺点,限制了其实际应用㊂构筑异质结光催化剂是提高光催化效率的有效途径之一㊂基于Ag 基材料的特点,前人对g-C 3N 4/Ag 基二元复合光催化剂进行了大量研究,并取得显著成果㊂本文总结了近年来AgX(X =Cl,Br,I)/g-C 3N 4㊁Ag 3PO 4/g-C 3N 4㊁Ag 2CO 3/g-C 3N 4㊁Ag 3VO 4/g-C 3N 4㊁Ag 2CrO 4/g-C 3N 4㊁Ag 2O /g-C 3N 4和Ag 2MoO 4/g-C 3N 4复合光催化剂降解环境污染物的研究进展,并评述了g-C 3N 4/Ag 基二元复合光催化剂目前面临的主要挑战,展望了其未来发展趋势㊂关键词:g-C 3N 4;Ag 基材料;二元复合光催化剂;光催化性能;环境污染物中图分类号:TQ426㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)10-3755-09Research Progress on g-C 3N 4/Ag-Based Binary Composite Photocatalysts for Degradation of Environmental PollutantsBAI Linyang 1,CAI Zhaosheng 2(1.Jiangsu Institute of Tourism,Yangzhou 225000,China;2.School of Chemistry and Chemical Engineering,Yancheng Institute of Technology,Yancheng 224051,China)Abstract :Photocatalysis technology shows a good application prospect in the utilization of solar energy resource and has attracted worldwide attention.g-C 3N 4is a two-dimensional polymeric metal-free semiconductor material with the characteristics of facile synthesis,low cost,high chemical stability and non-toxicity,which has great potential in environmental remediation and energy conversion.However,g-C 3N 4has the drawbacks of poor visible light absorption capacity,low specific surface area and high recombination rate of photogenerated charge carriers,which limits its practical application.Constructing heterojunction photocatalyst has become one of effective pathways for boosting photocatalytic efficiency.Based on the inherent merits of Ag-based materials,a lot of researches have been carried out on g-C 3N 4/Ag-based binary photocatalysts and prominent results have been achieved.Recent advances on AgX (X =Cl,Br,I)/g-C 3N 4,Ag 3PO 4/g-C 3N 4,Ag 2CO 3/g-C 3N 4,Ag 3VO 4/g-C 3N 4,Ag 2CrO 4/g-C 3N 4,Ag 2O /g-C 3N 4and Ag 2MoO 4/g-C 3N 4composite photocatalysts for the degradation of environmental pollutants were summarized.The major challenges of g-C 3N 4/Ag-based binary composite photocatalysts were reviewed and the future development trends were also forecast.Key words :g-C 3N 4;Ag-based material;binary composite photocatalyst;photocatalytic performance;environmental pollutant㊀收稿日期:2023-05-15;修订日期:2023-06-12基金项目:江苏省高等学校自然科学研究面上项目(19KJD530002)作者简介:柏林洋(1967 ),男,博士,副教授㊂主要从事光催化材料方面的研究㊂E-mail:linybai@通信作者:蔡照胜,博士,教授㊂E-mail:jsyc_czs@0㊀引㊀言随着全球经济的快速增长和工业化进程的加快,皮革㊁印染㊁制药和化工等行业排放的环境污染物总量3756㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷也不断增长㊂这些环境污染物存在成分复杂㊁毒性大㊁难以降解等特点,对人们的身体健康和生态环境产生严重威胁,已成为制约经济和社会发展的突出问题㊂如何实现环境污染物的高效降解是目前亟待解决的重要问题㊂效率低㊁能耗高及存在二次污染是利用传统处理方法处置环境污染物的主要缺陷[1]㊂光催化技术作为一种新型的绿色技术,具有环境友好㊁成本低㊁反应效率高和无二次污染等优点,在解决环境污染问题方面具有很大的发展潜力,深受人们的关注[2-4]㊂g-C3N4属于一种非金属聚合物型半导体材料,具有二维分子结构,即C原子和N原子通过sp2杂化形成的共轭石墨烯平面结构,具有适宜的禁带宽度(2.7eV)和对460nm以下可见光良好的响应能力㊂g-C3N4具有合成原料成本低㊁制备工艺简单㊁耐酸耐碱和稳定性好等特点,在催化[5]㊁生物[6]和材料[7]等领域应用广泛㊂然而,g-C3N4较小的比表面积㊁较弱的可见光吸收能力和较快的光生载流子复合率等不足导致其光量子利用率不高,给实际应用带来较大困难[8]㊂为了克服上述问题,前人提出了对g-C3N4进行形貌调控[9]㊁元素掺杂[10-11]和与其他半导体耦合[12-13]等方法㊂其中,将g-C3N4与其他半导体耦合形成异质结光催化剂最为常见㊂Ag基半导体材料因具有成本合理㊁光电性能好和光催化活性高等特点而深受青睐,但仍存在光生载流子快速复合和光腐蚀等缺陷㊂近年来,人们将Ag基材料与g-C3N4进行复合,整体提高了复合光催化剂的催化性能,并由此取得了大量极有价值的科研成果㊂本文综述了近年来g-C3N4/Ag银基二元复合光催化剂的制备方法㊁性能和应用等方面的研究现状,同时展望了未来的发展趋势,期望能为该领域的研究人员提供新的思路㊂1㊀g-C3N4/Ag基二元复合光催化剂近年来,基于Ag基半导体材料能与g-C3N4能带结构匹配的特点,构筑g-C3N4/Ag基异质结型复合光催化体系已成为国内外的研究热点㊂这类催化剂通常采用沉淀法在g-C3N4表面负载Ag基半导体材料㊂其中,Ag基体的成核和生长是关键问题㊂通过对Ag基材料成核和生长工艺的控制,实现了Ag基材料在g-C3N4上的均匀分布㊂此外,通过对g-C3N4微观结构进行调控,使其具有较大的比表面积和较高的结晶度,从而进一步提高复合光催化剂的催化性能㊂相对于纯g-C3N4和Ag基光催化剂,g-C3N4/Ag基二元复合光催化剂通过两组分的协同效应和界面作用,不仅能提高对可见光的吸收利用率,而且能有效抑制g-C3N4和Ag基材料中光生e-/h+对的重组,从而提高复合光催化剂的活性和稳定性㊂在g-C3N4/Ag基二元复合光催化材料中,以AgX(X=Cl,Br,I)/g-C3N4㊁Ag3PO4/g-C3N4㊁Ag2CO3/g-C3N4㊁Ag3VO4/g-C3N4㊁Ag2CrO4/g-C3N4㊁Ag2O/g-C3N4和Ag2MoO4/g-C3N4为典型代表㊂1.1㊀AgX(X=Cl,Br,I)/g-C3N4二元复合光催化剂AgX(X=Cl,Br,I)在杀菌㊁有机污染物降解和光催化水解产氢等方面展现出优异的性能㊂但AgX (X=Cl,Br,I)是一种光敏材料,在可见光下容易发生分解,形成Ag0,从而影响其催化活性及稳定性㊂将AgX(X=Cl,Br,I)与g-C3N4复合是提升AgX(X=Cl,Br,I)使用寿命㊁改善光催化性能最有效的方法之一㊂Li等[14]采用硬模板法制备出一种具有空心和多孔结构的高比表面积g-C3N4纳米球,并以其为载体,通过沉积-沉淀法得到AgBr/g-C3N4光催化材料㊂XRD分析显示AgBr的加入并没有改变g-C3N4的晶体结构,瞬态光电流试验表明AgBr/g-C3N4光电流密度高于g-C3N4,橙黄G(OG)染料经10min可见光照射后的降解率达到97%㊂Shi等[15]报道了利用沉淀回流法制备AgCl/g-C3N4光催化剂,研究了AgCl的量对催化剂结构及光催化降解草酸性能的影响,确定了最佳修饰量,分析了催化剂用量㊁草酸起始浓度㊁酸度和其他有机成分对光催化活性影响,通过自由基捕获试验揭示了光降解反应中起主要作用的活性物质为光生电子(e-)㊁羟基自由基(㊃OH)㊁超氧自由基(㊃O-2)和空穴(h+)㊂彭慧等[16]采用化学沉淀法制备具有不同含量AgI的AgI/g-C3N4光催化剂,SEM测试表明AgI纳米颗粒分布在层状结构g-C3N4薄片的表面,为催化反应提供了更多的活性位㊂该系列催化剂应用于光催化氧化降解孔雀石绿(melachite green,MG)的结果显示,AgI/g-C3N4(20%,质量分数,下同)的光催化性能最好,MG经2h可见光辐照后去除率达到99.8%㊂部分AgX(X=Cl,Br,I)/g-C3N4二元复合光催化剂的研究现状如表1所示㊂第10期柏林洋等:g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展3757㊀表1㊀AgX (X =Cl ,Br ,I )/g-C 3N 4二元复合光催化剂光降解环境污染物的研究现状Table 1㊀Research status of AgX (X =Cl ,Br ,I )/g-C 3N 4binary composite photocatalysts forphotodegradation of enviromental pollutantsPhotocatalytst Synthesis method TypePotential application Photocatalytic activity Reference AgBr /g-C 3N 4Sonication-assisted deposition-precipitation II-schemeDegradation of RhB,MB and MO 100%degradation for RhB,95%degradation for MB and 90%degradation for MO in 10min [17]AgCl /g-C 3N 4Precipitation Z-schemeDegradation of RhB and TC 96.1%degradation for RhB and 77.8%degradation for TC in 120min [18]AgCl /g-C 3N 4Solvothermal +in situ ultrasonic precipitation Z-scheme Degradation of RhB 92.2%degradation in 80min [19]AgBr /g-C 3N 4Deposition-precipitation II-schemeDegradation of MO 90%degradation in 30min [20]AgI /g-C 3N 4In-situ growth II-scheme Degradation of RhB 100%degradation in 60min [21]㊀㊀Note:MO-methyl orange,RhB-rhodamine B,TC-tetracycline hydrochloride,MB-methyl blue.1.2㊀Ag 3PO 4/g-C 3N 4二元复合光催化剂纳米Ag 3PO 4禁带宽度为2.5eV 左右,对可见光有很好的吸收作用,且光激发后具有很强的氧化性,在污染物降解和光解水制氢等领域有良好的应用前景[22]㊂但是,纳米Ag 3PO 4易团聚,光生载流子的快速重组使光催化活性大大降低,此外,Ag 3PO 4还易受光生e -的腐蚀,从而影响稳定性㊂Ag 3PO 4与g-C 3N 4复合可显著降低e -/h +对的重组,有效提高光催化性能㊂Wang 等[23]采用原位沉淀法获得Z-型异质结构g-C 3N 4/Ag 3PO 4复合光催化剂,并有效地提高了e -/h +对的分离效率㊂TEM 结果显示,Ag 3PO 4粒子被g-C 3N 4纳米片所覆盖,UV-DRS 结果表明,Ag 3PO 4的添加使g-C 3N 4吸收边发生红移,且吸收光强度显著增强,光降解实验结果显示,30%g-C 3N 4/Ag 3PO 4光催化剂在40min 内能去除约90%的RhB㊂胡俊俊等[24]利用了原位沉淀法合成了一系列Ag 3PO 4/g-C 3N 4复合光催化剂,研究了Ag 3PO 4和g-C 3N 4的物质的量比对催化剂在可见光下催化降解MB 性能的影响,发现在最优组分下,MB 经可见光辐照30min 后可以被完全降解㊂Mei 等[25]采用焙烧-沉淀法制备了一系列Ag 3PO 4/g-C 3N 4复合光催化剂,并用于可见光条件下降解双酚A(bisphenol A,BPA),发现Ag 3PO 4质量分数为25%时,光催化降解BPA 的性能最好,3h 能降解92.8%的BPA㊂潘良峰等[26]采用化学沉淀法制备出一种具有空心管状的Ag 3PO 4/g-C 3N 4光催化剂,SEM 结果表明,Ag 3PO 4颗粒均匀分布于空心管状结构g-C 3N 4的表面,两者形成一个较强异质结构,将其用于盐酸四环素(tetracycline hydrochloride,TC)光催化降解,80min 能降解98%的TC㊂Deonikar 等[27]研究了采用原位湿化学法合成催化剂过程中使用不同溶剂(去离子水㊁四氢呋喃和乙二醇)对Ag 3PO 4/g-C 3N 4的结构和光降解MB㊁RhB 及4-硝基苯酚性能的影响,发现不同溶剂对复合光催化剂的形貌有着重要影响,从而影响光催化性能,其中以四氢呋喃合成的复合光催化剂的催化降解性能最佳,这是由于g-C 3N 4纳米片均匀包裹在Ag 3PO 4的表面,从而促使两者界面形成较为密切的相互作用,有利于e -/h +对的分离㊂部分Ag 3PO 4/g-C 3N 4二元复合光催化剂的研究进展见表2㊂表2㊀Ag 3PO 4/g-C 3N 4二元复合光催化剂光降解环境污染物的研究现状Table 2㊀Research status of Ag 3PO 4/g-C 3N 4binary composite photocatalysts for photodegradation of environmental pollutantsPhotocatalyst Synthesis