当前位置:文档之家› 锅炉炉膛烟气测温重要性例证

锅炉炉膛烟气测温重要性例证

锅炉炉膛烟气测温重要性例证
锅炉炉膛烟气测温重要性例证

锅炉炉膛烟气测温重要性例证

目录

(1)某1000MW机组炉膛出口烟温高,造成严重掉焦停炉事故(2)炉膛出口烟温高、左右偏差大,导致屏过超温停炉

(3)煤质多变,不监测炉膛烟温,影响锅炉安全运行

(4)无炉膛烟温监视,燃烧偏斜,造成炉膛一侧水冷壁结焦或磨损(5)炉膛出口烟温非正常升高,汽温失控,打闸停机

(6)某电厂掺烧无烟煤,炉膛出口烟温高,效率大幅降低

2010年10月

北京

火电厂锅炉燃烧调整对锅炉安全、经济运行十分关键,而表征炉膛燃烧和换热工况的最重要参数是炉膛火焰(烟气)温度分布,特别是炉膛出口烟气温度。半个世纪以来,炉膛烟气在线测温技术久攻不克,成为工程设计和技术标准中的空白,以致造成锅炉运行中过热器结焦、掉焦、管壁超温、水冷壁单侧磨损、结焦、火焰中心偏高或偏低、以及效率降低等一系列问题。

本专集用真实事例从反面的教训来说明装设炉膛烟气测温的重要性,以期引起关注。

值得可喜的是,当今,PyroMetrix声波测温系统已经突破了这方面的技术难点,成功应用于国内外大批火电厂锅炉上。

编者认为在我国火电厂锅炉上推广应用这项技术和系统必将对我国火电厂锅炉安全运行和节能减排产生深远影响。

侯子良

2010.10.1

某1000MW机组炉膛出口烟温高,

造成严重掉焦停炉事故

某电厂2台1000MW超超临界机组锅炉投运以后多次出现低负荷期间炉膛掉焦现象,严重时,在集控室都有明显震感。××年7月21日夜间,7号锅炉发生严重掉焦,将炉底的事故放渣门撑开,造成炉底水封失去,被迫事故停炉,严重影响机组安全稳定运行。为此,集团公司下达了一个重点科研项目委托相关电力研究院进行试验研究。

该锅炉设计煤种和校核煤种为中等结渣倾向和中等灰污染特性燃料,并且校核煤种的结焦和灰粘污倾向高于设计煤种(如表1)

表1 灰渣特性

项目单位设计煤种校核煤种

初始变形温度(DT) °C 1270 1200 软化温度(ST) °C 1350 1290

流化温度(FT) °C 1410 1350

为了防止屏过和对流受热面结焦,按照相关规范,运行中炉膛出口烟气温度应保持不高于下列温度(无在线连续测量炉膛烟气温度仪表):

1. t < DT-50 = 1200-50 = 1150°C

2. t < ST-150 = 1290-150 = 1140°C

但是,研究院在用试验仪器实测期间,炉膛出口中间部位烟气温度经常在1200-1350°C间波动,明显高于规范要求数值,终于找出了该厂1000MW机组锅炉根本原因。

从这个实例给我们一个启示,如果我们能装设在线连续测量炉膛烟气温度仪表系统,就能更透彻的连续了解锅炉燃烧工况,监视启动前做的燃烧调整试验以及运行中的燃烧调整是否合适,特别是当煤种发生变化时炉膛火焰高度是否合适,炉膛出口烟温是否太高或太低,过热器和再热器喷水量为什么偏大(影响回热效率),以及锅炉排烟温度升高(影响锅炉效率)是否因炉膛吸热不足引起,并可及早防止该厂这类严重掉焦事故的发生(注:据了解这类事故国内并不罕见)。

炉膛出口烟温高、左右偏差大,

导致屏过超温停炉

广东某电厂2号超临界600MW机组直流锅炉于2008年4月C 级检修投运后,在300MW至450MW升负荷过程中屏过出口A、B 两侧存在明显的温度偏差,频繁出现A侧超温情况,存在着严重事故隐患。

表1 超温工况下单侧汽温异常情况

屏过出口汽温(°C)

负荷(MW)

A侧B侧异常量420 577 510 67

430 570 504 66

430 571 517 54

401 577 513 64

380 546 515 31

电厂被迫组织调试力量用试验仪器对炉膛温度进行测量,发现:

1. 炉内火焰中心偏高。为此,根据实际煤种,对煤粉细度和一、二次风与燃尽风配比进行调整以降低火焰高度,并加强吹灰(实际煤种灰分20%比设计煤种12%灰分高出8%),增加炉膛辐射吸热。

2. 炉膛左右两侧火焰存在较大偏差,A侧火焰温度普遍高于B 侧,说明炉内出现一定程度的偏烧,需要调平A、B两侧烟温偏差。

从这个电厂实例看,由于只有汽温可以在线监视,因此只知超温

现象而无法了解超温原因,虽曾做过燃烧试验和调整,但实际煤种等多种因素变化后,燃烧组织是否合适和优化无监视手段,如果装设了PyroMetrix声波测温系统,在线测量炉膛出口烟温分布,就能及时发现煤种变化后燃烧调整不佳导致火焰偏高,炉膛出口烟温升高,两侧火焰偏斜,从而及时发现屏过超温原因,在线组织消除事故隐患。

此外,通过实时监视炉膛出口烟温在吹灰前后的变化,优化吹灰工作。

煤质多变,不监测炉膛出口烟温,

影响锅炉安全运行

锅炉煤质多变是我国火电厂投入运行以后常见的现象,客观原因是因为受煤矿和运输方面限制,电厂不得烧非设计煤种,而另一方面,近期愈来愈多电厂为了降低燃料成本而改烧或掺烧低价劣质煤。

众所周知,锅炉炉膛燃烧组织和炉膛容积尺寸是按设计煤种时确保较优、按校核煤种时确保安全设计的。

锅炉第一次启动时要根据设计煤种进行燃烧优化调整,使炉膛火焰中心高度和炉膛出口烟温符合设计最佳值,风煤比恰当,混合均匀,煤粉细度适当,火焰中心不偏斜等以确保锅炉达到设计效率,炉内不结焦,再热器和过热器左右壁温偏差小、不超温。对锅炉厂来说,第一次燃烧调整试验也是验证设计是否符合预期和改进设计的方法。

当电厂决定改烧或掺烧低价劣质煤时,由于偏离设计煤种和校核煤种,必须再做煤种适应性试验。据调查,目前国内各大集团已有几十个电厂纷纷开展煤种适应性试验。

燃烧调整试验时需要监测一系列参数,但其中一个非常关键的直接反应燃烧火焰的参数就是炉膛烟气温度,由于过去技术上不过关,现有锅炉均未安装,当然设计标准也不会涉及。在试验的短时间里,也只能依靠测量不太准确的红外辐射高温计等作为试验仪器,或者干脆用其它参数间接判断。

进入正常运行时,锅炉的煤质、水份以及掺煤情况等未必与试验情况一样,因此,实际运行时到底炉膛火焰中心高度和炉膛出口烟温

等是否变化了仍然心中无数,这当然会对锅炉运行安全存在较大隐患。

目前,PyroMetrix声波测温系统已成功应用于炉膛烟气温度测量,精度高,国内外已有大量应用业绩,它可以从锅炉启动点火倒满负荷全过程实时监视炉膛烟气温度,确保煤质多变情况下锅炉的安全运行。

