当前位置:文档之家› Hyper Tech(美国Hyper公司MgB2超导材料介绍)

Hyper Tech(美国Hyper公司MgB2超导材料介绍)

高温超导材料的发展及应用

高温超导材料的发展及应用 摘要:现代社会高度物质文明和材料科学进步密切有关,本文通过介绍超导及高温超导材料的相关知识阐述目前高温超导材料的发展和应用。 Abstract: the modern social highly material civilization Closely relates to the material's science progress, this paper is about the knowledge of superconducting and HTS materials,and it introduces High temperature superconducting materials 's development and application. 关键词:超导、高温超导材料、材料、技术。 Keywords: superconductivity, high temperature superconducting materials, materials, technology. 正文:日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。 超导体由于其得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用,因而需要探索新的高温超导材料。所谓高温超导材料是指具有高临界转变温度(Tc)的超导材料,目前高温超导材料主要有:钇系(92 K)、铋系(110K)、铊系(125K)和汞系(135K)以及2001年1月发现的新型超导体二硼化镁(39K)。其中最有实用前途的是铋系、钇系(YBCO)和二硼化镁( Mg B)。氧化物高温超 2 导材料是以铜氧化物为组分的具有钙钦矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体,且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料,特别是在低温下的性能比传统超导体高得多。 一、高温超导材料 1、高温超导线带材高温超导体在强电方面众多的潜在应用(如:磁体、电缆、限流器、电机等)都需要研究和开发高性能的长线带材(千米量级)。所以,人们先后在YBCO、BSCCO及 Mg B线材带化实 2

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

高温超导材料的特性与表征

四川理工学院 材料物理性能 高温超导材料论文 【摘要】 在本实验中我们的主要目的是通过通过氧化物高温超导材料特性的测量和演示,加深理解超导体的两个基本特性,即零电阻完全导电性和完全抗磁性。我们还通过此实验对不同的温度计(铂电阻温度计和硅二极管温度计)进行比较。我们采用的是四引线测量法,利用低温恒温器和杜瓦容器测量了超导电性,绘制了超导样品的电阻温度曲线,验证了超导在高温冷却电阻突然降为零的电特性。我们也绘制了磁悬浮力与超导体-磁体间距的关系曲线,对其进行了分析。在进行磁悬浮的实验中我们验证了超导体的混合态效应和完全抗磁性。 关键词: 超导体零电阻温度完全磁效应磁场 一、引言: 1911年H.K.Onnes首次发现在4.2K水银的电阻突然消失的超导现象,此温度也被称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的高温,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。此后,科学家们几乎每隔几天,就有新的研究成果出现。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。 高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。 本实验中,我们通过对氧化物超导材料特性的测量和演示,加深理解超导体的两个基本特性;了解金属和半导体的电阻随温度的变化及温差电动势;了解超导磁悬浮的原理;掌握液氮低温技术。 二、原理: 物理原理: 1.超导现象及临界参数 (1)零电阻现象 1911年,卡麦林·翁纳斯用液氮冷却水银线并通以几毫安电流,在测量其电压时发现,当温度稍低于液氮沸点时,水银电阻突然降为零,这就是零电阻现象或超导现象。具有此现象的物体称为超导体。只有在直流条件下才会存在超导现象,在交流下电阻不为零。 临界温度是指当电流,磁场及其他外部条件保持为零或不影响测量时,超导体呈现超导态的最高温度。我们用电阻法测定超导临界温度。 (2)MERSSNER效应 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,而且,不管加磁场的顺序如何,超导体内磁场总为零。这种现象称为抗磁性即MERSSNER效应。 3)超导体分类 超导体分为两类第1类超导体是随温度变化只分为超导态和正常态,第2类是在超导态和正常态中间部分还存在混合态。 纯金属材料的电阻特性 纯金属材料的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射。ρ=ρL(T)+ρ R,其中ρL(T)表示晶格热振动对电子散射引起的电阻率,与温度有关。ρ r表示杂质和缺陷对电子的散射所引起的电阻率,不依赖与温度,与杂质和缺陷的密度成正比,称为剩余电阻率。 半导体材料电阻温度特性 ρi=1/nie(μe+μp) 本征半导体的电阻率ρi与载流子浓度ni及迁移率μ=μe+μp有关, 因ni随温度升高而成指数上升,迁移率μ随温度增高而下降较慢,故本证半导体电阻率随温度上升而电调下降。 实验仪器及其原理:

高温超导材料临界转变温度

实验 预习说明 1.附录不必看,因为示波器改用Kenwood CB4125A 型,它的使用指南见实验室说明资料。 2.测量B-H 曲线,用示波器直接测出R 1上的电压值u 1(3.11.1)式和电容上电压值u C ()式。 3.由于R 1、R 2和C 值不确定,仍需要用教材方法标定B 0、H 0,但是(3.11.7)、()式中L x 、L y 分别用标 定时的电压u x 、u y 代替。u x 、u y 为电压的峰峰值。 选做实验 高温超导材料临界转变温度的测定 一.引言 1911年荷兰物理学家卡默林翁纳斯(Kamerling Onnes)首次发现了超导电性。这以后,科学家们在超导物理及材料探索两方面进行了大量的工作。二十世纪五十年代BCS 超导微观理论的提出,解决了超导微观机理的问题。二十世纪六十年代初,强磁场超导材料的研制成功和约瑟夫森效应的发现,使超导电技术在强场、超导电子学以及某些物理量的精密测量等实际应用中得到迅速发展。1986年瑞士物理学家缪勒(Karl Alex Muller)等人首先发现La-Ba-Cu-O 系氧化物材料中存在的高温超导电性,世界各界科学家在几个月的时间内相继取得重大突破,研制出临界温度高于90K 的 Y-Ba-Cu-O (也称YBCO )系氧化物超导体。1988年初又研制出不含稀土元素的Bi 系和Tl 系氧化物超导体,后者的超导完全转变温度达125K 。超导研究领域的一系列最新进展,特别是大面积高温超导薄膜和临界电流密度高于105A/cm 2 Bi 系超导带材的成功制备,为超导技术在各方面的应用开辟了十分广阔的前景。测量超导体的基本性能是超导研究工作的重要环节,临界转变温度T C 的高低则是超导材料性能良好与否的重要判据,因此T C 的测量是超导研究工作者的必备手段。 二.实验目的 1.通过对氧化物超导材料的临界温度T C 两种方法的测定,加深理解超导体的两个基本特性; 2.了解低温技术在实验中的应用; 3.了解几种低温温度计的性能及Si 二极管温度计的校正方法; 4.了解一种确定液氮液面位置的方法。 三.实验原理 1.超导现象及临界参数 1)零电阻现象 我们知道,金属的电阻是由晶格上原子的热振动(声子)以及杂质原子对电子的散射造成的。在低温时,一般金属(非超导材料)总具有一定的电阻,如图1所示,其电阻率 与温度T 的关系可表示为: 50AT +=ρρ (1) 式中0是T =0K 时的电阻率,称剩余电阻率,它与金属的纯度和晶格的完整性有关,对于实际的金属,其内部总是存在杂质和缺陷,因此,即使使温度趋于绝对零度时,也总存在 0。 1911年,翁纳斯在极低温下研究降温过程中汞电阻的变化时,出乎意料地发现,温度在附近,汞的 电阻急剧下降好几千倍(后来有人估计此电阻率的下限为1023cm ,而迄今正常金属的最低电阻率 仅为1013cm ,即在这个转变温度以下,电阻为零(现有电子仪表无法量测到如此低的电阻),这就是零电阻现象,如图2所示。需要注意的是只有在直流情况下才有零电阻现象,而在交流情况下电阻不为零。 目前已知包括金属元素、合金和化合物约五千余种材料在一定温度下转变为具有超导电性。这种材料称为超导材料。发生超导转变的温度称为临界温度,以T C 表示。 图1 一般金属的电阻率温度关系 图2 汞的零电阻现象 T 0 105 电 阻 ︵ ︶ T (K)