method Type Potential application Photocatalytic activity Reference g-C 3N 4/Ag 3PO 4In situ precipitation Z-scheme Degradation of BPA 100%degradation in 180min [28]g-C 3N 4/Ag 3PO 4Hydrothermal Z-schemeDecolorization of MB Almost 93.2%degradation in 25min [29]g-C 3N 4/Ag 3PO 4In situ prepcipitation II-scheme Reduction of Cr(VI)94.1%Cr(VI)removal efficiency in 120min [30]g-C 3N 4/Ag 3PO 4Chemical precipitation Z-scheme Degradation of RhB 90%degradation in 40min [31]g-C 3N 4/Ag 3PO 4In situ precipitation Z-scheme Degradation of levofloxacin 90.3%degradation in 30min [32]Ag 3PO 4/g-C 3N 4Chemical precipitation Z-schemeDegradation of gaseous toluene 87.52%removal in 100min [33]Ag 3PO 4/g-C 3N 4Calcination +precipitation Z-scheme Degradation of diclofenac (DCF)100%degradation in 12min [34]Ag 3PO 4/g-C 3N 4In situ deposition Z-scheme Degradation of RhB and phenol 99.4%degradation in 9min for RhB;97.3%degradation in 30min for phenol [35]3758㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷续表Photocatalyst Synthesis method Type Potential application Photocatalytic activity Reference Ag3PO4/g-C3N4In situ hydrothermal II-scheme Degradation of sulfapyridine(SP)94.1%degradation in120min[36] Ag3PO4/g-C3N4In situ growth Z-scheme Degradation of berberine100%degradation in15min[37] g-C3N4/Ag3PO4In situ deposition Z-scheme Degradation of ofloxacin71.9%degradation in10min[38] Ag3PO4/g-C3N4Co-precipitation Z-scheme Degradation of MO98%degradation in10min[39]g-C3N4/Ag3PO4Calcination+precipitation Z-scheme Degradation of MO,RhB and TC95%degradation for MO in30min;[40]96%degradation for RhB in15min;80%degradation for TC in30min1.3㊀Ag2CO3/g-C3N4二元复合光催化剂Ag4d轨道和O2p轨道杂化,形成Ag2CO3的价带(valence band,VB);Ag5s轨道和Ag4d轨道进行杂化,形成Ag2CO3导带(conduction band,CB),而CB中原子轨道杂化会降低Ag2CO3带隙能,从而提高光催化活性[41]㊂纳米Ag2CO3带隙能约为2.5eV,可见光响应性好,在可见光作用下表现出良好的光催化降解有机污染物特性[42-43]㊂然而,经长时间光照后,Ag2CO3晶粒中Ag+会被光生e-还原成Ag0,导致其光腐蚀,引起光催化性能下降[44]㊂Ag2CO3与g-C3N4耦合,能够有效地抑制光腐蚀,促进e-/h+对的分离,进而改善光催化性能㊂An等[45]通过构筑Z型核壳结构的Ag2CO3@g-C3N4材料来增强Ag2CO3和g-C3N4界面间的相互作用,从而有效防止光腐蚀发生,加速光生e-/h+对的分离,实现了催化剂在可见光辐照下高效降解MO㊂Yin等[46]通过水热法制备Ag2CO3/g-C3N4光催化剂,探讨了g-C3N4的含量㊁合成温度对催化剂结构和光降解草酸(oxalic acid,OA)性能的影响,获得最优条件下合成的催化剂能在45min光照时间内使OA去除率达到99.99%㊂Pan等[41]采用煅烧和化学沉淀两步法,制备了一系列Ag2CO3/g-C3N4光催化剂,TEM结果显示,Ag2CO3纳米粒子均匀分布在g-C3N4纳米片表面,且形貌规整㊁粒径均一,光催化性能测试结果表明,60% Ag2CO3/g-C3N4光催化活性最高,MO和MB分别经120和240min可见光光照后,其降解率分别为93.5%和62.8%㊂Xiu等[47]使用原位水热法构筑了Ag2CO3/g-C3N4光催化剂,光降解试验结果表明,MO经可见光辐照1h的去除率为87%㊂1.4㊀Ag3VO4/g-C3N4二元复合光催化剂纳米Ag3VO4带隙能约为2.2eV,可用于催化可见光降解环境污染物,是一种具有应用前景的新型半导体材料㊂然而,如何提高Ag3VO4光催化性能,仍然是学者研究的重点㊂构建Ag3VO4/g-C3N4异质结催化剂是提高Ag3VO4的催化性能的一种有效方法㊂该方法能够降低Ag3VO4光生载流子的复合率,拓宽可见光的吸收范围㊂Hind等[48]通过溶胶凝胶法制备出一种具有介孔结构的Ag3VO4/g-C3N4复合光催化剂,该复合催化剂经60min可见光照射能将Hg(II)全部还原,其光催化活性分别是Ag3VO4和g-C3N4的4.3倍和5.4倍,主要是由于异质结界面处各组分间紧密结合以及催化剂具有较高的比表面积和体积比,从而促进光生载流子的分离㊂蒋善庆等[49]利用化学沉淀法制备了系列Ag3VO4/g-C3N4催化剂,催化性能研究结果表明,Ag3VO4负载量为20%(质量分数)时,其光催化降解微囊藻毒素的效果最好,可见光辐照100min后降解率为85.43%,而g-C3N4在相同条件下的降解率仅为18.76%㊂1.5㊀Ag2CrO4/g-C3N4二元复合光催化剂纳米Ag2CrO4具有特殊的晶格和能带结构,其带隙能为1.8eV,可见光响应良好,是一种非常理想的可见光区半导体材料㊂然而,Ag2CrO4存在自身的电子结构和晶体的缺陷,导致其光催化效率性能较差,严重影响了实际应用[50-52]㊂将Ag2CrO4与g-C3N4复合形成异质结光催化剂是提高其光催化效率和稳定性的一种有效途径,因为Ag2CrO4在光照下产生的光生e-快速地迁移到g-C3N4表面,可避免光生e-在Ag2CrO4表面聚集而引起光腐蚀㊂Ren等[53]利用SiO2为硬模板,以氰胺为原料,合成出具有中空介孔结构的g-C3N4,再通过化学沉淀法制备了系列g-C3N4/Ag2CrO4光催化剂,并将其用于RhB和TC的可见光降解,研究发现g-C3N4/Ag2CrO4催化剂具有较高比表面积和丰富的孔道结构,在可见光辐射下表现出较高的光催化活性㊂Rajalakshmi等[54]利用水热方法合成了一系列Ag2CrO4/g-C3N4光催化剂,并将其用于对硝基苯酚的光催化降解,结果表明,Ag2CrO4质量分数为10%时,其降解率达到97%,高于单组分g-C3N4或Ag2CrO4,原因是与第10期柏林洋等:g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展3759㊀Ag 2CrO 4和g-C 3N 4界面间形成了S-型异质结,能提高e -/h +对的分离效率㊂1.6㊀Ag 2O /g-C 3N 4二元复合光催化剂纳米Ag 2O 是一种理想的可见光半导体材料,在受到光辐照后,其电子发生跃迁,CB 上光生e -能够将Ag 2O 晶粒中Ag +还原成Ag 0,而VB 上h +能够使Ag 2O 的晶格氧氧化为O 2,导致其结构不稳定㊂然而,纳米Ag 2O 在有机物污染物降解方面表现出良好的稳定性[55],这是因为Ag 2O 的表面会随着光化学反应的进行被一定数量的Ag 0纳米粒子所覆盖,而Ag 0纳米粒子作为光生e -陷阱,能够降低e -在Ag 2O 表面的富集,同时,由于光生h +具有较强的氧化性能力,既能实现对有机污染物的直接氧化,又能避免其对晶格氧的氧化,从而提高了纳米Ag 2O 光催化活性和稳定性㊂Liang 等[56]在常温下采用简易化学沉淀法制备了p-n 结Ag 2O /g-C 3N 4复合光催化剂,研究发现,起分散作用的g-C 3N 4为Ag 2O 纳米颗粒的生长提供了大量成核位点并限制了Ag 2O 纳米颗粒聚集,p-n 结的形成以及在光化学反应过程中生成的Ag 纳米粒子,加速了光生载流子的分离和迁移,拓宽了光的吸收范围,在可见光和红外光照下降解RhB 溶液过程中表现出良好的催化活性,其在可见光和红外光照下反应速率分别是g-C 3N 4的26倍和343倍㊂Jiang 等[57]通过液相法制备了一系列介孔结构的g-C 3N 4/Ag 2O 光催化剂,试验结果表明,Ag 2O 的添加显著提高了g-C 3N 4/Ag 2O 光催化剂的吸光性能和比表面积,因此对光催化性能的提升有促进作用,当Ag 2O 含量为50%时,光催化分解MB 的效果最好,经120min 可见光光照后,MB 的脱除率达到90.8%,高于g-C 3N 4和Ag 2O㊂Kadi 等[58]以Pluronic 31R 1表面活性剂为软模板,以MCM-41为硬模板,合成出具有多孔结构的Ag 2O /g-C 3N 4光催化剂,TEM 结果显示,球形Ag 2O 的纳米颗粒均匀地分布于g-C 3N 4的表面,催化性能评价表明0.9%Ag 2O /g-C 3N 4复合光催化剂光催化效果最佳,60min 能完全氧化降解环丙沙星,其降解效率分别是Ag 2O 和g-C 3N 4的4倍和10倍㊂1.7㊀Ag 2MoO 4/g-C 3N 4二元复合光催化剂Ag 2MoO 4具有良好的导电性㊁抗菌性㊁环保性,以及优良的光催化活性,在荧光材料㊁导电玻璃㊁杀菌剂和催化剂等方面有着广阔的应用前景[59]㊂但Ag 2MoO 4带隙大(3.1eV),仅能对紫外波段光进行响应,限制了其对太阳光的利用㊂当Ag 2MoO 4与g-C 3N 4进行耦合时,可以将其对太阳光的吸收范围由紫外拓展到可见光区,从而提高太阳光的利用率㊂Pandiri 等[60]通过水热合成的方法,制备出β-Ag 2MoO 4/g-C 3N 4异质结光催化剂,SEM 结果显示该催化剂中β-Ag 2MoO 4纳米颗粒均匀地分布在g-C 3N 4纳米片的表面,光催化性能测试结果表明在3h 的可见光照射下,其降解能力是β-Ag 2MoO 4和g-C 3N 4机械混合物的2.6倍,主要原因在于β-Ag 2MoO 4和g-C 3N 4两者界面间形成更为紧密的异质结,使得e -/h +对被快速分离㊂Wu 等[61]采用简单的原位沉淀方法成功构建了Ag 2MoO 4/g-C 3N 4光催化剂,并将其应用于MO㊁BPA 和阿昔洛韦的降解,结果表明该催化剂显示出良好的太阳光催化活性,这主要是因为Ag 2MoO 4和g-C 3N 4界面间存在着一定的协同效应,可有效地提高对太阳光的利用率,降低载流子的复合概率㊂2㊀g-C 3N 4/Ag 基二元复合光催化剂电荷转移机理模型研究g-C 3N 4/Ag 基二元复合光催化剂在可见光的辐照下,价带电子发生跃迁,产生e -/h +对㊂e -被催化剂表面吸附的O 2捕获产生㊃O -2,并进一步与水反应生成㊃OH,形成的三种活性自由基(h +㊁㊃O -2和㊃OH),实现水中有机污染物的高效降解(见图1)㊂而光催化反应机理与载流子的迁移机制密切相关㊂目前,g-C 3N 4/Ag 基二元复合光催化剂体系中主要存在三种不同的光生载流子的转移机制,分别为I 型㊁II 型和Z 型㊂图1㊀g-C 3N 4/Ag 基二元复合光催化剂降解有机污染物的光催化反应机理Fig.1㊀Photocatalytic reaction mechanism of g-C 3N 4/Ag-based binary composite photocatalyst for degradation of organic pollutants3760㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷2.1㊀I 型异质结载流子转移机理模型图2(a)为I 型异质结构中的光生e -/h +对转移示意图㊂半导体A 和半导体B 均对可见光有响应,其中,半导体A 的带隙较宽,半导体B 的带隙较窄,并且半导体B 的VB 和CB 均位于半导体A 之间,在可见光的照射下,e -发生跃迁,从CB 到VB,半导体A 的CB 上的e -和VB 上的h +分别向半导体B 的CB 和VB 转移,从而实现了e -/h +对的分离㊂以Ag 2O /g-C 3N 4复合催化剂为例[58],当Ag 2O 和g-C 3N 4相耦合时,因为g-C 3N 4的VB 具有更正的电势,h +被转移到Ag 2O 的VB 上,同时,光激发e -在g-C 3N 4的CB 上,其电势较负,e -便传输到Ag 2O 的CB 上,CB 上e -与O 2结合形成㊃O -2,并进一步与H +结合生成了㊃OH,而有机物污染物被Ag 2O 的价带上h +氧化分解生成CO 2和H 2O㊂2.2㊀II 型异质结载流子转移机理模型II 型异质结是一种能级交错带隙型结构,如图2(b)所示,其中半导体A 的CB 电位较负,在可见光照射下,e -从CB 上转移到半导体B 的CB 上,h +从半导体B 的VB 转移到半导体A 的VB 上,从而使e -/h +对得以分离㊂以Ag 3PO 4@g-C 3N 4为例[62],由于g-C 3N 4的CB 的电势较Ag 3PO 4低,光生e -从g-C 3N 4迁移到Ag 3PO 4的CB 上,而Ag 3PO 4的CB 电势较g-C 3N 4高,h +从Ag 3PO 4的VB 迁移到g-C 3N 4的VB 上,从而实现e -/h +对的分离,g-C 3N 4表面的h +可直接氧化降解MB,而Ag 3PO 4表面积聚的电子又会被氧捕获,产生H 2O 2,并进一步分解成㊃OH,从而加快MB 的降解㊂上述I 型和II 型结构CB 的氧化能力和VB 还原能力低于单一组分,造成复合半导体的氧化还原能力降低[63]㊂2.3㊀Z 型异质结载流子转移机理模型构建Z 型异质结光光催化剂使得e -和h +沿着特有的方向迁移,有效解决复合催化剂氧化还原能力降低问题[64]㊂Z 型异质结催化剂e -/h +对的迁移方向如图2(c)所示,e -从半导体B 的电势较高的CB 转移到半导体A 的电势较低的VB 进行复合,从而实现半导体A 的e -和半导体B 的h +发生分离㊂h +在半导体B 表面氧化性能更强,在半导体A 上e -具有较高还原特性,两者共同作用使环境污染物得以顺利降解㊂为了更好地解释Z 型异质结h +和e -迁移机理,以Ag 3VO 4/g-C 3N 4复合光催化剂为例[48],复合光催化剂经可见光激发后,Ag 