无炉膛烟温监视,燃烧偏斜,

造成炉膛一侧水冷壁结焦和磨损

据了解,目前有不少电厂锅炉停运检修时发现炉膛一侧和某个角落的水冷壁结焦或磨损严重。实践证明,这往往是因为炉膛燃烧偏斜,火焰冲向了某一侧,熔化状态的灰粒沾到水冷壁上骤然冷却导致结焦,或着火焰中携带的灰粒冲刷一侧水冷壁所致。

为了解决这个问题,电厂不得不兴师动众委托科研院所架设试验仪器做调偏试验。

如果锅炉装设了PyroMetrix声波炉膛烟气温度分布测量系统,这个问题就轻而易举解决了,这时锅炉运行中的任何情况下,只要发现炉膛烟温有较大偏斜就可及时用试探法的一步一步调正过来,从根本上不让炉膛水冷壁一侧结焦和磨损现象发生,而不是等到停炉进入炉膛检查方才发现问题,并事后再来补救了。

炉膛出口烟温非正常升高,

汽温失控,打闸停机

某电厂近年投产的××锅炉厂配供的超临界600MW机组锅炉在点火起动至机组并网初期,存在不同程度的屏式过热器严重超温,以及主汽温度失控、过高导致冲转后振动超标,被迫打闸停运事件。经研究,并结合多家电厂类似锅炉运行实践分析得出,其主要原因是起动过程中调整不当,发生燃烧不完全,从而导致着火区升高,燃烧室放热量减少,水冷壁辐射传热量减少,炉膛出口烟温非正常升高。为此,在点火过程中采取适当措施改善油枪的燃烧工况(适当减少二次风量),投煤粉运行时适当降低总风量等,成功解决了这个问题。

从这类事故不难看出如果锅炉配置了能全程监视炉膛烟气温度的测量系统,那么在起动过程中通过炉膛出口温度异常升高就能及时发现是否燃烧工况不佳,着火区升高,并及时采取适当调整措施了。

某电厂掺烧无烟煤,炉膛出口烟温高,

效率大幅降低

某电厂660MW“W”火焰锅炉掺烧无烟煤后,减温水量大幅增加,排烟温度与设计值相比明显升高,机组回热效率和锅炉效率均有下降。针对这个问题,电厂组织了试验测试。试验期间,用仪器检测得出炉膛温度中心明显上移,炉膛出口烟温明显升高,这是引起效率下降的根本原因。据此,电厂采取了相应的调整燃烧的措施。

从这个例子可以看出,炉膛出口烟温的异常变化对燃烧工况变化,特别是媒质变化非常敏感,可以及早发现问题,研究对策。即使已经组织力量进行过全面的燃烧调整试验研究,也难免运行中仍会偏离试验工况。因此它仍然不能代替长期连续运行和全负荷过程中的在线连续炉膛出口烟温测量。

第8章 炉膛安全监控系统(高)

第8章炉膛安全监控系统(高) 概述 一、炉膛安全监控系统的地位大容量锅炉需要控制的燃烧设备数量比较多,有点火装置、油燃烧器、煤粉燃烧器、辅助风(二次风)挡板、燃料风(周界风)挡板等,不仅类型比较复杂,而且它们的操作过程也很复杂。例如:点火油枪的投入操作包括点火油枪推进、开雾化蒸汽(或雾化空气)门、开进油门等;停用操作包括关进油门、油枪吹扫、油枪退出等。煤粉燃烧器的投入的操作包括开磨煤机出口挡板、开热风门、暖磨、磨煤机启动、给煤机启动等;煤粉燃烧器停用操作包括停给煤机、关热风门、停磨煤机、磨煤机吹扫等。对一般不能伸进和退出的点火装置(点火器)以及燃烧器的火焰监视器等装置要有冷却措施,为此还设置了冷却风机(由交、直流电动机拖动,其中直流电动机备用)。火焰监视器是判断燃烧器点、熄火成功与否及对火焰进行监视的重要装置。由此可见,即使投入或切除一组燃烧器也需要有相当多的操作步骤和监视判断的项目,在锅炉启动或发生事故工况下,燃烧器的操作工作更加繁复。所以大容量锅炉的燃烧器必须采用自动顺序控制。 国内机组过去缺少这种燃烧安全监控系统,使国产锅炉的运行性能受到严重的影响,锅炉的安全运行也受到威胁。由于近年来大机组日益增多,锅炉防爆问题也日趋严重,据电力部门统计,近几年来较大型锅炉爆炸事故每年约发生余起,损失巨大。另外大容量锅炉爆炸力较大,如采用防爆门已无法承受炉内压力,否则要增加防爆门面积又不现实,因此为国产锅炉装备炉膛安全监控系统已势在必行。 炉膛安全监控系统(Furnace Safeguard Supervisory System,简称FSSS),也有称燃烧器管理系统(Burner Management System简称为BMS),或称燃烧器控制系统、燃料燃烧安全系统。是现代大型火电机组锅炉必须具备的一种监系统。它能在锅炉正常工作和启停等各种运行方式下,连续地密切监视燃烧系统的大量参数与状态,不断地进行逻辑判断和运算,必要时发出运作指令,通过各种联锁装置,使燃烧设备中的有关部件(如磨煤机组、点火器组、燃烧器组等)严格按照既定的合理程序完成必要的操作,或对异常工况和未遂性事故作出快速反应和处理。防止炉膛的任何部位积聚燃料与空气的混合物,防止锅炉发生爆燃而损坏设

锅炉炉膛负压异常原因及处理

. '. 炉膛压力异常分析和调整 对于负压燃烧锅炉,如果炉膛正压运行,则炉烟往外冒出,既 浪费能源又影响设备和工作人员的安全;反之,如果炉膛负压太大,又会使大量的冷空气漏入炉膛内,降低炉膛温度,增大了引风机负荷和排烟带走的热量损失。所以保持炉膛压力在合适范围内运行是非常重要的,引起炉膛压力波动的原因很多,下面进行详细分析。 1、锅炉脱硫系统故障,脱硫烟气挡板脱落造成炉膛正压。 处理:1)如果炉膛负压自动调节跟踪不好,应解除送引风机自动,手动调节。 2)如果经调整后,炉膛正压仍上升迅速并达到保护动作值,锅炉灭火保护应动作,如果没有正确动作应手动MFT,防止炉 膛正压损坏设备。 3)如果炉膛正压未达到保护动作值,应立即解除锅炉燃料自动停运一台磨煤机,此时机组会在机跟炉方式运行,随锅炉燃 料量的减少机组负荷将相应下降,视汽包水位及炉膛压力上 升情况投入油枪后可每隔10秒停运一台磨煤机,直至炉膛负 压达到微负压为止,期间注意调整一次风压,防止一次风机 喘振。 4)在停运磨煤机降负荷时,注意监视汽包水位自动跟踪情况,如果水位变化较大,降负荷速度就要缓慢,防止汽包水位高