超导特性论文

超导材料 摘要 超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高技领域获得重要应用,也将推动功能材料科学的深入发展。爱因斯坦的科学思辨精神是我们认识自然于科学的根本,而李平林教授的反视觉原理也使得我们可以从不同的视角去认识自然,了解科学。 1:什么是超导? 超导是超导电性的简称,是指某些物体当温度下降至一定温度时,电阻突然趋近于零的现象。具有这种特性的材料称为超导材料。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导体另外一个性质是宏观的量子现象。这两个特点,就是超导体最基本的性质。 2:超导研究历程 1784年英国化学家拉瓦锡曾预言:假如地球突然进到寒冷的地区,空气无疑将不再以看不见的流体形式存在,它将回到液态。从那时候起,拉瓦锡的预言就一直激励着人们去实现气体的液化并由此得到极低的温度。使气体变成液体,这听起来如同神话一般,但是科学家不仅相信了这个神话,而且在几十年后使它成为现实。 人类通过液化气体获得了低温,科学家会利用低温做什么呢?他们要做的事情很多,其中最重要的是继续那个古老问题的探索,研究那些没有生命的物质在低温下会发生什么变化。 1910年,昂尼斯开始和他的学生研究低温条件下的物态变化。1911年,他们在研究水银电阻与温度变化的关系时发现,当温度低于4K时已凝成固态的水银电阻突然下降并趋于零,对此昂尼斯感到震惊。水银的电阻会消失得无影无踪,即使当时最富有想象力的科学家也没料到低温下会有这种现象。 为了进一步证实这一发现,他们用固态的水银做成环路,并使磁铁穿过环路使其中产生感应电流。在通常情况下,只要磁铁停止运动由于电阻的存在环路中的电流会立即消失。但当水银环路处于4K之下的低温时,即使磁铁停止了运动,感应电流却仍然存在。这种奇特的现象能维持多久呢?他们坚持定期测量,经过一年的观察他们得出结论,只要水银环路的温度低于4K电流会长期存在,并且没有强度变弱的任何迹象。 接着昂尼斯又对多种金属、合金、化合物材料进行低温下的实验,发现它们中的许多都具有在低温下电阻消失、感应电流长期存在的现象。由于在通常条件下导体都有电阻,昂尼斯就称这种低温下失去电阻的现象为超导。在取得一系列成功的实验之后,昂尼斯立即正式公布这一发现,并且很快引起科学界的高度重视,昂尼斯也因此荣获1913年诺贝尔物理学奖。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。 将超导体冷却到某一临界温度(TC)以下时电阻突然降为零的现象称为超