3VO 4和g-C 3N 4都发生了e -跃迁,在Ag 3VO 4的CB 上e -与g-C 3N 4的VB 上h +进行复合时,e -对Ag 3VO 4的腐蚀作用被削弱,同时,也实现了g-C 3N 4的CB 上e -和Ag 3PO 4的价带上h +发生分离,g-C 3N 4的CB 上e -具有较强的还原性,将Hg 2+还原成Hg 0,而Ag 3PO 4的VB 上h +具有较强的氧化性,可将HOOH氧化生成CO 2和H 2O㊂图2㊀电子-空穴对转移机理示意图Fig.2㊀Schematic diagrams of electron-hole pairs transfer mechanism 3㊀结语和展望g-C 3N 4/Ag 基二元复合光催化剂因其较强的可见光响应和优异的光催化性能,在环境污染物的降解方面具有广阔的发展空间㊂近年来,国内外研究人员在理论研究㊁制备方法和光催化性能等多个领域取得了重要进展,为光催化理论的发展奠定了坚实的基础㊂然而,g-C 3N 4/Ag 基二元复合光催化剂在实际应用中还面临诸多问题,如制备工艺复杂㊁光腐蚀㊁光催化剂回收利用困难㊁光催化降解污染物的反应机理尚不明确等,第10期柏林洋等:g-C3N4/Ag基二元复合光催化剂降解环境污染物的研究进展3761㊀现有的光催化降解模型仍有较大的分歧,亟待深入研究㊂为了获得性能优良的g-C3N4/Ag基复合光催化剂,实现产业化应用,应进行以下几方面的研究:1)在g-C3N4/Ag基二元光催化剂的基础上,构建多元复合光催化剂,是进一步提升光生载流子分离效率的有效㊁可靠手段,也是当今和今后光催化剂的研究重点㊂2)对g-C3N4/Ag基二元光催化剂体系中e-/h+对的转移㊁分离和复合等过程进行系统研究,并阐明其光催化反应机制㊂3)针对当前合成的g-C3N4材料多为体相,存在着颗粒大㊁比表面积小㊁活性位少等缺陷,应通过对g-C3N4材料的形状㊁形貌及尺寸的调控,来实现Ag 基材料在g-C3N4材料表面的均匀分布,降低e-/h+对的重组概率,从而大幅度提高复合光催化剂的性能㊂4)Ag基材料的光腐蚀是导致光催化活性和稳定性下降的重要因素,探索一种更为有效的光腐蚀抑制机制,是将其推广应用的关键㊂5)当前合成的g-C3N4/Ag基二元复合光催化剂多为粉末状,存在着易团聚㊁难回收等问题,从而限制了其循环利用㊂因此,需要开展g-C3N4/Ag基二元复合光催化剂回收和再利用的研究,这将有利于社会效益和经济效益的提高㊂参考文献[1]㊀LIN Z S,DONG C C,MU W,et al.Degradation of Rhodamine B in the photocatalytic reactor containing TiO2nanotube arrays coupled withnanobubbles[J].Advanced Sensor and Energy Materials,2023,2(2):100054.[2]㊀DIAO Z H,JIN J C,ZOU M Y,et al.Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling withpersulfate:synergistic effect,products and mechanism[J].Separation and Purification Technology,2021,278:119620.[3]㊀ZHAO S Y,CHEN C X,DING J,et al.One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solarlight-driven degradation of Rhodamine B[J].Frontiers of Environmental Science&Engineering,2021,16(3):1-16.[4]㊀JUABRUM S,CHANKHANITTHA T,NANAN S.Hydrothermally grown SDS-capped ZnO photocatalyst for degradation of RR141azo dye[J].Materials Letters,2019,245:1-5.[5]㊀SUN Z X,WANG H Q,WU Z B,et al.g-C3N4based composite photocatalysts for photocatalytic CO2reduction[J].Catalysis Today,2018,300:160-172.[6]㊀LIN L,SU Z Y,LI Y,et parative performance and mechanism of bacterial inactivation induced by metal-free modified g-C3N4undervisible light:Escherichia coli versus Staphylococcus aureus[J].Chemosphere,2021,265:129060.[7]㊀DANG X M,WU S,ZHANG H G,et al.Simultaneous heteroatom doping and microstructure construction by solid thermal melting method forenhancing photoelectrochemical property of g-C3N4electrodes[J].Separation and Purification Technology,2022,282:120005. [8]㊀VAN KHIEN N,HUU H T,THI V N N,et al.Facile construction of S-scheme SnO2/g-C3N4photocatalyst for improved photoactivity[J].Chemosphere,2022,289:133120.[9]㊀LINH P H,DO CHUNG P,VAN KHIEN N,et al.A simple approach for controlling the morphology of g-C3N4nanosheets with enhancedphotocatalytic properties[J].Diamond and Related Materials,2021,111:108214.[10]㊀XIE M,TANG J C,KONG L S,et al.Cobalt doped g-C3N4activation of peroxymonosulfate for monochlorophenols degradation[J].ChemicalEngineering Journal,2019,360:1213-1222.[11]㊀ZHEN X L,FAN C Z,TANG L,et al.Advancing charge carriers separation and transformation by nitrogen self-doped hollow nanotubes g-C3N4for enhancing photocatalytic degradation of organic pollutants[J].Chemosphere,2023,312:137145.[12]㊀AL-HAJJI L A,ISMAIL A A,FAYCAL A M,et al.Construction of mesoporous g-C3N4/TiO2nanocrystals with enhanced photonic efficiency[J].Ceramics International,2019,45(1):1265-1272.[13]㊀CUI P P,HU Y,ZHENG M M,et al.Enhancement of visible-light photocatalytic activities of BiVO4coupled with g-C3N4prepared usingdifferent precursors[J].Environmental Science and Pollution Research,2018,25(32):32466-32477.[14]㊀LI X W,CHEN D Y,LI N J,et al.AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for waterremediation[J].Applied Catalysis B:Environmental,2018,229:155-162.[15]㊀SHI H L,HE R,SUN L,et al.Band gap tuning of g-C3N4via decoration with AgCl to expedite the photocatalytic degradation and mineralizationof oxalic acid[J].Journal of Environmental Sciences,2019,84:1-12.[16]㊀彭㊀慧,刘成琪,汪楚乔,等.AgI/g-C3N4复合材料制备及其降解孔雀石绿染料性能[J].环境工程,2019,37(4):93-97.PENG H,LIU C Q,WANG C Q,et al.Preparation of AgI/g-C3N4composites and their degradation performance of malachite green dyes[J].Environmental Engineering,2019,37(4):93-97(in Chinese).[17]㊀LIANG W,TANG G,ZHANG H,et al.Core-shell structured AgBr incorporated g-C3N4nanocomposites with enhanced photocatalytic activityand stability[J].Materials Technology,2017,32(11):675-685.[18]㊀LI Y B,HU Y R,LIU Z,et al.Construction of self-activating Z-scheme g-C3N4/AgCl heterojunctions for enhanced photocatalytic property[J].Journal of Physics and Chemistry of Solids,2023,172:111055.3762㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷[19]㊀XIE J S,WU C Y,XU Z Z,et al.Novel AgCl/g-C3N4heterostructure nanotube:ultrasonic synthesis,characterization,and photocatalyticactivity[J].Materials Letters,2019,234:179-182.[20]㊀YANG J,ZHANG X,LONG J,et al.Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4composite[J].Journal ofMaterials Science:Materials in Electronics,2021,32:6158-6167.[21]㊀HUANG H,LI Y X,WANG H L,et al.In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance forphotodegrading rhodamine B solution[J].Applied Surface Science,2021,538:148132.[22]㊀GUO C S,CHEN M,WU L L,et al.Nanocomposites of Ag3PO4and phosphorus-doped graphitic carbon nitride for ketamine removal[J].ACSApplied Nano Materials,2019,2(5):2817-2829.[23]㊀WANG H R,LEI Z,LI L,et al.Holey g-C3N4nanosheet wrapped Ag3PO4photocatalyst and its visible-light photocatalytic performance[J].Solar Energy,2019,191:70-77.[24]㊀胡俊俊,丁同悦,陈奕桦,等.Ag3PO4/g-C3N4复合材料的制备及其光催化性能[J].精细化工,2021,38(3):483-488.HU J J,DING T Y,CHEN Y H,et al.Preparation and photocatalytic application of Ag3PO4/g-C3N4composites[J].Fine Chemicals,2021,38(3):483-488(in Chinese).[25]㊀MEI J,ZHANG D P,LI N,et al.The synthesis of Ag3PO4/g-C3N4nanocomposites and the application in the photocatalytic degradation ofbisphenol A under visible light irradiation[J].Journal of Alloys and Compounds,2018,749:715-723.[26]㊀潘良峰,阎㊀鑫,王超莉,等.中空管状g-C3N4/Ag3PO4复合催化剂的制备及其可见光催化性能[J].无机化学学报,2022,38(4):695-704.PAN L F,YAN X,WANG C L,et al.Preparation and visible light photocatalytic activity of hollow tubular g-C3N4/Ag3PO4composite catalyst[J].Chinese Journal of Inorganic Chemistry,2022,38(4):695-704(in Chinese).[27]㊀DEONIKAR V G,KOTESHWARA R K,CHUNG W J,et al.Facile synthesis of Ag3PO4/g-C3N4composites in various solvent systems withtuned morphologies and their efficient photocatalytic activity for multi-dye degradation[J].Journal of Photochemistry and Photobiology A: Chemistry,2019,368:168-181.[28]㊀DU J G,XU Z,LI H,et al.Ag3PO4/g-C3N4Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutantsdegradation:uncovering the mechanism[J].Applied Surface Science,2021,541:148487.