低保护动作 5)如果在此期间发生引风机喘振,应解除引风机自动逐渐关小引风机静叶直到引风机喘振消失 6)机组降负荷的过程中,机组长根据负荷情况及时将锅炉给水调节切旁路调节,以维持其前后压差满足减温水要求,防止 造成主、再热汽温度异常 7)待炉膛负压恢复后,立即对锅炉本体进行全面检查,特别注意对锅炉各油层及炉底水封进行详细检查,防止因高温烟 气造成着火,如果已造成着火的立即进行紧急灭火并通知 消防队。 2、锅炉冷态点火爆燃造成炉膛压力突然变正。 预防措施:1)下层磨煤机尽量上好煤,保证高挥发分。 2)等离子拉弧正常。 3)等离子磨煤机暖风器运行正常。 4)保证空预器出口热一二次风温大于150-200度。 5)等离子磨煤机无油点火启动后180秒没有火检,且就地看火燃烧状况不良,立即停运等离子磨煤机,投入油枪点火,待条件满足后重新启动等离子磨煤机。 6)若无油点火,严格按照锅炉启动第一台磨的措施,待炉膛温度达到一定温度后再投入制粉系统。 7)点火前炉膛进行充分吹扫,彻底将可燃物吹出炉膛。

燃烧器一般常见问题处理

燃烧器故障: 总电源开关接通以后,控制器红灯不亮,燃烧器没有工作迹象? 原因分析:可能没有给燃烧器供电 解决思路:检查电源保险丝、电线、电源开关等,源连接至燃烧器控制箱的位置是否正确,如果安装有其它恒温器等应检查是否受恒温器的影响,检查控制器与接线箱之间是否接触不良。 接通电源后,燃烧机电机不能转动,故障红灯亮起? 原因分析:电机线圈短路、电机轴承不能转动、电机电容损坏、油泵泵轴不能转动、控制器损坏解决思路:确定了原因,解决方法就只有拆开修理或者更换、或更换新的。 接通电源后燃烧器电机转动,吹风程序过后,无油雾自喷嘴喷出,稍后燃烧机停止所有工作,亮起故障红灯? 原因分析与解决思路 1、油箱缺油——向油箱送油、 2、油管内有空气——按排气程序排出管内空气电磁阀线圈短路——更换 3、油泵损坏——拆开修理、或者更换连接电机与油泵的连轴器折断 4、油泵不能随电机转动、控制器或电眼损坏——建议更换 5、燃烧室内光线太强(耐火砖被烧红或还有剩余炭渣燃烧,电眼不正常)——积 碳自燃,进入炉膛清洗 故障: 接通电源后,燃烧器电机转动,吹风程序过后,油雾自喷嘴喷出,但不能点燃,稍后停止工作,故障灯亮? 原因分析与解决思路: 1.点火变压器出现故障——更换 2.联接变压器至引火线的高压线损坏或松脱——更换 3.引火线的绝缘瓷棒破碎——更换绝缘瓷棒 4.点火棒间隙太宽或无间隙——调整间隙在4-5mm(毫米)

5.点火棒固定向前转碰到稳燃器——调整距稳燃器大于约-10mm(毫米) 6.点火棒间隙夹有碳渣——清除碳渣 7.点火棒头端距离油嘴前缘不合适——调整距油嘴前缘3-4mm左右 8.油质含有杂物水分等——换油或排出水分 9.风门设定角度太大,被吹熄点不着——试逐步调小 燃烧器经常因故停止操作亮起红灯? 原因分析与解决方法 1.控制器失灵——修理或更换 2.电眼感光部分不清——清洁感光部分 3.燃烧器四周温度过高,影响控制器的正常操作——改善锅炉房环境,降低锅炉 房温度 4.油泵轴过紧或电机轴太紧,均加重电机负荷,影响控制器正常操作——停炉检 修,使转轴运转自如 5.超负荷运行,或水位拨动太大,当达到低水位时,即停炉保护——保证在额定 出力内运行,调整负荷平稳 小火燃烧正常变为大火时熄火或火焰闪烁不稳? 原因分析与解决思路: 1.小火风门风量设定太大——逐步调小风门 2.大火的油嘴脏或损坏——擦净或更换新的 3.油粘度高不易雾化——用柴油稀释燃油 4.稳燃器与油嘴间距离不当——调整在0-10mm 5.油温过高,使油气化返油不畅——适当降低油温 6.油掺有水分——换油后再重试 油泵转动有吱吱异常声? 原因分析与解决思路: 1.进油量不足或本身过虑网阻塞进油湿度过高——查管路油阀及过虑器,再清 洁过虑网降低油温

大型电站锅炉燃烧器布置方式简介

大型电站锅炉燃烧器布置方式简介 (内蒙古电力勘测设计院,内蒙古呼和浩特 010020) 摘要:文章介绍了目前电站用大型锅炉燃烧器布置的两种主流形式,同时对两种燃烧方式在运行中的优缺点进行了分析,并对目前大型锅炉对冲燃烧这一新型燃烧方式做了简要的论述 中图分类号:TK223.23 文献标识码:A 文章编号:1007—6921(XX)03—0228—02 随着中国国民经济的快速增长,各地区对电负荷的要求也在快速增长,同时,环境要求也在进一步的提高,锅炉的排放要求进一步改进,大容量的锅炉应用而生,对于电站大型煤粉锅炉而言,燃烧器的布置方式鉴于供货商的不同,采用的燃烧方式也各不相同,但主要为两大流派:即以ABBCE为代表的直流燃烧器、四角布置切圆燃烧方式和以B&W 为代表的旋流燃烧器 1 直流燃烧器的四角切圆燃烧方式为炉内的气流流动由四角燃烧器的四股射流共同形成,总体上组成一个旋转气流,具体布置方式见图1。

740)this.width=740" border=undefined> 该燃烧方式燃烧器射出的煤粉气流经过燃烧室中部区域变成强烈燃烧的高温烟气,一部分直接补充到相邻燃烧器射流的根部,使相邻燃烧器射出的煤粉升温引燃。射流本身的卷吸和邻角的相互点燃特点,使直流式燃烧器四角布置、切圆燃烧方式具有良好的着火性能。同时二次风口与一次风口相对独立,相互间的排列自由,可以在布置上变化出多种形式,控制二次风与一次风混合的迟早,满足不同的燃料对混合的不同要求,改善着火性能。此外,由于一次风衰减慢和二次风的加强作用,使煤粉气流的后期混合强烈,加之炉内的气流旋转,煤粉在炉内螺旋上升,通过的路程长,故直流式燃烧器切圆燃烧又具有燃烬程度好的特 煤粉管道从磨煤机出口供至燃烧器进口,每台磨煤机出口由4根煤粉管道接至同一层四角布置的煤粉燃烧器。每角燃烧器风箱分成14层,其中A、B、C、D、E、F 6层为一次风喷嘴,其余8层为二次风喷嘴。一二次风呈间隔排列,在AB、CD、EF 3层二次风室内设有启动及助燃油枪,共12支。为了降低四角切圆燃烧引起的炉膛出口及水平烟道中烟气的残余旋转造成的烟气侧的屏间热偏差,采用同心反切加燃尽风(OFA)和部分消旋二次风,使炉内气流的旋转强度具有一定的可调性,下部的启转二次风与一次风喷嘴偏转

