当前位置:文档之家› 学习固体物理的目的和难点

学习固体物理的目的和难点

学习固体物理的目的和难点
学习固体物理的目的和难点

JISHOU UNIVERSITY

《固体物理》期末

考核报告

摘要:本课以本科理论物理的“四大力学”为基础。又是学习凝聚态物理学和材料科学的基础,它是最基础的、又同专业关系最密切的一门课程。通过本课的学习,一方面是对以前所学基础理论知识的复习和应用,另一方面也为今后了解、掌握现代高新技术和从事科学研究打下基础。

关键字:力学、基础、课程-现代高新科技、应用

一、引言

固体物理就是研讨固体(主要是晶体)材料物理特性的一门科学。它是从固体中的原子和电子状态的根本特点出发来讨论固体的物理性质,所以是最基础的、又同专业关系最密切的一门课程,它也讨论非晶体材料的性质,是学习金属物理、半导体物理、电介质物理、磁学等的基础、先行课程。

虽然固体物理主要是讨论固体材料的问题,但是实际上对于讨论液体、气体材料也有参考价值,同时还体现了应用基础课的特点,既要讲有关的理论体系,又要讲和实验、生产的密切关系.特别要突出科学的研究方法。对于物理类和电

子科学类的专业,固体物理是必修课。所以。对于了解学习固体物理的目的和难点是非常有必要的。

二、学习固体物理的目的

2.1 固体物理学的发展

固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。新的实验条件和技术日新月异,正为固体物理不断开拓新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。其发展趋势是:由体内性质转向研究表面有关的性质;由三维体系转到低维体系;由晶态物质转到非晶态物质;由平衡态特性转到研究瞬态和亚稳态、临界现象和相变;由完整晶体转到研究晶体中的杂质、缺陷和各种微结构;由普通晶体转到研究超点阵的材料。这些基础研究又将促进新技术的发展,给人们带来实际利益。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。

2.2 学习固体物理的要求

固体物理是很抽象的,在于他研究的对象已经不是一般的某个体系,而是涉及组成物体的原子分子之间的结构能量问题,有些类似于原子物理,但又不一样。想要学好固体物理完全没有必要纠结于难记的公式和复杂的推导,关键是理解固体物理中引进的其它物理分支中没有的概念和研究方法,举个例子,一开始介绍倒格矢,概念很抽象,但是它的目的是研究晶格,晶体性质的,那么就需要站在晶体结构的角度理解它;研究满带,空带,就需要联系分子之间能量来理解它。要区分微观和宏观研究方法的不同,不要带着以往学物理的方法来学习固体物理。

对于大学生所学的固体物理,其中的内容都是比较浅显易懂,我们所要做的就是在课堂所学的基础上,去为将要学习更深的内容做好准备。利用大学所学的基础知识,对固体物理的一些基础的知识的了解,去更好的用到生活中去。这样才能做到真正的学以致用。

三、学习固体物理的难点

在学习固体物理的过程中,感觉固体物理最不好理解、也是我们不容易接受的内容有许多,而且其概念又非常重要。为了清楚地理解倒易空间在固体物理学上的应用,首先要强调傅里叶变换的物理意义,傅立叶变换是将一个函数转换为一系列周期函数来处理,从物理效果看,由傅立叶变换将晶体的周期性的实空间(正格子)变换成了周期性的倒易空间(倒格子)。因为晶体的周期性结构,由此使得其许多性质在某些方向上也具有周期性,例如原子核的位置的周期性排列产生了周期性的离子实势场,如果要研究晶体中的电子的运动,就必须要研究这种周期性的离子实势场。而傅里叶变换的主要作用就是周期性函数都可以用一系列三角函数来表示,这样固体物理中利用傅里叶变换的地方就有很多。下面举几个例子:

1、用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为傅里叶变换的关系。所谓衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位, 从衍射实验可以记录下各个方向上衍射波的振幅。

2、晶体中很多具有局域特征的物理性质,如电荷密度、电子数密度等都具有平移对称性, 其中电子密度的周期性是最重要的, 绝大部分晶体的性质可以同电子密度的傅里叶分量直接联系起来。 X射线的散射振幅是由一组傅里叶系数决定的。