[29]㊀NAGAJYOTHI P C,SREEKANTH T V M,RAMARAGHAVULU R,et al.Photocatalytic dye degradation and hydrogen production activity ofAg3PO4/g-C3N4nanocatalyst[J].Journal of Materials Science:Materials in Electronics,2019,30(16):14890-14901.[30]㊀AN D S,ZENG H Y,XIAO G F,et al.Cr(VI)reduction over Ag3PO4/g-C3N4composite with p-n heterostructure under visible-light irradiation[J].Journal of the Taiwan Institute of Chemical Engineers,2020,117:133-143.[31]㊀YAN X,WANG Y Y,KANG B B,et al.Preparation and characterization of tubelike g-C3N4/Ag3PO4heterojunction with enhanced visible-lightphotocatalytic activity[J].Crystals,2021,11(11):1373.[32]㊀高闯闯,刘海成,孟无霜,等.Ag3PO4/g-C3N4复合光催化剂的制备及其可见光催化性能[J].环境科学,2021,42(5):2343-2352.GAO C C,LIU H C,MENG W S,et al.Preparation of Ag3PO4/g-C3N4composite photocatalysts and their visible light photocatalytic performance[J].Environmental Science,2021,42(5):2343-2352(in Chinese).[33]㊀CHENG R,WEN J Y,XIA J C,et al.Photo-catalytic oxidation of gaseous toluene by Z-scheme Ag3PO4-g-C3N4composites under visible light:removal performance and mechanisms[J].Catalysis Today,2022,388/389:26-35.[34]㊀ZHANG W,ZHOU L,SHI J,et al.Synthesis of Ag3PO4/g-C3N4composite with enhanced photocatalytic performance for the photodegradation ofdiclofenac under visible light irradiation[J].Catalysts,2018,8(2):45.[35]㊀ZHANG M X,DU H X,JI J,et al.Highly efficient Ag3PO4/g-C3N4Z-scheme photocatalyst for its enhanced photocatalytic performance indegradation of rhodamine B and phenol[J].Molecules,2021,26(7):2062.[36]㊀LI K,CHEN M M,CHEN L,et al.In-situ hydrothermal synthesis of Ag3PO4/g-C3N4nanocomposites and their photocatalytic decomposition ofsulfapyridine under visible light[J].Processes,2023,11(2):375.[37]㊀汲㊀畅,王国胜.Ag3PO4/g-C3N4异质结催化剂可见光降解黄连素[J].无机盐工业,2022,54(4):175-180.JI C,WANG G S.Degradation of berberine by visible light over Ag3PO4/g-C3N4heterojunction catalyst[J].Inorganic Chemicals Industry, 2022,54(4):175-180(in Chinese).[38]㊀CHEN R H,DING S Y,FU N,et al.Preparation of a g-C3N4/Ag3PO4composite Z-type photocatalyst and photocatalytic degradation ofOfloxacin:degradation performance,reaction mechanism,degradation pathway and toxicity evaluation[J].Journal of Environmental Chemical Engineering,2023,11(2):109440.[39]㊀HAYATI M,ABDUL H A,ZUL A M H,et al.In-depth investigation on the photostability and charge separation mechanism of Ag3PO4/g-C3N4photocatalyst towards very low visible light intensity[J].Journal of Molecular Liquids,2023,376:121494.[40]㊀DING M,ZHOU J J,YANG H C,et al.Synthesis of Z-scheme g-C3N4nanosheets/Ag3PO4photocatalysts with enhanced visible-lightphotocatalytic performance for the degradation of tetracycline and dye[J].Chinese Chemical Letters,2020,31(1):71-76.[41]㊀PAN S G,JIA B Q,FU Y S.Ag2CO3nanoparticles decorated g-C3N4as a high-efficiency catalyst for photocatalytic degradation of organiccontaminants[J].Journal of Materials Science:Materials in Electronics,2021,32(11):14464-14476.。
Applied Surface Science 283 (2013) 25–32Contents lists available at SciVerse ScienceDirectApplied SurfaceSciencej o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p s u scSynthesis and characterization of g-C 3N 4/MoO 3photocatalyst with improved visible-light photoactivityLiying Huang a ,b ,Hui Xu a ,Rongxian Zhang a ,Xiaonong Cheng b ,Jiexiang Xia a ,Yuanguo Xu a ,Huaming Li a ,∗a School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang 212013,PR China bSchool of Material Science and Engineering,Jiangsu University,Zhenjiang 212013,PR Chinaa r t i c l ei n f oArticle history:Received 20March 2013Received in revised form 10May 2013Accepted 22May 2013Available online 30 May 2013Keywords:g-C 3N 4/MoO 3Composite Photocatalysta b s t r a c tA novel composite photocatalyst g-C 3N 4/MoO 3was prepared with a simple mixing-calcination method by tuning the amount of g-C 3N 4in the dispersion.The photocatalysts were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HRTEM),X-ray photoelectron spectroscopy (XPS),Fourier transform infrared spectroscopy (FT-IR),and diffuse reflection spectroscopy (DRS).The g-C 3N 4/MoO 3composites showed high efficiency for the degradation of methylene blue (MB)dye under visible light.The optimum photocatalytic activity of g-C 3N 4/MoO 3at a g-C 3N 4weight content of 7%under visible light irradiation was almost 4.2and 1.9times as high as that of the pure MoO 3and g-C 3N 4,respectively.The enhancement of visible light photocatalytic activity in g-C 3N 4/MoO 3should be assigned to the effective separation and transfer of photogenerated charges originating from the well-matched overlapping band-structures.The photocatalytic degradation of MB over g-C 3N 4/MoO 3composites followed the pseudo-first-order reaction model.© 2013 Elsevier B.V. All rights reserved.1.IntroductionIn recent years,semiconductor photocatalysts have attracted widespread interest as promising materials for they can remove environmental organic contaminants [1–3].Molybdenum trioxide (MoO 3),as a wide band gap n-type semiconductor,is an important electrochromic and photochromic sensitive material for optical devices and gas sensors [4–6].Recently,MoO 3photocatalyst has been reported [7–10].However,the high recombination rate of photogenerated electron–hole pairs has hampered the practical application of MoO 3.In order to enhance the photoactivity of the pure MoO 3,some efforts have been devoted to inhibiting the recombination of photogenerated electron–hole pairs,such as mor-phology control [7],deposition of Ag [8],and combination with TiO 2[9,10].Among them,MoO 3showed enhanced photocalytic perfor-mance after being combined with TiO 2.Therefore combining MoO 3with an appropriate semiconductor to form composite photocata-lysts may help increase the photocatalytic activity of MoO 3.To take better advantage of MoO 3,there is a need to develop novel materials for modifying MoO 3to further increase the photoactiv-ity.Usually,a feasible route to improve the quantum efficiency is to promote the separation efficiency of photogenerated electron–hole∗Corresponding author.Tel.:+8651188791800;fax:+8651188791708.E-mail address:lihm@ (H.Li).pairs by coupling the based-semiconductor photocatalysts with other semiconductors [11,12].Recently,a novel medium-bandgap semiconductor graphite-like carbon nitride (g-C 3N 4)has been reported,which is a layered material similar to the graphite and possesses a high thermal and chemical stability due to the strong covalent bonds between carbon and nitride atoms [13].In addition,it exhibits photocatalytic performance on hydrogen generation from water splitting and degradation of organic dyes under visible light irradiation [14,15].Different from the inorganic -conjugated materials (e.g.,graphite and C 60),g-C 3N 4is a soft polymer eas-ily coating on other compounds’surface,which facilitates for the transport of the photogenerated carriers.A series of compos-ite photocatalysts,such as g-C 3N 4/TaON [16],g-C 3N 4/ZnO [17]and g-C 3N 4/Bi 2WO 6[18]presented higher photocatalytic activ-ity than the pristine ones.Therefore,g-C 3N 4could be used as an efficient co-catalyst to enhance the photocatalytic activity of the semiconductor-based photocatalysts.To the best of our knowledge,there are no reports on the modifi-cation of MoO 3with the g-C 3N 4material.It is expected that coating the surface of MoO 3with a preferred g-C 3N 4material will help decrease the electron–hole recombination of MoO 3and enable us to obtain higher efficiency photocatalysts.Herein,a facile route to synthesize the visible-light-responsive g-C 3N 4hybridized MoO 3was developed.The visible light photoac-tivity was enhanced after MoO 3was hybridized by g-C 3N 4.The hybrid effect between MoO 3and g-C 3N 4and the possible mech-anisms of photocatalytic activity enhancement were put forward.0169-4332/$–see front matter © 2013 Elsevier B.V. All rights reserved./10.1016/j.apsusc.2013.05.10626L.Huang et al./Applied Surface Science283 (2013) 25–32 2.Experimental2.1.Preparation of photocatalystsAll starting regents(analytical grade purity)were purchasedfrom sinopharm company sources and used without further purifi-cation.Distilled water was used throughout.MoO3powder was synthesized by a solid-state decompositionreaction of(NH4)6Mo7O24·4H2O at500◦C for4h under air condi-tion.The product was washed with distilled water three times anddried at60◦C for6h.g-C3N4powder was prepared by directly heating dicyandiamideat520◦C in a muffle furnace for4h in a semiclosed system to pre-vent sublimation of dicyandiamide at a heating rate of20◦C min−1under air condition.The product was washed with distilled waterthree times and dried at60◦C for6h.Typical preparation of g-C3N4/MoO3(1%)composite was as fol-lows:0.01g g-C3N4and0.99g MoO3were added into50ml ethanolin a beaker,and then the mixture was placed in an ultrasonic bathfor2h to completely disperse the powder.After volatilization ofethanol and subsequent drying at100◦C a gray-green powder wasobtained.The mixed powder was grounded for30min using a mor-tar with a pestle and subsequent calcination at300◦C for12h in amuffle furnace under air condition.After being cooled,the prod-uct was obtained.According to this synthesis route,g-C3N4/MoO3composites with different g-C3N4weight percents3wt%,5wt%,7wt%,and10wt%were synthesized respectively through changingthe amount of g-C3N4and MoO3.All the g-C3N4/MoO3com-posites were denoted as g-C3N4/MoO3(1%),g-C3N4/MoO3(3%),g-C3N4/MoO3(5%),g-C3N4/MoO3(7%)and g-C3N4/MoO3(10%).2.2.Characterization of photocatalystsThe crystalline phases of g-C3N4/MoO3composites were ana-lyzed by X-ray diffraction(XRD)using Bruker D8diffractometer with Cu K␣radiation( =1.5418˚A)within the range of2Â=10–80◦. The morphologies and structure of the as-prepared samples were examined by scanning electron microscopy(SEM)with JEOL JSM-7001Ffield-emission microscope and a transmission electron microscope(TEM,JEOL-JEM-2010).Fourier transform infrared(FT-IR)spectra of samples were recorded on a Nicolet Avatar-370 spectrometer at room temperature.Ultraviolet visible(UV–vis) diffuse reflection spectra were measured using a UV–vis spec-trophotometer(Shimadzu UV-2450,Japan)within the range of 200–800nm.BaSO4was used as a reflectance standard material.X-ray photoemission spectroscopy(XPS)was measured in a PHI5300 ESCA system.2.3.Photocatalytic activityThe photocatalytic activity of the g-C3N4/MoO3composites was evaluated by the degradation of MB dye under visible light irra-diation.An aqueous solution of methylene blue(100mL,10mg/L) was placed into a glass,and then100mg photocatalyst was added. Photocatalytic activity of the sample was evaluated under a300W Xe lamp with a400nm cutofffilter.Prior to irradiation,the sus-pensions were magnetically stirred in the dark for about30min to ensure the establishment of an adsorption-desorption equilibrium between the photocatalysts and MB dye.At certain time intervals, 3ml liquids were sampled and centrifuged to remove the photo-catalyst particles.Then thefiltrates were analyzed by recording variations of the absorption band maximum(663nm)in the UV–vis spectra of MB by using a spectrophotometer(Shimadzu UV-2450).29.028.528.027.527.026.526.0Intensity(a.u)2θ(degree)g-C3N4/MoO3(1%)g-C3N4/MoO3(3%)g-C3N4/MoO3(5%)g-C3N4/MoO3(7%)g-C3N4/MoO3(10%)pure g-C3N4(2)(21)(B)MoO3Intensity(a.u)2θ(degree)Fig.1.(A)XRD pattern of MoO3,g-C3N4and g-C3N4/MoO3composites.(B)Enlarged XRD pattern of MoO3,g-C3N4and g-C3N4/MoO3composites from26◦to29◦.The photocatalytic degradation efficiency(E)of MB was obtained by the following formula:E=1−CC0×100%=1−AA0×100%(1) where C is the concentration of the MB solution at the reaction time,C0is the adsorption/desorption equilibrium concentration of MB(at reaction time0).A and A0are the corresponding absorbance values.3.Results and discussion3.1.XRD analysisFig.1shows the XRD patterns of MoO3,g-C3N4and g-C3N4/MoO3composites.As can be seen from Fig.1A,all the diffraction peaks of MoO3can be exactly indexed as the ortho-rhombic structure(JCPDF35-0609)[7].The main peaks at12.78◦, 23.33◦,25.70◦,25.88◦,27.34◦and38.97◦correspond to the(020), (110),(040),(120),(021)and(060)planes.The diffraction peaks of pure g-C3N4appearing at27.5◦and13.1◦correspond to the (002)and(100)planes,which is in accordance with the char-acteristic interplanar staking peaks of aromatic systems and the inter-layer structural packing,respectively[19].However,in the case of g-C3N4/MoO3composites,the diffraction peaks of g-C3N4 cannot be obviously observed.To better investigate the diffractionL.Huang et al./Applied Surface Science283 (2013) 25–3227Fig.2.SEM images of(A)g-C3N4,(B)MoO3,(C)g-C3N4/MoO3(7%)and(D)HRTEM image of g-C3N4/MoO3(7%)composite.peaks,the enlarged XRD pattern from26◦to29◦is shown in Fig.1B.All the diffraction peaks of g-C3N4/MoO3composites at (021)planes(27.33◦)can be observed gradually moving from 27.33◦to27.45◦with g-C3N4loading from1%to10%,which is attributed to the two lines overlapping with each other.Therefore, the presence of g-C3N4can be observed in the enlarged XRD pat-tern(Fig.1B),confirming the coexistence of g-C3N4and MoO3in the g-C3N4/MoO3composites.3.2.SEM and HRTEM analysisFig.2shows the morphology and structure of MoO3crystalline, pure g-C3N4and g-C3N4/MoO3(7%)composite.As shown in Fig.2A and B,it can be seen that pure g-C3N4samples are irregular parti-cles consisting of lamellar structures,while MoO3crystallines have obvious