燃料与炉膛负压控制

课程实验总结报告 实验名称:炉膛负压与氧量校正控制 课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1 引言 (2) 1.1 炉膛负压概述 (2) 2 控制逻辑 (2) 2.1 炉膛压力控制 (2) 2.1.1 相关图纸 (2) 2.1.2 控制原理 (2) 2.1.3 控制逻辑 (3) 2.2 氧量校正 (3) 2.2.1 相关图纸 (3) 2.2.2 控制原理 (3) 2.2.3 控制结构 (4) 2.2.4 氧量校正控制逻辑 (4) 2.2.5 二次风控制逻辑 (5) 3 被控对象特性 (6) 3.1 静态特性 (6) 3.2 动态特性 (8) 3.2.1 炉膛压力 (8) 3.2.2 含氧量 (8) 4 PID整定 (9) 4.1 炉膛负压控制器 (9) 4.2 氧量校正 (11) 5 总结 (12)

1 引言 1.1 炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,即指炉膛顶部的烟气压力。 炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。 炉膛负压的大小受引风量、鼓风量与压力三者的影响。锅炉正常运行时,炉膛通常保持负压 -40 ~ -60Pa 。炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。 2 控制逻辑 2.1 炉膛压力控制 2.1.1 相关图纸 SPCS-3000 控制策略管理5号站132~133页。 2.1.2 控制原理 炉膛压力调节系统通过调节两台引风机的静叶来调节炉膛压力。当引风机入口静叶开度开大,引风作用加强,炉膛压力减小;开度减小,引风作用减弱,炉膛压力增大。因此该控制系统为负对象。 被控量:炉膛压力 被控对象:引风机入口静叶 控制量:引风机入口静叶开度 图2-1 炉膛负压控制框图

燃烧器常见问题故障大全及处理方法

燃烧器故障:总电源开关接通以后,控制器红灯不亮,燃烧器没有工作迹象 原因分析:可能没有给燃烧器供电 解决思路:检查电源保险丝、电线、电源开关等,源连接至燃烧器控制箱的位置是否正确,如果安装有其它恒温器等应检查是否受恒温器的影响,检查控制器与接线箱之间是否接触不良。 燃烧器故障:接通电源后,燃烧机电机不能转动,故障红灯亮起 原因分析:电机线圈短路、电机轴承不能转动、电机电容损坏、油泵泵轴不能转动、控制器损坏 解决思路:确定了原因,解决方法就只有拆开修理或者更换、或更换新的。 燃烧器故障:接通电源后燃烧器电机转动,吹风程序过后,无油雾自喷嘴喷出,稍后燃烧机停止所有工作,亮起故障红灯 原因分析与解决思路 油箱缺油——向油箱送油、 油管内有空气——按排气程序排出管内空气 电磁阀线圈短路——更换 油泵损坏——拆开修理、或者更换 连接电机与油泵的连轴器折断 油泵不能随电机转动、控制器或电眼损坏——建议更换 燃烧室内光线太强(耐火砖被烧红或还有剩余炭渣燃烧,电眼不正常)——积碳自燃,进入炉膛清洗 故障:接通电源后,燃烧器电机转动,吹风程序过后,油雾自喷嘴喷出,但不能点燃,稍后停止工作,故障灯亮 原因分析与解决思路: 点火变压器出现故障——更换 联接变压器至引火线的高压线损坏或松脱——更换 引火线的绝缘瓷棒破碎——更换绝缘瓷棒 点火棒间隙太宽或无间隙——调整间隙在4-5mm(毫米) 点火棒固定向前转碰到稳燃器——调整距稳燃器大于约-10mm(毫米) 点火棒间隙夹有碳渣——清除碳渣 点火棒头端距离油嘴前缘不合适——调整距油嘴前缘3-4mm左右 油质含有杂物水分等——换油或排出水分 风门设定角度太大,被吹熄点不着——试逐步调小 故障:燃烧器经常因故停止操作亮起红灯 原因分析与解决方法 控制器失灵——修理或更换 电眼感光部分不清——清洁感光部分 燃烧器四周温度过高,影响控制器的正常操作——改善锅炉房环境,降低锅炉房温度 油泵轴过紧或电机轴太紧,均加重电机负荷,影响控制器正常操作——停炉检修,使转轴运转自如 超负荷运行,或水位拨动太大,当达到低水位时,即停炉保护——保证在额定出力内运行,调整负荷平稳 故障:小火燃烧正常变为大火时熄火或火焰闪烁不稳 原因分析与解决思路: 小火风门风量设定太大——逐步调小风门 大火的油嘴脏或损坏——擦净或更换新的 油粘度高不易雾化——用柴油稀世燃油

火力发电厂锅炉课程设计

* 《火力发电厂锅炉课程设计》 学校:XXXXX大学 班级:热能与动力工程(专升本) 姓名: XXXXXX 日期:X年X月X日

400t/h一次中间再热煤粉锅炉 第一章设计任务书 一、设计题目:400t/h一次中间再热煤粉锅炉 二、原始资料 1.锅炉蒸发量 1 D 400t/h 2.再热蒸汽流量 2 D 350t/h 3.给水温度 gs t 235℃ 4.给水压力 gs P 15.6MPa 5.过热蒸汽温度 1 t540℃ 6.过热蒸汽压力 1 p 13.7MPa 7.再热蒸汽(进)温度 2 t'330℃ 8.再热蒸汽(出)温度 2 t''540℃ 9.再热蒸汽(进)压力 2 p' 2.5MPa 10.再热蒸汽(出)压力 2 p'' 2.3MPa ※注:以上压力为表压。 11.周围环境温度20℃ 12.燃料特性 (1) 燃料名称:设计煤种数据(17) (2) 设计煤种数据: (表一) 工业分析(ar)% 固定碳 45.30 灰分 22.39 挥发分 25.5 水分 8.0 低位发热量 21.65

元素分析 (ar ) 碳 55.66 氢 3.69 氧 8.46 氮 0.89 硫 0.91 灰渣特性 灰变形温度 1160℃ 灰软化温度 1250℃ 灰熔融温度 1330℃ (3) 煤的可燃基挥发分:r V =100ar V / (100-ar W -ar A )=36.63% (4) 煤的低位发热量y dw Q =21650kj/kg (5) 灰熔点:1t 、2t 、3t <1500℃ 13.制粉系统 中间储仓式,热风送粉,筒式钢球磨煤机 14.汽包工作压力 15.2MPa 提示数据:排烟温度假定值py t =146℃;热空气温度假定值rk t =320℃ 注:以上压力为表压。 第二章 设计计算说明书 第一节 煤的元素分析数据校核和煤种判断 一、煤的元素各成分之和为100%的校核 ar C +ar O +ar S +ar H +ar N +ar W +ar A =55.66+8.46+0.91+3.69+0.89+8+22.39=92% 二、元素分析数据校核 (一)干燥无灰基(可燃基)元素成分计算 干燥无灰基元素成分与收到基(应用基)元素成分之间的换算因子为 K=100/(100-ar W -ar A )=100/(100-8-22.39)=1.4366 则干燥无灰基元素成分应为(%) daf C =K ar C =1.4366×55.66=79.96 daf H =K ar H =1.4366×3.69=5.30 daf O ==K ar O =1.4366×8.46=12.15 daf N =K ar N =1.4366×0.89=1.28 daf S =K ar S =1.4366×0.91=1.31 (二) 干燥基灰分的计算