超导材料论文

超导材料的研究进展 陈志义 2011326690110 应用物理11(1)班 摘要:超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。高温超导材料经过近 20年的研发,已经初步进入了大规模实际应用和产业化。随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。 关键词:超导高温超导体进展超导超导材料临界温度进展 引言:随着社会的进步,工业的发展,人们对能源的需求量越来越大。但是,像石油、煤等能源储备有限且不可再生。故而,如何在有限能源的条件下使社会健康稳步地发展,亦即如何做到可持续发展成了当今人们亟需解决的问题。对于这些问题的解决方法,超导材料表现出了巨大的潜力。长期以来,如何找到一种完全没有电阻,能消除电能损耗的导电材料,一直是物理学家和材料科学工作者梦寐以求的愿望。1911年,荷兰物理学家卡麦林·昂尼斯首次意外地发现了超导现象:将水银冷却到接近绝对零度时,其电阻突然消失。这一现象的发现为解决电路损耗带来了福音。从此,对于超导材料的研究如火如荼。 一、超导材料的概念 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二、超导材料的分类 超导材料分为低温超导材料和高温超导材料。 1、低温超导材料 何谓低温超导材料?低温超导材料是具有低临界转变温度(T c<3OK=在液氦温度条件下工作)的超导材料,分为金属、合金和化合物。具有实用价值的低温超导金属是Nb(铌),T c 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,T c在9K以上。低温超导材料一般都需在昂贵的液氦环境下工作,由于液氦制冷的方法昂贵且不方便,故低温超导体的应用长期得不到大规模的发展。低温超导材料的应用分为:强电应用,主要包括超导在强磁场中的应用和大电流输送;弱电应用,主要包括超导电性在微电子学和精密测量等方面的应用。 2、高温超导材料 高温超导体材料(HTS)具有超导电性和抗磁性两个重要特性。要让超导体得到现实的应用,首先要有容易找到的超导材料。即主要研究方向就是寻找能在较高温度下存在的超导体材料。高温超导材料用途非常广泛,大致可分三大类:大电流应用、电子学应用和抗磁性应用。大电流应用是由于超导材具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得的稳定强磁场。超导体的基本特性之一是当它处于超导态时具有理想的导电性,同时由于其载流能力远远强于常规导体,因此,利用超导体可以传输大电流和产生强磁场,并且没有电阻热损耗。电工设备的基本特点是大电流、强磁场和高电压,因此在电工设备中使用超导材料可以减少电气损耗、提高效率、缩小体积、减轻重量、降低成本,还可以提高装置

高温超导材料1.29

高温超导材料 高温超导材料,是具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料。 1.结构 高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。氧化物中的金属元素(如铜)可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性。除此之外,高温超导材料具有明显的层状二维结构,超导性能具有很强的各向异性。 已发现的高温超导材料按成分分为含铜的和不含铜的。含铜超导材料有镧钡铜氧体系(Tc=35~40K)、钇钡铜氧体系(按钇含量不同,T发生复化。最低为20K ,高可超过90K)、铋锶钙铜氧体系(Tc=10~110K)、铊钡钙铜氧体系(Tc=125K)、铅锶钇铜氧体系(Tc约70K)。不含铜超导体主要是钡钾铋氧体系(Tc约30K)。已制备出的高温超导材料有单晶、多晶块材,金属复合材料和薄膜。高温超导材料的上临界磁场高,具有在液氦以上温区实现强电应用的潜力 2.特性 超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。

1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 2月15日美国报道朱经武、吴茂昆获得了98K超导体.2月20日,中国也宣布发现100K以上超导体.3月3日,日本宣布发现123K超导体.3月12日中国北京大学成功地用液氮进行超导磁悬浮实验.3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象.很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象.高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用.氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100.液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一. 高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

高温超导材料

高温超导材料 樊世敏 摘要自从1911年发现超导材料以来,先后经历了简单金属、合金,再到复杂化合物,超导转变温度也逐渐提高,目前,已经提高到164K(高压状态下)。本文主要介绍高温超导材料中的其中三类:钇系(YBCO)、铋系 ),以及高温超导材料的应用。与目前主要应用领(BSCCO)和二硼化镁(MgB 2 域相结合,对高温超导材料的发展方向提出展望。 关键词高温超导材料,超导特性,高温超导应用 1 引言 超导材料的发现和发展已经有将近百年的历史,前期超导材料的温度一直处于低温领域,发展缓慢。直到1986年,高温超导(HTS)材料的发现,才进一步激发了研究高温超导材料的热潮。经过20多年的发展,已经形成工艺成熟的第一代HTS带材--BSCCO带材,目前正在研发第二代HTS带材--YBCO涂层导体,近一步强化了HTS带材在强电领域中的应用。与此同时,HTS薄膜和HTS块材的制备工艺也在不断地发展和完善,前者己经在强电领域得到了很好的应用,后者则在弱电领域中得到应用,并且有着非常广阔的应用前景。 2 高温超导体的发现简史 20世纪初,荷兰莱顿实验室科学家卡默林昂尼斯(H K Onnes)等人的不断努力下,将氦气液化[1-7],在随后的1911年,昂尼斯等人测量了金属汞的低温电阻,发现了超导电性这一特殊的物理现象。引起了科学家对超导材料的研究热潮。从1911到1932年间,以研究元素超导为主,除汞以