edges and seem to have a broader particle size distribution (from a few hundred nanometers to several micrometers).In the case of the g-C3N4/MoO3(7%)composite,it can be clearly observed that crystalline MoO3particles have been wrapped by thin amor-phous layers(Fig.2C).The amorphous layers are attributed to the carbon nitride polymers as supported by the XRD patterns (Fig.1).The HRTEM in Fig.2D shows the outer boundary of the MoO3crystallines is the g-C3N4layer,which forms a kind of het-erojunction structure.This structure improved the separation of photogenerated electron–hole pairs and reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction.This kind of heterojunction structure has been confirmed by some recent reports,such as g-C3N4/ZnO[17],g-C3N4/Bi2WO6 [18].The lattice fringes have a spacing of0.196nm and0.299nm corresponding to interplanar spacing of(061)and(130)plane of orthorhombic MoO3respectively,which is consistent with the XRD result.From the XRD(Fig.1),SEM and HRTEM analysis(Fig.2),the results indicated that the heterojunction interface could be formed in the composite between MoO3and g-C3N4.3.3.XPS analysisXPS measurements were performed to determine the valence states of various species.Fig.3shows the survey scan XPS spec-trum of MoO3,g-C3N4and g-C3N4/MoO3(7%)composite.The result indicates the presence of O,Mo,C and N in the composite.High res-olution spectra of O1s,Mo3d,C1s and N1s are shown in Fig.4A–D.1000800600400200Intensity(a.u)Binding Energy (eV)C1sN1sO1sMo3dg-C3N4MoO3g-C3N4/MoO3(7%)Fig.3.XPS survey spectrum of MoO3,g-C3N4and g-C3N4/MoO3(7%)composite.28L.Huang et al./Applied Surface Science 283 (2013) 25–32300295290285280I n t e n s i t y (a .u )Binding Energy (eV)g-C 3N 4g-C 3N 4/MoO 3 (7%)288.2 eV284.8eVC1s(C)I n t e n s i t y (a .u )Binding Energy (eV)I n t e n s i t y (a .u )Binding Energy (eV)I n t e n s i t y (a .u )Binding Energy (eV)Fig.4.XPS spectra of MoO 3and g-C 3N 4/MoO 3(7%)composite:(A)O 1s,(B)Mo 3d;high resolution XPS spectra of g-C 3N 4and g-C 3N 4/MoO 3(7%)composite:(C)C 1s and (D)N 1s.The O 1s peak(Fig.4A)of MoO 3centered at 530.8eV is associated with the O 2−in the orthorhombic MoO 3[7,20].The O 1s peak of g-C 3N 4/MoO 3(7%)composite at 531.1eV is associated with the adsorbed oxygen on the surface of g-C 3N 4/MoO 3(7%)compositeT %Wavelnumber( cm -1)Fig.5.FT-IR spectra of g-C 3N 4,MoO 3and g-C 3N 4/MoO 3composite.[21,22].As can be seen from Fig.4B,the Mo 3d 5/2(233.0eV)andthe Mo 3d 3/2(236.1eV)are detectable in MoO 3sample,which shows the typical binding energies of Mo 6+and no apparent peak of Mo 5+and Mo 4+[20,21].However,the binding energies of the Mo 3d 5/2and the Mo 3d 3/2in the g-C 3N 4/MoO 3(7%)composite are observed at 232.8eV and 235.9eV,which are slightly lower than those for pure MoO 3.Such a negative shift may be attributed to the interaction between MoO 3and g-C 3N 4.The C 1s peaks of g-C 3N 4and g-C 3N 4/MoO 3(7%)composite remain unchanged and are both observed at 284.8eV and 288.2eV (Fig.4C).The C 1s peak at 284.8eV is attributed to the adventitious carbon on the surface of g-C 3N 4/MoO 3composite photocatalyst [23].The other C 1s peak at 288.2eV (Fig.6C)is assigned to a C N C coordination [24].The N 1s peak of g-C 3N 4at 398.7eV (Fig.4D)is typically attributed to N atoms sp 2-bonded to two carbon atoms (C N C)[24,25],sug-gesting the presence of sp 2-bonded graphitic carbon nitride.In the case of the g-C 3N 4/MoO 3(7%)composite,the binding energy of N 1s (399.0eV)shows a positive shift.The results suggest that the interaction between Mo and N atoms results from the coating of the g-C 3N 4,not the simple physical adsorption.Similar result has been found that the N 1s peak showed a shift resulting from the interaction between Bi and N atoms in C 3N 4/BiPO 4photocatalyst [26].Therefore,with the combination of the XRD,SEM,HRTEM and XPS investigation,the results have confirmed that there are both MoO 3and g-C 3N 4species in the heterojunction structure.L.Huang et al./Applied Surface Science 283 (2013) 25–3229A b s o r b a n c e(h )2h (eV)(h )1/2Fig.6.(A)UV–vis spectra of g-C 3N 4,MoO 3and g-C 3N 4/MoO 3composites.(B)The plot of (ah )2versus energy (h )for the band gap energy of MoO 3and the plot of (ah )1/2versus energy (h )for the band gap energy of g-C 3N 4.3.4.FT-IR analysisFig.5shows the FT-IR spectra of MoO 3,g-C 3N 4and various g-C 3N 4/MoO 3composites.As can be seen in Fig.5,for the pure g-C 3N 4,the peak at 1643cm −1is attributed to C N stretching vibration modes,while the 1242,1322,1405cm −1and 1563cm −1are asso-ciated with aromatic C N stretching [27].The band near 808cm −1is attributed to out-of plane bending modes C N heterocycles [25].For the pure MoO 3,three vibrations are detected at about 562,867and 993cm −1,which are due to the stretching mode of oxygen linked with three metal atoms,the stretching mode of oxygen in the Mo O Mo units and the Mo O stretching mode (the specification of a layered orthorhombic ␣-MoO 3phase)[28,29],respectively.In the case of the g-C 3N 4/MoO 3composites,the characteristic vibra-tions for g-C 3N 4and MoO 3still remain and the typical g-C 3N 4absorption peaks in g-C 3N 4/MoO 3composites increase obviously with the increasing of g-C 3N 4content.3.5.DRS analysisFig.6shows the UV–vis DRS spectra of MoO 3,g-C 3N 4and g-C 3N 4/MoO 3composites.As can be seen in Fig.6A,MoO 3has an absorption edge at about 425nm,which corresponds to band gap energy of 2.92eV.The absorption edge of the g-C 3N 4/MoO 3com-posites shows a shift toward the visible region upon loading of g-C 3N 4.In addition,g-C 3N 4/MoO 3(7%)composite displays clearC /C 0Irra diation time (h)Fig.7.Photocatalytic degradation efficiency of MB by MoO 3,g-C 3N 4and g-C 3N 4/MoO 3composites.optical response in the visible region with an absorption edge ofapproximate 450nm.The red shift of the absorption wavelength is favorable for the g-C 3N 4/MoO 3composites to generate more electron–hole pairs under visible-light irradiation,which can result in higher photocatalytic performance.The band gap energy of a semiconductor can be calculated by the following formula:ah =A (h −E g )n/2(2)where ˛,h , ,E g and A are absorption coefficient,Planck con-stant,light frequency,band gap energy and a constant,respectively.In addition,n is determined by the type of optical transition of a semiconductor (n =1for direct transition and n =4for indirect transition).For MoO 3and g-C 3N 4,the values of n are 1and 4,respec-tively [30,31].Therefore,as can be seen in Fig.6B,E g of MoO 3is estimated to be 2.92eV according to a plot of (˛h )2versus energy (h ).Accordingly,E g of g-C 3N 4is determined from a plot of (˛h )1/2versus energy (h )and is found to be 2.70eV.The