锅炉炉膛安全监控系统(FSSS)

第四章锅炉炉膛安全监控系统(FSSS) 第一节FSSS概述 随着锅炉容量的不断增大,需要控制的燃烧设备数量也随之增多,如点火装置、油燃烧器、煤粉燃烧器、一次风档板、二次风档板等等。燃烧设备的操作过程也趋于复杂化,如点火油枪的投运操作包括:点火油枪的推入、雾化蒸汽阀开启、进油阀开启、电点火器的投入与断开等。煤粉燃烧器的投运操作包括:一次风档板和二次风档板的开启、煤粉挡板的开启、给粉机启动等。点火油枪的解列操作包括:进油阀关闭、油枪吹扫入油枪退出等。煤粉燃烧器的停运操作包括:停给粉机、煤粉挡板的关闭、二次风挡板的关闭等。在锅炉启停工况和事故工况时,燃烧器的操作更加繁琐,由于操作不当很容易造成事故。 当锅炉炉膛内压力增高到一定值时,因炉膛面积较大,可能发生损坏水冷壁管的事故,严重时甚至会使锅炉炉墙、支架损坏,致使锅炉报废。 国内锅炉过去缺少燃烧安全控制系统,每年较大型锅炉发生炉膛爆燃事故几十起,损失巨大。目前,国内外大、中型发电机组都装有炉膛安全监控系统。炉膛安全监控系统的英文名称为Furnace Safeguard Supervisory System(简称为FSSS),也可称作燃烧器管理系统(Burner Management System,简称BMS)。炉膛安全监控系统是现代大型机组自动化

不可缺少的组成部分,它对炉膛的正常燃烧,锅炉的安全运行起着决定性的作用。 炉膛安全监控系统有两项重要作用,分别是锅炉安全保护作用和锅炉安全操作管理作用,分别由燃料安全系统(Fuel Safeguard System,简称FSS)和燃烧器控制系统(Burner Control System,简称BCS)完成。 锅炉安全保护作用主要包括在锅炉运行的各个阶段,对参数、状态进行连续地监视;不断地按照安全规定的顺序对它们进行判断、逻辑运算;遇到危险工况,能自动地启动有关设备进行紧急跳闸,切断燃料,使锅炉紧急停炉,保护主、辅设备不受损坏或处理未遂性事故。 锅炉安全操作管理作用主要包括制粉系统和燃烧器的管理即控制点火器和油枪,提供给粉(煤)机的自启动和停止,提供制粉系统监视和远方操作,防止危险情况发生和人为操作的误判断,误操作。分别监视油层、煤层和全炉膛火焰。当吹扫、燃烧器点火和带负荷运行时,决定风箱挡板位置,以便获得所需要的炉膛空气分布。同时还供状态信号到协调控制系统、全厂监测计算机系统及全厂报警系统等。 FSSS不仅能自动地完成各种操作和保护动作,还能避免运行人员在手动操作时的误动作,并能执行手动来不及的快动作。 FSSS和CCS(协调控制系统)是保障锅炉运行的两大支柱,FSSS和CCS相互有一定关系和制约,而FSSS的安全联锁功能是最高等级的。 本章主要介绍炉膛爆燃的原因及防止;压力特性及检测;FSSS的组成及功能等。 第二节FSSS系统功能

控制装置及仪表炉膛压力设计

科技学院 课程设计报告 ( 2013-- 2014年度第一学期) 名称:控制装置与仪表 题目:炉膛压力系统死区控制系统设计院系:科技学院 班级:自动化 学号: 学生姓名: 指导教师:平玉环 设计周数:一周 成绩: 日期:2014年7 月3 日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3 主要内容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二题目分析设计: 系统整体控制方案(燃煤锅炉) 1,炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,

火力发电厂锅炉炉膛安全监控系统设计技术规定.doc

火力发电厂锅炉炉膛安全监控系统 设计技术规定 DLGJ116-93 主编部门:电力工业部西南电力设计院 批准部门:电力工业部电力规划设计总院 施行日期:1994年1月1日 电力工业部电力规划设计管理总院 关于颁发DLGJ116-93《火力发电厂 锅炉炉膛安全监控系统设计技术规定》的通知 电规发(1993)255号 各有关单位: 为适应电力建设发展的需要,我院委托西南电力设计院编制了《火力发电厂锅炉炉膛安全监控系统设计技术规定》,现批准颁发DLGJ116—93《火力发电厂锅炉炉膛安全监控系统设计技术规定》。自发行之日起施行。 各单位在执行过程中要注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告我院。 1993年9月22日 1总则 1.0.1本规定为实施《火力发电厂设计技术规程》热工自动化部分的补充和具体化。 1.0.2本规定适用于新建或扩建火力发电厂220~2000t/h燃煤粉锅炉炉膛安全监控系统设计,不适用于纯燃油、气和流化床式锅炉,也不包括防止锅炉内爆、液态排渣炉的防氢气爆炸等内容。 1.0.3制粉系统的防爆只涉及与燃烧直接有关的部分,不完全包括制粉系统监控设计的内容。 1.0.4火力发电厂锅炉炉膛安全监控系统的设计,宜采用通过审定的标准设计、典型设计和通用设计。 1.0.5火力发电厂锅炉炉膛安全监控系统的设计,应采用可靠性高的设备和成熟的技术。新产品和新技术应经过试用和考验,鉴定合格后方可在设计中采用。 2应用功能 2.0.1完整的锅炉炉膛安全监控系统包括下列功能: (1)锅炉炉膛吹扫及燃油泄漏试验; (2)锅炉点火; (3)锅炉火焰监视; (4)锅炉炉膛压力(正、负压)和灭火保护,以及主燃料跳闸; (5)燃烧器控制。 2.0.2容量为220t/h及以上锅炉的炉膛安全监控系统必须具有炉膛吹扫功能;容量为1000t/h

炉膛压力控制系统

内蒙古科技大学 过程控制课程设计论文 题目:锅炉炉膛负压控制系统 学生姓名:严合 学号:0867112335 专业:测控技术与仪器 班级:测控2008-3 指导教师:左鸿飞 2011 年08 月31 日

目录 一、概述 (Ⅲ) 二系统要求及组成 (Ⅴ) 2.1系统的要求 (Ⅴ) 2.2炉膛负压的动态特性 (Ⅴ) 2.3引风控制系统的工况 (Ⅴ) 2.4系统的组成 (Ⅵ) 三应注意的问题 (Ⅷ) 3.1抗积分饱和及外反馈法 (Ⅷ) 3.2 采用死区非线性环节 (Ⅸ) 3.3 引风机1和2的双速调节 (Ⅸ) 3.4 炉膛压力的测量 (Ⅹ) 3.5 内爆保护 (Ⅹ) 四、仪表选型及参数整定 (Ⅺ) 4.1 前馈-反馈控制系统 (Ⅺ) 4.3 传感器的选择 (Ⅺ) 4.4 选择控制系统设计 (Ⅺ) 五课程设计体会 (Ⅻ) 六参考文献 (ⅩⅢ)