3、在能带理论中,晶体的禁带宽度就是晶体周期性势场的傅里叶展开系数的2倍(Eg = 2 |Vn | )。

在充分理解傅里叶变换在固体物理上的应用的基础上,才能更好地理解倒格子的意义,正倒空间就是满足傅里叶变换的关系, 所以倒格子的定义为: ai# bj= 2PD ij , ai和 bj是互为倒易的两组基矢量。正空间矢量具有长度的单位,而倒空间矢量的单位是长度单位的倒数。对于固体物理中的声子和电子的运动都是用波矢来描述的, 波矢的单位与前面定义的倒格子矢量的相同,所以, 倒易空间也称为波矢空间,在波矢空间描述电子运动形象直观,物理图像更清晰。在学习过程中始终强调倒空间的作用, 使得在整个课程的学习过程中真正理解其在固体物理学习中的重要性。

四、结束语

所学固体物理一书中主要介绍了一些主要的物理概念、实验和理论,其中包括了固体物理学史、化学键与晶体形成、固体结构、晶体振动和固体热性质、固体电子理论、固体的电性质、固体的磁性、固体的介电性质和光学性质等内容。它也是从电子、原子和分子的角度研究固体的结构和性质的一门基础理论学科。它和普通物理、热力学与统计物理、金属物理、

材料科学、特别是量子力学等学科有着密切关系,固体物理也讨论晶体学、晶体的结合键、晶体缺陷、扩散、相图等问题。但它着重研究的是晶格振动和晶体的热学性质、固体电子论、半导体、固体的磁性、超导体等专题。

固体物理是很抽象的,在于他研究的对象已经不是一般的某个体系,而是涉及组成物体的原子分子之间的结构能量问题,有些类似于原子物理,但又不一样。想要学好固体物理完全没有必要纠结于难记的公式和复杂的推导,关键是理解固体物理中引进的其它物理分支中没有的概念和研究方法,举个例子,一开始介绍倒格矢,概念很抽象,但是它的目的是研究晶格,晶体性质的,那么你就需要站在晶体结构的角度理解它;研究满带,空带,你就需要联系分子之间能量来理解它。要区分微观和宏观研究方法的不同,不要带着以往学物理的方法来学习固体物理。

固体物理学整理要点

固体物理复习要点 第一章,第二章的前三节,第三章的1,2,4节,第五章(第四节除外),第六章的前四节 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点?

(完整版)固体物理概念(自己整理)

1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。 2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。 倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。 5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。 9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 10.密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 11.晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为。 12.晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。 13.晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。 14.劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程和布拉格公式,两者其实是

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论得基本概念与基本理论与知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体与非晶体之间 2、晶体得共性: 解理性沿某些晶面方位容易劈裂得性质 各向异性晶体得性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体得一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点得距离为该方向得周期,以三个不同方向得周期为边长,构成得最小体积平行六面体。原胞就是晶体结构得最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不就是唯一得 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成得平行六面体称为晶胞。 晶格常数 WS元胞以一格点为中心,作该点与最邻近格点连线得中垂面,中垂面围成得多面体称为WS原胞。WS原胞含一个格点

复式格子不同原子构成得若干相同结构得简单晶格相互套构形成得晶格简单格子 点阵格点得集合称为点阵 布拉菲格子全同原子构成得晶体结构称为布拉菲晶格子、 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿 氯化铯

氯化钠 钙钛矿结构 5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成得三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积

学习固体物理后的感想

学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性,

以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。 新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理学整理要点

固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 c b a r 213132:++=即 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。 8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。并写出这几种结构固体物理学原胞基矢。 答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS 9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系? 11.会求晶格的致密度。 14.X 射线衍射的几种基本方法是什么?各有什么特点? 答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在 间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。 粉末法 :(1)X 射线单色(λ固定);(2)样品为取向各异的单晶粉末。 第二章 1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力? 答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。 结合类型:离子晶体—离子键 分子晶体—范德瓦尔斯力 共价晶体—共价键 金属晶体—金属键 氢键晶体—氢键 max min ~λλ

(完整版)固体物理学基础概念

第一章晶体结构 晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,

固体物理学习心得

固体物理学习心得 篇一:学习固体物理后的感想 学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性, 以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