外,又发现了Pb 、Sn 、Nb 等众多的金属元素超导体;从1932到1953年间,则发现了许多具有超导电性的合金,以及NaCl 结构的过渡金属碳化合物和氮化物,临界转变温度(Tc )得到了进一步提高;随后,在1953到1973年间,发现了Tc 大于17K 的Nb 3Sn 等超导体。直到1986年,美国国际商用机器 公司在瑞士苏黎世实验室的科学家柏诺兹(J. G. Bednorz )和缪勒(K. üller)首先制备出了Tc 为35K 的镧-钡-铜-氧(La-Ba-Cu-O )高温氧化物超导体,高温超导材料的研究才取得了重大突破[10,11]。临界转变温度超过90K 的钇-钡-铜-氧等一系列高温氧化物超导体被发现,成为了高温超导材料研究领域中一个划时代的标志,它使得高温超导材料的研究不只是停留在理论阶段[12]。到目前为止,人们已经发现了几千种超导材料,典型的超导材料临界转 变温度与发现时 间如图1所示。 一百多年来, 人们对于超导材 料的研究一直充 满兴趣。在2011 年,人们在全国 各地举行 了各种活动纪念超导 现象发现100周年,用以探讨超导材料的研究现状和发展方向。随着新超导材料被不断发现,超导材料的临界转变温度也不断被提高,理论机制获图1 超导体Tc 提高的历史简图

超导材料发展状况综述

材料科学与工程进展课程论文 题目:超导材料发展状况综述 学院: 班级: 学号: 姓名:

目录 摘要 (2) 超导材料的特性 (2) 超导材料发展史 (4) 超导材料的制备 (5) 超导材料的应用 (7) 展望与建议 (9)

新能源材料——超导材料发展状况综述 摘要 随着人类社会的不断发展,人们对于自然能源的需求也与日俱增。然而自然资源是有限的,面对自然资源日渐紧缺、环境遭到破坏等状况的发生,在科学工作者的努力下,各种各样的新能源材料相继面世。本文将从特性、发展史、制备、应用这几个方面,对众多新能源材料中的一种材料——超导材料,做一个综述,以增进广大读者对超导材料的了解。 关键词:超导材料、特性、发展史、制备、应用。 超导材料的特性 超导材料是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有以下特性: 零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。超导现象是20世纪的重大发明之一。科学家发现某物质在温度很低时,如铅在7.20K(-265.95摄氏度)以下,电阻就变成了零。 采用“四引线电阻测量法”可测出超导体的R-T特性曲线,如图所示。

图中的R n为电阻开始急剧减小时的电阻值,对应的温度称为起始转变温度T S;当电阻减小到R n/2时的温度称为中点温度T M;当电阻减小至零时的温度为零电阻温度T0。由于超导体的转变温度还与外部环境条件有关,定义在外部环境条件(电流,磁场和应力等)维持在足够低的数值时,测得的超导转变温度称为超导临界温度。 完全抗磁性 1933年,迈斯纳(W.Meissner)发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁力线会一下子被完全排斥到超导体之外(见下图),超导体内磁感应强度变为零,这表明超导体是完全抗磁体,这个现象称为迈斯纳效应。 实验表明,超导态可以被外磁场所破坏,在低于T C的任一温度T下,当外加磁场强度H小于某一临界值H C时,超导态可以保持;当H大于H C时,超导态会被突然破坏而转变成正常态。临界磁场强度H C,其值与材料组成和环境温度等有关。超导材料性能由临界温度T C和临界磁场H C两个参数决定,高于临界值时是一般导体,低于此数值时成为超导体。 约瑟夫森效应 当在两块超导体之间存在一块极薄的绝缘层时,超导电子(对)能通过极薄的绝缘层,这种现象称为约瑟夫森(Josephson)效应,相应的装置称为约瑟夫森器件。如图所示。