一概述 锅炉是指利用各种燃料、电或者其他能源,将所盛装的液体加热到一定的参数(2.45Mpa- 27MPa ,400℃-570℃),并对外输出热能的特种设备。锅炉控制的主要目的是调节锅炉出口的蒸汽压力、流量和温度,使其达到所希望的数值。为此,需要对燃料、空气和水三者的量进行调节。锅炉是一个复杂的系统,对锅炉工况造成影响的因素之一是来自外部和内部的扰动,如燃料发热量的变化或热力系统工况的变化等。控制器或控制系统根据锅炉出口蒸汽参数实际值偏离其设定值的大小和方向,调节燃料量、空气量和水量,使锅炉出口参数与其所希望的值相一致。 锅炉除配有相应的仪表系统外,主要有以下控制系统:汽包液位控制系统;燃料控制系统;过热器和再热器出口蒸汽温度的控制系统;燃烧器程序控制系统等等。不同类型的锅炉,尽管其控制系统不尽相同,但是它们的工作原理大体是相同的。 而其中最重要的系统是燃烧控制系统。其主要功能是控制炉膛的燃料的空气的输入量,或控制燃烧率,以适应锅炉负荷的变化。对锅炉运行和控制系统来说,锅炉出口蒸汽压力的变化经常作为燃料量的输入和蒸汽量的输出之间不平衡的一个标志。引起蒸汽压力变化的因素很多,其中主要的扰动量是燃料量(内扰)和蒸汽量的变化(外扰)。燃烧控制系统的基本要求是:迅速适应外界负荷需求的变化;及时消除锅炉燃料侧的自发扰动;维持调节过程中各被调量在允许的范围内;保证锅炉运行的安全性和经济性。燃料控制系统一般包括燃料控制、引风控制和鼓风控制三个子系统。 燃料控制子系统中,蒸汽压力的实际值相对于其设定值的偏差输入到蒸汽压力控制器,经控制运算后输出调整锅炉燃烧率的指令信号;燃烧控制器根据锅炉燃烧率的指令信号的变化调整入炉燃料量。 同时,锅炉燃烧率的指令信号也加入到鼓风控制子系统中,对鼓风量进行调整。为保证燃烧的过程的经济性,即保证燃烧过程合适的燃料和风量的比值,常采用具有烟气氧量校正调节的鼓风控制系统,形成有燃料量前馈调节的串级控制系统,在保证送风量与燃料量基本成比例的粗调的基础上,进一步通过氧量校

第8章 炉膛安全监控系统(高)

第八章炉膛安全监控系统 第一节概述 一、炉膛安全监控系统的地位 大容量锅炉需要控制的燃烧设备数量比较多,有点火装置、油燃烧器、煤粉燃烧器、辅助风(二次风)挡板、燃料风(周界风)挡板等,不仅类型比较复杂,而且它们的操作过程也很复杂。例如:点火油枪的投入操作包括点火油枪推进、开雾化蒸汽(或雾化空气)门、开进油门等;停用操作包括关进油门、油枪吹扫、油枪退出等。煤粉燃烧器的投入的操作包括开磨煤机出口挡板、开热风门、暖磨、磨煤机启动、给煤机启动等;煤粉燃烧器停用操作包括停给煤机、关热风门、停磨煤机、磨煤机吹扫等。对一般不能伸进和退出的点火装置(点火器)以及燃烧器的火焰监视器等装置要有冷却措施,为此还设置了冷却风机(由交、直流电动机拖动,其中直流电动机备用)。火焰监视器是判断燃烧器点、熄火成功与否及对火焰进行监视的重要装置。由此可见,即使投入或切除一组燃烧器也需要有相当多的操作步骤和监视判断的项目,在锅炉启动或发生事故工况下,燃烧器的操作工作更加繁复。所以大容量锅炉的燃烧器必须采用自动顺序控制。 国内机组过去缺少这种燃烧安全监控系统,使国产锅炉的运行性能受到严重的影响,锅炉的安全运行也受到威胁。由于近年来大机组日益增多,锅炉防爆问题也日趋严重,据电力部门统计,近几年来较大型锅炉爆炸事故每年约发生十余起,损失巨大。另外大容量锅炉爆炸力较大,如采用防爆门已无法承受炉内压力,否则要增加防爆门面积又不现实,因此为国产锅炉装备炉膛安全监控系统已势在必行。 炉膛安全监控系统(Furnace Safeguard Supervisory System,简称FSSS),也有称燃烧器管理系统(Burner Management System简称为BMS),或称燃烧器控制系统、燃料燃烧安全系统。是现代大型火电机组锅炉必须具备的一种监系统。它能在锅炉正常工作和启停等各种运行方式下,连续地密切监视燃烧系统的大量参数与状态,不断地进行逻辑判断和

炉膛负压控制系统

炉膛负压控制系统总结 炉膛负压一般采用两台引风机静叶或动叶、或者液偶执行机构来控制。控制方案采用单回路、平衡算法控制。引风控制看似简单,实际需要注意很多方面,具体如下: 1、信号处理 1)炉膛负压控制被调量一般采用三取中选择块,需要注意的是测点的选择必须包含炉膛两侧,不能取在同一侧;另外三取中选择块设置需要注意坏点、偏差大、变化速率设置等切除情况。 2)最后是由于炉膛负压本身具有小幅波动特点,所以为了保证系统稳定性和执行机构的使用,一般我们对三取中后的信号进行滤波处理,并对SP和PV 偏差量增加调节死区功能,需要注意的是滤波时间不能太长,死区不能太大,因为太长会影响事故工况调节反应时间。最好根据炉膛燃烧特点来确定。 2、参数设置 1)对于运行人员手动设定的SP需要加上下限来防止操作失误问题。 2)由于炉膛燃烧特性决定PID参数设置不能太强,在作定值扰动时达到模拟量验收规程中要求即可,不能片面的追求定值扰动曲线的调节时间、衰减率等。 3)执行机构动作速率,以及上限设置需要根据锅炉单侧辅机出力试验确定,防止引风机出现过流保护。 3、前馈、超迟、闭锁 1)负压控制前馈可以根据对其影响因素来设置,除了常规的送风机执行机构前馈外,可增加一次风机执行机构输出、启停磨影响、RB影响等。 2)事故工况下超迟主要包括:RB、MFT。RB尤其是一次风RB对于炉膛负压影响尤为明显,所以一般采取一次风RB触发时,引风机执行机构超迟关一定量,防止负压过低引起保护动作;MFT发生时炉膛负压肯定大幅下降,所以有必要超迟关一定量,即防内爆功能。 3)引风控制增加闭锁功能很有必要,直接用负压高低来闭锁减加引风执行机构,保证升降负荷以及事故工况下机组避免超更危险的方向发展。一般我们也用负压高低报警闭锁送风机加减。