固体物理知识点

1. 稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很 大差 异? 同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同 2. 固体分为 晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的 宏观特性有哪些?晶体有哪些分类? 晶体长程有序, 非晶体短程有序, 准晶体具有长程取向性, 没有长程的平移对 称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性, 对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进 行分类。 原胞是一个晶格中最小的重复单元, 体积最小,格点只在顶角上, 面上和内部 不含格点。晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。 3. 简单晶格与复式晶格的区别? 简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相 同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同 的网格,这些网格的相对位移形成复式晶格 2 4 3a 3 = V 1 3 4 3 a 5. 晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征 (把基矢看做单 位矢 量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的 余弦来表示。 晶面的法线方向与三个坐标轴的夹角的余弦之比, 等于晶面在三个轴上的截距 的倒数之比。 晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。 6. 简立方 [110]等效晶向有几个 ,表示成什么? 110随机排列,任意取负,共 12种,表示为 <110>。 7. 倒格子矢量 Kh=h1b1+h2b2+h3b3 的大小,方向和意义 (矢量 Kh 这里 h 为下标, h1, b1, h2, b2, h3, b3里的数字均为下标, b1, b2, b3 为倒格子原胞基矢 ),提 示: 从倒格子性质中找答案。 大小为 2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立 叶空间的周期性排列 8. 倒格子和正格子之间的关系有哪些? 1. 正格子基矢与倒格子基矢点乘 2.正格矢与倒格矢的点乘为定值 3.倒格子 原胞体积反比于正格子原胞体积 4.倒格矢与正格中晶面族正交 5.正格子与 倒格子互为对方的倒格子 9. 证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢 4.假设体心立方边长是 a,格点上的小球半径为 N=1 8 8 4R 3a 1=2 单胞中原子所占体积为 V 1=N 体心立方体体积为 V 2 R , 4 求体心立方致密度。 8 R 3 R 3 致密度为 V 2

固体物理重要知识点总结

固体物理重要知识点总结 晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量

化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 爱因斯坦模型在低温下与实验存在偏差的根源是什么? 答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。 陶瓷中晶界对材料性能有很大的影响,试举例说明晶界的作用 答:晶界是一种面缺陷,是周期性中断的区域,存在较高界面能和应力,且电荷不平衡,故晶界是缺陷富集区域,易吸附或产生各种热缺陷和杂质缺陷,与体内微观粒子(如电子)相比,晶界微观粒子所处的能量状态有明显差异,称为晶界态。 在半导体陶瓷,通常可以通过组成,制备工艺的控制,使晶界中产生不同起源的受主态能级,在晶界产生能级势垒,显著影响电子的输出行为,使陶瓷产生一系列的电功能特性(如PTC特性,压敏特性,大电容特性等)。这种晶界效应在半导体陶瓷的发展中得到了充分的体现和应用。 从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

固体物理总结

在没有碰撞时,电子与电子(独立电子近似)、电子与离子(自由电子近似)之间得相互作用完全忽略;无外场时,每个电子作匀速直线运动;在外场存在时,服从牛顿定律。 k空间得概念:参量空间,状态空间。把波矢k瞧作空间矢量,相应得空间称为k空间。 T=0时,N个电子得基态可从能量最低得k=0态开始,按能量从低到高,每个k态占据两个电子,依次填充。最后,占据区形成一个球,称为费米球。 能态密度:T=0时,基态,单位体积自由电子气体得基态能量E。 费米-狄拉克函数得性质:随温度发生变化。 极限情况: 一般情况:随着T得增加,发生变化得能量范围变宽,但在任何情况下,此能量范围约在附近±kBT范围内。温度不为零时,电子占据态与非占据态之间得界面不在就是某个等能面 电子占据态与非占据态得界限可以近似为一个薄层。 电子漂移速度: 等离子体频率:自由电子气体作为整体相对正电荷背景集体运动得频率。 低频端(从直流到远红外),金属对光波有明显得衰减。(安检,金属屋子信号屏蔽) 可见光到近红外波段,金属就是高反射得。(铜镜,镜子) 电磁波频率大于等离子频率时,金属就是透明得。(金属可以作为滤波片,分离近红外-可见光与XUV/x-ray)

