当前位置:文档之家› 制氢方法

制氢方法

制氢方法
制氢方法

工业制氢方法概述

世界上大多数氢气通过天然气、丙烷、或者石脑油重整制得。经过高温重整或部分氧化重整,天然气中的主要成分甲烷被分解成 H2、 CO2、CO 。这种路线占目前工业方法的 80 %, 其制氢产率为 70 %—90 %。烃类重整制氢技术已经相当成熟,从提高重整效率,增强对负载变换的适应能力,降低生产成本等方面考虑,催化重整技术不断得到发展,产生了不少改进的重整工艺 , 其中包括可再生重整、平板式重整、螺旋式重整、强化燃烧重整等。煤直接液化工艺中一个重要单元就是的单元就是加氢液化,下面着重介绍几种工业上制氢工艺:

一、烃类蒸汽转化法

蒸汽转化法可以采用从天然气到石油脑的所有轻烃为原料。主要利用高温下水蒸气和烃类发生反应。转化生成物主要为氢、一氧化碳和二氧化碳。该过程需要消耗大量的能量,只不过要脱除或分离二氧化碳是件很麻烦的事,虽然目前分离二氧化碳的方法在不断推出,如变压吸附法( PSA)、吸收法( 包括物理吸收和化学吸收法),低温蒸馏法,膜分离法等等,然而,二氧化碳的处理仍是很费脑筋,若是直接排入大气,势必造成环境污染。

二、烃类分解生成氢气和炭黑的制氢方法

该方法是将烃类分子进行热分解,产物为氢气和炭黑,炭黑可用于橡胶工业及其它行业中,同时避免了二氧化碳的排放。目前,主要有如下两种方法用于烃类分解制取氢气和炭黑。

( 1 ) 热裂解法:将烃类原料在无氧( 隔绝空气),无火焰的条件下,热分解为氢气和炭黑。生产装置中可设置两台裂解炉,炉内衬耐火材料并用耐火砖砌成花格成方型通道,生产时,先通入空气和燃料气在炉内燃烧并加热格子砖,然后停止通空气和燃料气,用格子砖蓄存的热量裂解通入的原料气,生成氢气和炭黑,两台炉子轮流进行蓄热和裂解,循环操作,将炭黑与气相分离后气体经提纯后可得纯氢,其中氢含量依原料不同而异,例如原料为天然气,其氢含量可达 85 % 以上。

天然气高温热裂解制氢技术,其主要优点在于制取高纯度氢气的同时,不向大气排放二氧化碳,而是制得更有经济价值、易于储存且可用于未来碳资源的固体碳,减轻了环境的温室效应。除了间歇反应有人曾做过天然气连续裂解的尝试。天然气催化裂解可以提高裂解速度,生成的纳米碳也能催化甲烷裂解过程。甲烷分解反应吸热 kJ/mol,因此最少需要甲烷燃烧( 887kJ/mol ) 的9 % 来提供反应所需热量。该方法技术较简单 , 经济上也还合适。

( 2 ) 等离子体法:在反应器中装有等离子体炬,提供能量使原料发生热分解。等离子气是氢气,可以在过程中循环使用,因此,除了原料和等离子体炬所需的电源外不需要额外能量源。用高温产品加热原料使其达到规定的要求,多余的热量可以用来生成蒸汽。在规模较大的装置中,用多余的热量发电也是可行的。由于回收了过程的热量,从而降低了整个过程的能量消耗。等离子体法原料的适应性强,几乎所有的烃类,从天然气到重质油都可作为制氢原料,原料的改变,仅仅会影响产品中的氢气和炭黑的比例,此外,装置的生产规模可大可小。

三、烃类部分氧化法

该方法是将预热后的烃和不足化学计量的氧通过特制烧嘴喷入气化炉燃烧室,在燃烧室内,无需催化剂,烃类发生部分氧化反应,反应温度 1 250 ~ 1 500 ℃, 压力按后续工艺要求而定 , 通常为 3 ~ 8M P a。

重油是炼油过程中的残余物,市场价值不高,用来制氢却一度显示出其成本优势,近年来重油的用途逐步扩宽,重油制氢成本优势逐步消失,但是在煤化工中还有优势。重油部分氧化包括碳氢化合物与氧气、水蒸汽反应生成氢气和碳氧化物,该过程在一定的压力下进行,可以采用催化剂,也可以不采用催化剂,这取决于所选原料与过程,催化部分氧化通常是以甲烷或石脑油为主的低碳烃为原料,而非催化部分氧化则以重油为原料,反应温度在 1 150 ~ 1 315 ℃。与甲烷相比,重油的碳氢比较高,因此重油部分氧化制得的氢气主要来自蒸汽和一氧化碳,其中蒸汽贡献氢气的70%。与天然气蒸汽转化制氢相比。重油部分氧化需要空分设备来制备纯氧。