obtained E g val-ues of MoO 3and g-C 3N 4is in accordance with what the literature reported [16,32].3.6.Photocatalytic activityThe photocatalytic activity of g-C 3N 4/MoO 3composites was evaluated by decomposing MB under visible-light irradiation ( >400nm).Fig.7shows the photocatalytic activity of the g-C 3N 4/MoO 3composites with different g-C 3N 4concentrations.As can be seen in Fig.7,without a catalyst the absorbency of MB solution displays little difference,indicating that the photolysis is negligible.The photocatalytic activity of g-C 3N 4is higher than that of MoO 3under visible-light irradiation.The photocatalytic activity of g-C 3N 4/MoO 3composites is greatly influenced by the g-C 3N 4content.With the increase of g-C 3N 4from 1%to 5%the photo-catalytic activity of g-C 3N 4/MoO 3composites increased,showing higher activity than that of MoO 3and lower than that of g-C 3N 4.Further increasing the g-C 3N 4concentration to 7%and 10%,the photocatalytic activity of g-C 3N 4/MoO 3composites were higher than that of both MoO 3and g-C 3N 4.The results showed the intro-duction of g-C 3N 4was beneficial to the photoactivity enhancement of MoO 3under visible light and there existed interaction between g-C 3N 4and MoO 3.From Fig.7,it can be observed that the g-C 3N 4/MoO 3(7%)composite has the optimal photocatalytic activity and the photocatalytic degradation efficiency of MB is 93%under visible light irradiation for 3h.It was known that g-C 3N 4coatings were beneficial to charge transfer at heterojunction interfaces30L.Huang et al./Applied Surface Science 283 (2013) 25–32-l n (C /C 0)Irradiation time (h)Fig.8.Kinetic fit for the degradation of MB with MoO 3,g-C 3N 4and g-C 3N 4/MoO 3composites.[17,18].In view of the demands of both the charge transfer and light harvesting,photocatalytic activity of photocatalysts first increases and then decreases with the increasing thickness of g-C 3N 4,such as g-C 3N 4/ZnWO 4[33]and C 3N 4/BiPO 4[26].Similarly,suitable con-tent of g-C 3N 4was needed in the g-C 3N 4/MoO 3system to obtain the best photocatalytic activity performance.3.7.KineticsTo investigate the reaction kinetics of the MB degradation,the experimental data were fitted by a first-order model as expressed by the following formula:−lnC C 0=kt(3)where C 0and C are the dye concentration in solution at time 0and t ,respectively,and k is the apparent first-order rate constant.As shown in Fig.8,the plot of the irradiation time (t )against −ln (C /C 0)is nearly a straight line.From the slope in Fig.8,the degradation rate constant (k )of the products were obtained.The rate constant (k )of MoO 3and g-C 3N 4is 0.2109h −1and 0.4917h −1,respectively.In the case of g-C 3N 4/MoO 3composites with g-C 3N 4contents of 1%,3%,5%,7%,and 10%,the corresponding rate constants (k )is estimated to be 0.2559h −1,0.4178h −1,0.4569h −1,0.8837h −1and 0.7318h −1,respectively.The rate constant (k )of the g-C 3N 4/MoO 3(7%)com-posite is up to 4.2and 1.9times as high as that of the pure MoO 3and g-C 3N 4.As a result,the g-C 3N 4/MoO 3(7%)composite was selected for the recycling experiment.The rate constants (k )and relative coefficients were summarized in Table 1.Table 1Degradation rate constant (k )for MB photocatalytic degradation under different photocatalysts.SeriesPhotocatalystsThe first order kinetic equationk (h−1)R21MoO 3−ln(C /C 0)=0.2109t 0.21090.99682g-C 3N 4−ln (C /C 0)=0.4917t 0.49170.99793g-C 3N 4/MoO 3(1%)−ln (C /C 0)=0.2559t 0.25590.99734g-C 3N 4/MoO 3(3%)−ln (C /C 0)=0.4178t 0.41780.99885g-C 3N 4/MoO 3(5%)−ln (C /C 0)=0.4569t 0.45690.99796g-C 3N 4/MoO 3(7%)−ln (C /C 0)=0.8837t 0.88370.99867g-C 3N 4/MoO 3(10%)−ln (C /C 0)=0.7318t0.73180.9983123450.00.20.40.60.81.0D e g r a d a t i o n e f f i c i e n c y (C /C 0)Cycling runsFig.9.Cycling runs of g-C 3N 4/MoO 3(7%)composite for photodegradation MB under visible light.3.8.Stability evaluationIn addition to photocatalytic efficiency,the stability of photo-catalysts is also very important for practical application.To evaluate the stability and efficiency of the photocatalytic performance of g-C 3N 4/MoO 3composite,the circulating runs in the photocatalytic degradation of MB were carried out.As shown in Fig.9,it is found that the photocatalytic activity of g-C 3N 4/MoO 3(7%)composite does not exhibit a significant loss after five recycles for the pho-todegradation of MB,confirming that g-C 3N 4/MoO 3is photostable during the photocatalytic oxidation of the pollutant molecules.3.9.Mechanism of enhancement of photoactivity under visible lightIn principle,phase structure,adsorption ability and separation efficiency of photogenerated charges are crucial factors for photo-catalytic activity.As can be seen from the XRD spectra,the crystal phase structure of MoO 3does not change during the hybridiza-tion.An adsorption experiment was performed to evaluate the adsorption ability of the MoO 3,g-C 3N 4and g-C 3N 4/MoO 3com-posites in the dark.After equilibration in the dark for 30min,34.5%,38.9%,37.2%,36.1%,44.4%,46.5%and 39.5%of MB removed from the solution with MoO 3,pure g-C 3N 4,g-C 3N 4/MoO 3(1%),g-C 3N 4/MoO 3(3%),g-C 3N 4/MoO 3(5%),g-C 3N 4/MoO 3(7%),and g-C 3N 4/MoO 3(10%)composite,pared with MoO 3,the slight enhancement of adsorption in g-C 3N 4/MoO 3composites can be observed,which could be due to the –stacking between g-C 3N 4and MB [34],suggesting a good supplement for the high photocatalytic activity of the hybridized g-C 3N 4/MoO 3composites.As discussed above,the crystal phase structure was not evi-dently changed and the limited adsorptive enhancement was not the major factor of the significant enhancement of the pho-tocatalytic activity of MoO 3(enhanced ablout 4.2times).The enhancement of photocatalytic activity was mainly due to the hybrid effect between the two semiconductors,which can accel-erate the separation of electrons and holes [35].However,whether it is valid to separate photogenerated electrons and holes depends on the suitable band-gap positions of the two semiconductors [36].The band positions of g-C 3N 4and MoO 3could be calculated by the following empirical formulas:E CB =X −E c −12E g (4)L.Huang et al./Applied Surface Science283 (2013) 25–3231Fig.10.Proposed mechanism for the photodegradation of MB on g-C3N4/MoO3 composites.E VB=E CB+E g(5) where X is the absolute electronegativity of the atom semi-conductor,expressed as the geometric mean of the absolute electronegativity of the constituent atoms,which is defined as the arithmetic mean of the atomic electro affinity and thefirst ion-ization energy;E c is the energy of free electrons of the hydrogen scale(4.5eV);E g is the band gap of the semiconductor;E CB is the conduction band potential and E VB