超导材料及应用

超导材料 摘要:简要介绍了超导材料的发展历史、现状,对未来的超导材料的发展作了展望,并对目前超导材料的主要研制方法进行了分析。 关键词:超导体研究进展高温低温应用 一前言 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二研究现状 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投入的研究工作。自1911年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 2.超导材料的研究 2.1低温超导阶段 在梅斯勒发现超导体的抗磁性之后(相继有荷兰物理学家埃伦弗斯特根据有关的超导体在液氦中比热不连续现象(提出热力学中二级相变的概念)柯特和卡西米尔提出超导的二流体模型)德国物理学家F·伦敦和H·伦敦兄弟提出超导电性的电动力学唯相理论(即伦敦

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

YBCO超导体的制备及研究现状

YBCO超导体的制备及研究现状 摘要:本文简述了YBCO 高温超导体的基本性能,探讨了YBCO 高温超导体的传统制备方法以及目前较为新型的制备方法,根据YBCO 高温超导体材料的基本性能研究了其在磁体和电力方面的广泛应用,同时还对YBCO 高温超导体材料的发展前景进行了简单介绍。 关键词:超导体;制备方法;研究现状; The Preparation Methods and Research of YBCO Dong Mei Abstract:The text introduced the basic characteristics of YBCO, and explored its traditional preparation methods and some newer ones at present.According to its basic characteristics, we reasearched the magnetic and electric application of YBCO. Meanwhile, we gave a simpleintroduction to its prospects for development. Key words:superconductor;preparation methods;research; 引言:超导现象是在19世纪最早出现的[1],随着科学家的不断研究与探索,高温超导体在各个领域里的应用越来越受到人们的重视,对其超导性、制备方法以及应用前景的研究,已经成为科学家们关注的问题之一。现以钇系中的YBCO 高温超导体为一个典型的代表,对YBCO高温超导体的性能、制备方法、应用及发展前景进行研究,从而对高温超导材料有一个更加全面的了解与认识,以此促进高温超导材料在今后的研究,使其在各个领域得到更加广泛的发展与应用。 1YBCO高温超导体的简介及性能研究 超导材料是指具有超导性的材料,该材料在室温下是有电阻的良好导体,但随温度的下降,其电阻降低,当温度达到临界温度T C(超导体从具有一定电阻的正常态转变为电阻为零的超导态时所对应的临界温度[2])以下,它们的电阻会突然消失。YBCO高温超导体属于属于氧化物超导体的一种,根据磁化测试的结果,其属于第二类超导体。 YBCO高温超导体除具有传统超导体的基本性能(完全导电性(零电阻)、完全抗磁性、约瑟夫森效应)外,还具有很高临界温度(90K以上,而一般的超导体T C介于10~40K之间),同时YBCO超导体的晶体结构大于属于畸变的层状钙钛矿结构,具有陶瓷性,且该化合物中的大多数的金属元素在一定范围内可以全部或部分被其他金属元素所替代,而不明显或仍然具有超导性。 2YBCO高温超导体的制备方法研究 自高温超导氧化物发现以来,人们采用多种不同的工艺来制备高临界电流密度的超导体,。对于YBCO高温超导体的制备方法也是越来越多了,下面将列举一些常见的传统制备方法和一些较为新型的制备方法。 2.1烧结法

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

相关主题
文本预览
相关文档 最新文档