燃气锅炉燃烧器常见故障与解决方法.doc

燃气锅炉燃烧器常见故障及解决方法 一 故障现象 故障原因 排除措施 (1) 气压不足锁定 (1) 调整气压至规定值 (2) 电磁阀 不严,接头处漏气, 检查锁定 (2) 清理或修理电磁阀管道接头 1、接通电源,按启动、 (3) 按复位检查元件是否损坏以及 (3) 热继电器开路 电机不转 电机电流 (4) 条件回路至少有一个不成 (4) 检查水位、压力、温度是否超 立(水位、压力、温度以及 程控 限 器是否通电起动) (1) 电火气量不足 (2) 电磁阀不工作(主阀、点火 (1) 检查线路并修复 2、启动后前吹扫正常, 阀) (2) 换新 但点不着火 (3) 电磁阀烧坏 (3) 调整气压至规定值 (4) 气压不稳定 (4) 减小配风,减小风门开度 (5) 风量太大 (1) 点火变压器 烧坏 (1) 换新 (2) 高压线损坏或脱落 (2) 重新安装或换新 3、点不着火,气压正常, (3) 间隙过大或过小,点火棒位 (3) 重新调整 电有不打火 置相对尺寸 (4) 重新安装或换新 (4) 电极破裂或与地短路 (5) 重新调整 (5) 间距不合适 (1) 气压不足,压降太大,供气 流量偏小 (1) 重新调整气压,清理滤网 4、点着后 5ˋS 后熄火 (2) 风量太小,燃烧不充分,烟 (2) 重新调整 色较浓 (30 重新调整 (3) 风量太大,出现白气 (1) 风量太小 (1) 调小风门 5、冒白烟 (2) 空气湿度太大 (2) 适当减小风量,提高进风温度 (3) 排烟温度较低 (3) 采取措施,提高排烟温度 (1) 环境温度较低 (2) 小火燃烧过程较多 (1) 减小配风量 6、烟囱滴水 (3) 燃气含氢量高, 过氧量大生 成水 (2) 降低烟囱高度 (3) 提高炉温 (4) 烟囱较长 (5) 排烟温度较低 ★风门在控制状态下停 风门位置开关信号没有反馈到 检查风门接线是否松动或开关是否 机 程序信号 失灵 运行故障处理一览表 表: 2 燃气锅炉 燃烧器 故障现象 故障原因 排除措施

【精品】电站锅炉炉膛设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 1引言 锅炉是利用燃料或其他能源的热能,把水加热成为热水或蒸汽的机械设备。锅炉包括锅和炉两大部分,锅的原义是指在火上加热的盛水容器,炉是指燃烧燃料的场所。锅炉中产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,再通过发电机将机械能转换为电能⑴。 1.1锅炉简介及发展状况 1.1.1锅炉简介 将其它热能转变成其它工质热能,生产规定参数和品质的工质的设备称为锅炉。燃烧设备以提供良好的燃烧条件,以求能把燃料的化学能最大限度地释放出来并其转化为热能,把水加热成为热水或蒸汽的机械设备⑵。 锅炉中产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,又叫蒸汽发生器,常简称为锅炉,是蒸汽动力装置的重要组成部分,多用于火电站、船舶、机车和工矿企业。 将固体燃料放在炉排上,进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料,喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧,并适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转,并强烈火烧的圆筒形炉膛称为旋风炉⑻。 1.1.2锅炉结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒⑻。 锅炉中有汽水系统和煤烟系统两大部分。 (1)汽水系统 经过水处理设备软化处理符合质量要求的给水,由给水本送至省煤器,经预热器提高温度后进入上锅筒(上汽包)。上锅筒内的炉水,连续的沿着处在烟气温度较低区域的对流管束流入下锅筒(下汽包)。下锅筒内的炉水,一部分进入炉膛四周的水冷壁下集箱和水冷壁管;另一部分进入烟气温度较高的对流管束。由于高温作用,在水冷壁内受热汽化,汽化混合物上升至上集箱或上锅筒;进入烟气温度较高区域对流管束内的水也受热汽化,汽水混

锅炉控制要求

锅炉控制要求 1模拟量采集,根据图纸将所有模拟量纳入程序中。 2,顺序控制和联锁保护功能(SCS) 报警、联锁类型: 2.1 锅炉出水压力高报警、联锁停炉(先报警后联锁) 2.2 锅炉出水温度高报警、联锁停炉(先报警后联锁) 2.3 鼓风机变频器故障报警、联锁停炉 2.4引风机变频器故障报警、联锁停炉 2.5循环泵停止报警、联锁停炉 2.6 补水泵故障报警 锅炉运行故障联锁保护程序,符合国家劳动部《热水锅炉安全技术监察规程》的要求。当锅炉出现:出水温度超高、出水压力过低、引风故障停机、鼓风故障停机和循环泵停止情况时,自动联锁保护停炉。联锁停炉是由微机控制实现的。仪表盘设有“联锁—解除”转换开关,当开关处在“联锁”状态时,一旦出现上述联锁条件,将自动停炉,即停鼓风—停引风—停炉排。联锁动作的同时报警器报警指示(电铃声响),并在微机画面上弹出报警对话框提示,同时报警信息存储在计算机存储器中,以便随时进行报警信息查询。锅炉出水温度和压力的报警与联锁有区别,报警在前,连锁在后。 正常工作时,转换开关应在“联锁”位置,只要故障出现一次,就要执行全部联锁程序。必要时可转为“解除”位置,解除联锁功能以便进行

试机、检修等。 3,锅炉燃烧控制系统 3.1 燃烧控制 为了提高锅炉的运行效率,在控制系统设计上就必须同时考虑保证连续运行和提高锅炉效率两方面的问题。因此,控制系统应包括负荷控制和燃烧控制两个相互联系的子系统。 3.2 燃料控制器 锅炉的燃料供给可以通过手动调节控制箱的炉排调速仪表来实现,也可以通过控制系统MODS运算模块自动控制炉排电机的运转速度,达到最佳燃烧状态。 3.3 鼓风量控制器 鼓风量的控制是开环控制,由风煤比系统根据煤质和负荷的情况,通过静态模型修正计算出一个最佳风煤比传送给鼓风量控制器,由鼓风量控制器根据锅炉的负荷确定鼓风量,进而控制鼓风机的转速。 3.4 炉膛压力控制 锅炉的安全运行要求保持一定的炉膛负压。由于炉内压力变化是一个快速环节,因此炉膛负压控制器采用PID控制器,控制引风电机的转速,将炉膛负压控制在给定值附近。 3.5 汽包水位控制系统

燃气锅炉燃烧器常见故障及解决方法

燃气锅炉燃烧器常见故障及解决方法 运行故障处理一览表表:2 燃气锅炉燃烧器

故障原因排除措施

燃气锅炉燃烧器常见故障及解决方法 故障现象 故障原因

燃气燃烧器、燃烧机安全操作规程 因为燃气燃烧器燃烧机主要燃料分天然气、液化石油气、城市煤气及其他可燃气体,这几种燃料属易燃、易爆的危险气体,在使用和储藏过程中都应对安全引起高度重视,否则将发生重大安全方面的事故。为保障安全调试作业,特制定燃气燃烧机作业标准: 一、燃气燃烧器燃烧机的调试之前的检查有三个方面: 1?查看燃气是否到位,燃气管路的是否干净通畅,阀门是否已开启。 2?有无管路泄露现象,管道安装是否合理。 3?从燃气阀前管道放气排空,以确保管路中无混合空气,同时排空管应接出室外。