晶体结构包括两个最主要得特征:1、重复排列得具体单元——基元。2、晶格:基元重复排列得形式,一般抽象为空间点阵,称为晶体格子,简称晶格,由布拉维格子得形式来概括。 原胞:晶体中体积最小得周期性重复单元。 某一格点为中心,作其近邻格点连线得垂直平分面,这些平面围成得以格点为中心得最小体积单元—WS原胞。 晶胞:能表现对称性得单元,但就是未必最小。 7类晶系:三斜、单斜、正交、四方、三角、六角、立方。 群由群元素集合与规定乘法定义。 封闭性:若a,b∈G,则存在唯一确定得c∈G,使得a*b=c; 结合律:任意a,b,c∈G,有(a*b)*c=a*(b*c); 单位元:存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元; 逆元:任意a∈G,存在唯一确定得b∈G, a*b=b*a=e(单位元),则称a与b互为逆元素,简称逆元,记作a-1=b。 点群:在点对称操作基础上组成得对称操作群称为点群。 点群得元素:点对称操作。 点群得乘法:连续操作。 点对称操作:绕固定轴得转动、镜面反映、中心反演。 对称要素:固定轴、镜像面、反演点。 倒格子定义:对布拉维格子中所有格矢,满足得全部端点得集合,构成布拉维格子,称为正格子得倒格子。 同一晶体得正格子与倒格子有相同得对称性。 体心立方得倒格子为面心立方; 面心立方得倒格子为体心立方; 简单立方得倒格子仍为简单立方。

固体物理总结

固体物理总结 晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子 团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同 点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属 于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。晶面指数: 晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一 晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互 质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller指数标定方法:1)找出晶面系中任一晶面在轴矢上的截 距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。晶向指数: 从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描 写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积 比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排 列紧密程度的物理量。密堆积结构的堆积比最大。布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐 射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉

固体物理复习_简述题教学文案

固体物理复习_简述题

《固体物理》基本概念和知识点 第一章基本概念和知识点 1) 什么是晶体、非晶体和多晶?( ) 晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。 2) 什么是原胞和晶胞?( ) 原胞是一个晶格最小的周期性单元,在有些情况下不能反应晶格的对称性; 为了反应晶格的对称性,选取的较大的周期单元,称为晶胞。 3) 晶体共有几种晶系和布拉伐格子?( ) 按结构划分,晶体可分为7大晶系, 共14布拉伐格子。 4) 立方晶系有几种布拉伐格子?画出相应的格子。( ) 立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。 5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。( ) 简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。碱金属具有体心立方晶格结构;Au、Ag和Cu具有面心立方晶格结构,它们均为简单晶格 复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格,复式格子由它们的子晶格相套而成。 一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是相同原子但几何位置不等价的原子构成的晶体,如:具有金刚石结构的C、Si、Ge等 6) 钛酸钡是由几个何种简单晶格穿套形成的?( )

BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。三组氧3 (OI,OII,OIII)周围的情况各不相同,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方结构子晶格(共5个)套构而成的。 7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?( ) 金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。金刚石结构由两套完全等价的面心立方格子穿套构成。金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。 第二章基本概念和知识点 1) 简述离子性和共价性晶体结合的特点。( ) 离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡时,形成稳定的离子晶体;基本特点是以离子为结合的单位,且要求正负离子相间排列。 共价性结合:共价结合是靠两个原子各贡献一个电子,形成所谓的共价键;两个基本特征是饱和性和方向性。 2) 简述金属性和范德瓦耳斯结合的特点。( ) 金属性结合:基本特点是电子的“共有化”,即在结合成晶体时,原来属于各原子的价电子不再被束缚在原子上,而转变为在整个晶体内运动;电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现了把原子聚合起来的作用。 范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。非极性分子晶体就是依靠这瞬时的电偶极矩的感应作用而结合的。 第三章基本概念和知识点 1) 什么是声子?长光学波声子又可以分为极化声子和电磁声子,它们的意义是什么?( ) 声子是晶格振动的能量量子。在晶体中存在不同频率振动的模式,称为晶格振动,晶格振动能量可以用声子来描述,声子可以被激发,也可以湮灭。——1分 晶体中的长光学波是极化波,长光学波声子称为极化声子(LO),只有长光学纵波才伴随有宏观的极化电场,极化声子主要是指纵光学声子。—— 2分

相关主题
文本预览
相关文档 最新文档