is the valence band poten-tial.The band gap of MoO3and the absolute electronegativity X were2.92eV and6.40eV[37],respectively.According to the above equation,the top of the valance band(VB)and the bot-tom of the conduction band(CB)of MoO3were calculated to be 3.36eV and0.44eV,respectively,which is similar to the reported literature[32].Accordingly,the band gap of g-C3N4was2.70eV (the top of the valance band was1.57V and the bottom of the conduction band was−1.13eV versus the normal hydrogen elec-trode,respectively)[16].As a result,a scheme for the separation and transport of photogenerated electron–hole pairs at the g-C3N4/MoO3interface is shown in Fig.10.MoO3and g-C3N4can be both excited and produce photogenerated electron–hole pairs. Since the CB edge potential of g-C3N4(−1.13eV)was more neg-ative than that of MoO3(0.44eV),the photoinduced electrons on g-C3N4particle surfaces transfer more easily to MoO3via the well developed interface.Similarly,the photo-induced holes on the MoO3surface move to g-C3N4due to the large difference in VB edge potentials.In the meantime,more efficient charge separa-tion and the lower electron-hole pair recombination are obtained, resulting in the photocatalytic activity enhancement.This effec-tive separation of photogenerated electron–hole pairs driven by band potentials between two semiconductors have been reported in other systems,such as g-C3N4/TaON[16],CdS/g-C3N4[38]and ZnGaNO/g-C3N4[39].Therefore,the obtained g-C3N4/MoO3were heterjunction materials and the higher photocatalytic activity was mainly due to the high separation and easy transfer of photogen-erated electron–hole pairs at the heterojunction interfaces derived from the match of band positions between the g-C3N4and MoO3.4.ConclusionsA novel g-C3N4/MoO3composite was successfully synthe-sized via a mixing-calcination method.Results revealed that the obtained g-C3N4/MoO3composites were hybridization photocata-lysts,which have been evidenced by HRTEM,XPS and UV–vis DRS analysis.Under visible light irradiation for3h,the opti-mum photocatalytic degradation efficiency of MB was93%for g-C3N4/MoO3(7%),which is much higher than that of MoO3(43%). The enhancement could be attributed to the suitable band-gap positions for g-C3N4/MoO3composite,which could improve the separation efficiency of photogenerated electron–hole pairs.g-C3N4hybridization is demonstrated to be a promising approach to design highly active and stable MoO3photocatalysts. AcknowledgmentsThe authors genuinely appreciate thefinancial support of this work from the National Nature Science Foundation of China (21007021,21076099,21177050and21206060),Natural Science Foundation of Jiangsu Province(BK2012717),Society Development Fund of Zhenjiang(SH2011011and SH2012020),and Foundation of Jiangsu University(CXLX12-0646,CXLX13-651and08JDG043). References[1]M.N.Chong,B.Jin,C.W.K.Chow,C.Saint,Recent developments in photocatalyticwater treatment technology:a review,Water Research44(2010)2997–3027.[2]H.J.Zhang,G.H.Chen, D.W.Bahnemann,Photoelectrocatalytic materialsfor environmental applications,Journal of Materials Chemistry19(2009) 5089–5121.[3]K.Rajeshwar,M.E.Osugi,W.Chanmanee, C.R.Chenthamarakshan,M.V.B.Zanoni,P.Kajitvichyanukul,R.Krishnan-Ayer,Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media,Journal of Photochemistry and Photobiology C:Photochemistry Reviews9(2008)171–192.[4]ini,L.Yubao,Y.Brando,G.Sberveglieri,Gas sensing properties of MoO3nanorods to CO and CH3OH,Chemical Physics Letters407(2005)368–371. [5]T.He,J.N.Yao,Photochromism of molybdenum oxide,Journal of Photochem-istry and Photobiology C:Photochemistry Reviews4(2003)125–143.[6]Z.Hussain,Optical and electrochromic properties of heated and annealed MoO3thinfilms,Journal of Materials Research16(2001)2695–2708.[7]Y.P.Chen, C.L.Lu,L.Xu,Y.Ma,W.H.Hou,J.J.Zhu,Single-crystallineorthorhombic molybdenum oxide nanobelts:synthesis and photocatalytic properties,CrystEngComm12(2010)3740–3747.[8]H.Sinaim,A.Phuruangrat,S.Thongtem,T.Thongtem,Synthesis and characteri-zation of heteronanostructured Ag nanoparticles/MoO3nanobelts composites, Materials Chemistry and Physics132(2012)358–363.[9]H.Natori,K.Kobayashi,M.Takahashi,Fabrication and Photocatalytic activityof TiO2/MoO3particulatefilms,Journal of Oleo Science58(2009)203–211. [10]T.Kotbagi,D.L.Nguyen,ncelot,monier,K.A.Thavornprasert,W.L.Zhu,M.Capron,L.Jalowiecki-Duhamel,S.Umbarkar,M.Dongare,F.Dumeignil, Transesterification of diethyl oxalate with phenol over sol–gel MoO3/TiO2cat-alysts,ChemSusChem5(2012)1467–1473.[11]J.Tersoff,Theory of semiconductor heterojunctions:the role of quantumdipoles,Physical Review B30(1984)4874–4877.[12]Z.I.Alferov,The history and future of semiconductor heterostructures,Semi-conductors32(1998)1–14.[13]Y.Wang,X.C.Wang,M.Antonietti,Polymeric graphitic carbon nitride as a het-erogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry,Angewandte Chemie International Edition51(2012) 68–89.[14]S.C.Yan,Z.S.Li,Z.G.Zou,Photodegradation performance of g-C3N4fabricatedby directly heating melamine,Langmuir25(2009)10397–10401.[15]X.C.Wang,K.Maeda,X.F.Chen,K.Takanabe,K.Domen,Y.D.Hou,X.Z.Fu,M.Antonietti,Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light,Journal of the American Chemical Society131(2009)1680–1681.[16]S.C.Yan,S.B.Lv,Z.S.Li,Z.G.Zou,Organic-inorganic composite photocatalyst ofg-C3N4and TaON with improved visible light photocatalytic activities,Dalton Transactions39(2010)1488–1491.[17]Y.J.Wang,R.Shi,J.Lin,Y.F.Zhu,Enhancement of photocurrent and pho-tocatalytic activity of ZnO hybridized with graphite-like C3N4,Energy and Environmental Science4(2011)2922–2929.[18]Y.J.Wang,X.J.Bai,C.S.Pan,J.He,Y.F.Zhu,Enhancement of photocatalyticactivity of Bi2WO6hybridized with graphite-like C3N4,Journal of Materials Chemistry22(2012)11568–11573.[19]X.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,J.M.Carlsson,K.Domen,M.Antonietti,A metal-free polymeric photocatalyst for hydrogen production from water under visible light,Nature Materials8(2009)76–80.[20]P.Delporte,F.Meunier,C.Pham-Huu,P.Vennegues,M.J.Ledoux,J.Guille,Phys-ical characterization of molybdenum oxycarbide catalyst;TEM,XRD and XPS, Catalysis Today23(1995)251–267.[21]J.G.Choi,L.T.Thompson,XPS study of as-prepared and reduced molybdenumoxides,Applied Surface Science93(1996)143–149.[22]C.V.Ramana,V.V.Atuchin,V.G.Kesler,V.A.Kochubey,L.D.Pokrovsky,V.Shut-thanandan,U.Becker,R.C.Ewing,Growth and surface characterization of sputter-deposited molybdenum oxide thinfilms,Applied Surface Science253 (2007)5368–5374.[23]P.Niu,G.Liu,H.M.Cheng,Nitrogen vacancy-promoted photocatalytic activityof graphitic carbon nitride,The Journal of Physical Chemistry C116(2012) 11013–11018.。