二、燃气燃烧器燃烧机内部检查 1?燃烧机的燃烧头是否安装和调整好。 2?电机旋转的方向是否正确。 3?外部的电路联接是否符合要求。 4?根据线路情况对燃烧机进行冷态模拟,观察运行中设备的各个部件是否正常及火焰探测保护部分是否正常。 三、燃气燃烧器燃烧机的调试 1 ?检查外部的燃气是否到位,管路是否通畅,外部电源控制到位。 2.把燃烧机的负荷调至小负荷,点火位置相应调至小负荷,关闭大负荷进行点火并观察火焰情况,根据火焰情况对伺服马达或者风门 五、燃气机调试与维修的注意事项 1.燃气燃烧机连续发生二次点火程序失败时,应停机检查,燃烧机的供气系统是否正常,电路连线是否正确,解除故障后方可重新启动燃烧机。 2?供气管路严禁用扳手或金属棒敲击、摩擦,避免引起静电或火花,引发燃气爆炸。 3?严禁在供气阀组或管道法兰面等处吸烟、焊接、切割等违章作业。 4 ?严禁在管路及阀组和调压阀旁进行任何明火测试,避免重大事故发生。 5?测试供气管路中是否有燃料,通常用气体低压表测试即可。 6?在供气管路中,就是进行过排空,但管壁有残留气体或液滴,如遇静电火花和明火 同样会引起燃烧及爆炸。 7?当供气管路已通气,而阀组有故障时需要拆卸,首先必须切断阀组前端总阀,然后 对总阀至阀组这一段管道中气体进行放空,之后才能进行阀组的拆卸与维修。 & 在调试工作中,燃气必须做到认真、安全、高效。 9.禁止在现场使用无防爆电气电动工具。 10.VPS504检漏装置在使用前必须检查阀组蒙头。 11.60万大卡及以上燃烧器建议使用VPS504检漏装置,如用户不配,由此引发事故客

锅炉压力控制系统

1 绪论 1.1 锅炉控制系统发展概述和国内外研究现状 21世纪到来,人类将进入一个以知识经济为特征的信息时代,检测技术、计算机技术和通讯技术一起构成现代信息的三大基础。 有的专家认为:在计算机和自动化领域,80年代的热点是个人计算机,90年代是算机,而21世纪第一个10年的热点必将是传感、执行与检测。锅炉自动化控制系统作为传感、执行与检测技术的一个应用方面也必将跨入数字化、网络化利智能化时代。 锅炉控制系统的发展过程与其它事物一样,也经历由简单到复杂、由机械到电子的过程。在我国,锅炉的控制大致经历四个阶段,叫手工控制阶段、专用仪表控制阶段、电动单元组合控制阶段和机算机控制阶段。 纵观国内外,总的来说,60年代,锅炉的控制还只是实行人工操作,锅炉的燃烧完全是凭司炉人的经验,几乎谈不到动控制。到了70—80年代,尤其是1972年能源危机之前,对锅炉的运行控制人多是注重安全性和可靠性。在越来越重视节约能源和环境保护的今天,人们则更注重于实现最佳燃烧控制,即把燃烧过程的热损失控制在最小,使热效率最高,且对环境污染最小的所谓最佳燃烧状态,因此,国内外相继对燃煤锅炉实行自动控制。逐步出现了由常规检测仪表和调节仪表构成的模拟控制系统,它具有可靠性高,成本低,易于操作利维护等优点,在大、中、小工业企业中得到了厂泛应用,解决了不少自动化方面的问题。 但是,随着生产向连续化、大型化发展,对自动化技术的要求越来越高,模拟自动控制系统越来越表现出它的局限性。主要表现在:(l)难以实现复杂的、多变量控制规律,如最优控制、自适应控制、模糊控制以及实时控制等;(2)控制参数一旦确定后就难以修改,要改变控制方案比较困难;(3)一组仪表只能控制一条回路,难以实现密集的监视、管理和操作;(4)一次性投资较大;(5)各个系统间不便进行通讯联系,难以实现多级控制。 到了 90年代,出现了以计算机作为自动化的过程控制技术,计算机控制系统运算速度快,控制精度高,并且具有分时操作功能,一台计算机可代替多台常规

锅炉设计总结

锅炉课程设计总结 大四最后一个学期,是忙碌的一个学期。在研究生复试之后,回学校便开始了上个学期因为考研而耽误的课程设计。时间短,任务重。幸亏有一些同学课程设计完成后总结了一些经验。有很多不懂的地方也可以直接向同学请教,使得这次的课程设计完成的相对顺利很多。但是设计的过程仍然是复杂的。工作量也很大。 在正式开始课程设计的之前,首先将书上给出的例题仔细看了一遍,虽然有很多地方没有完全没看明白,但是对于锅炉设计的大体过程也有了大致的了解。锅炉的热力计算的大体过程为首先根据课程设计任务指导书给出的锅炉规范进行各个受热面理论烟气量以及容积的计算,之后查表后绘制烟气焓温表,为之后的热力计算提供基本数据。之后根据之前的数据进行锅炉的热平衡计算,最终得出燃料消耗量,计算燃料消耗量以及保热系数等数据。在此之后便开始进行锅炉各个部分的设计及计算。设计及计算的顺序依照锅炉中烟气的走向依次计算。首先进行的是炉膛的设计及计算,在炉膛的设计过程中,炉膛的结构设计是相对繁琐的部分,需要进行很多的计算以及查表工作。在炉膛的结构及热力计算之后,得到炉膛出口处的温度。炉膛中的烟气从炉膛出来以后进入防渣管对工质进行加热,防渣管的作用是通过降低烟气温度,旨在防止由于温度过高而结渣。烟气经过过热器之后便进入过热器对饱和蒸汽进行过热,而产生高温高压的热蒸汽,增加工质的焓值,提高工质的做功能力,从而推动汽轮机做功。之后的工质便进入锅炉炉管束,通过对流换热吸收热量,提高工质的焓值。从锅炉管束流过的烟气温度进一步降低,之后进入省煤器,通过加热给水而提高给水温度,减少工质在炉膛内蒸发所需的热量,降低煤耗量,同时也进一步降低了排烟温度,提高了锅炉的热效率。从省煤器流过的烟气之后便进入空气预热器,对进入炉膛的一次空气进行预热,提高进去炉膛的空气的温度,对于煤的正常燃烧有很重要的作用。 在各个部分的设计及计算的过程中,都需要对出口温度根据大概的温度降低范围对出口处的温度进行假设。并根据换热量以及工质吸热量进行校核,只有二者的误差在锅炉设计允许的误差范围内之后,才能进行下一步的设计以及计算。在各个部分的设计以及计算完成之后,还要进行热力计算的汇总,即校核总过程中的烟气放热量以及工质吸热量之间的误差校核,其误差也必须在允许范围之内才能完成整个锅炉的设计过程。 在这次课程设计的工程中,绝大部分的计算过程都使用excel来实现,计算过程也相对简单,而且在误差校核方面有很大的优势。在锅炉设计的同时,而且掌握了excel的使用。更加重要的是,通过这次的课程设计,使我更加的了解了锅炉的构造以及运行过程以及锅炉中

相关主题
文本预览
相关文档 最新文档