神华煤制氢装置

四、煤气化法制氢

煤气化法按气化炉可分为固定床、沸腾床和气流床三种,按操作的温度条件可分为高温 (≥1 300 ℃ ) 、中温 ( 1 000 ℃左右) 和低温( 70 0 ~ 800 ℃ ) 三种。从化学平衡观点看 , 高温条件下,更有利于氢和一氧化碳的生成,且不会产生焦油和重质油,甲烷的生成量也低。煤气化法制氢不仅工艺复杂,能耗相对较高,而且制得的氢含量低,所含杂质的种类较多,需要有效的分离提纯技术与之配合才能得到达到运用标准的高纯氢。目前煤制氢装置在我国内比较多,主要因为我国煤炭资源丰富。

五、甲醇裂解制氢法

与天然气 ( 甲烷) 制氢相似 , 有三种裂解方法 : 蒸汽转化法 , 部分氧化法和热裂解法。

( 1) 蒸汽转化法:甲醇蒸汽转换法用 Cu - Zn - Cr 催化剂,转化温度 240 ~

260 ℃,压力 0 . 8 ~1 . 0 MPa,反应可在极大空速下进行,原料甲醇几乎可以完全转化为 H2和 CO2。转化气的典型组成为:氢 73 %~ 75 %, 二氧化碳 2 3 %~ 24 %, 一氧化碳 0 . 8 %~ 1 %。转化气无需变换只需脱碳即可获得纯氢。

( 2) 甲醇部分氧化法:低温甲醇合成催化剂 Cu - Zn / Al2O3对甲醇部分氧化反应表现出较好的催化活性,甲醇的转化率,氢的产率受温度、接触时间及 O2/ CH3OH比等条件的影响,当氧气的加入最小于反应计量时,该反应就同时发生氧化和分解两个反应。

( 3 ) 甲醇直接热裂解:甲醇直接热裂解是早期的技术,采用 Mo -Ni或 Ni - Al 催化剂,反应温度 400 ~ 500 ℃, 产品主要为 CO 和 H2 , 一次裂解气的组成为 : H2 67 %,CO31 %,CO 22 %,若要制纯氢,还需通过一氧化碳变换和变换气的脱碳,甲烷化纯化工艺过程。

六、水分解法制氢

水分解法制氢是许多年来一直开发不懈的制氢方法 , 且目前世界上有很多种方法将水分解为氢和氧 , 比如直接热解法、热化学分解法和光分解法。但真正工业化的方法只有电解法。

电解法在已成型的现代工业中,水的电解是在碱溶液中完成的,所用的碱一般是KOH ( 20 %~ 3 0 % ),也有一些电解制氢工厂采用的是与 Fe 或 Ni 共存性好的碱性溶液,此外,杜邦公司还开发了一种含有磺酸基的固体聚合物电解质( S PE),在 S PE 膜两面直

接安排电极 , 阳极产生的 H+离子透过聚合物到达另一面的阴极而成为氢,OH-离子直接在阳极获得电子而成氧。

除了上述工业上制氢工艺方法还有很多在开发的方法和已经开发的方法,比如硫化氢制氢气,既解决了硫化氢的污染又能制得氢气;生物质制氢法可以做到环保可循环制氢;高科技的伽马射线制氢;微生物制氢等。这些工艺都需要在环保清洁制氢的同时兼顾成本问题。

燃料电池汽车加氢站设计与工程建设实践

燃料电池汽车加氢站设计与工程建设实践 加氢站对于燃料电池汽车的发展有着积极的推动作用。燃料电池(F uel Cell)是氢能使用最重要的技术之一,作为一种电化学反应装置,其不经过燃烧,直接将化学能转化成电能。燃料电池技术广泛应用于汽车工业领域,与传统的内燃机相比,燃料电池具有更高的能源转换效率,而且由于其反应的产物是水,不产生任何的污染物和温室气体,实现了真正的零排放。我国燃料电池汽车事业的发展基本与世界同步,在政府的能源、环保战略,发展速度仍在不断加快。 2.1 加氢站储氢量 根据对世博期间燃料电池公交车、燃料电池轿车和燃料电池观光车3类共196辆氢燃料电池汽车在世博园区内外进行示范运行。燃料电池汽车每日行驶里程和单位里程耗氢量进行估算,所有燃料电池汽车的日最大氢气需求量约600kg。考虑供氢安全系数和工程实际情况,站内设置两辆长管拖车,其储氢量约560kg,储存压力不大于20MPa。站内固定储氢瓶组储氢量约500kg,储存压力不大于45MPa。站内总储氢量约1060kg,属于三级站。 该站选择离站制氢(Off-site)的模式,采用氢气长管拖车将小于20 MPa的压缩氢气从生产单位运送进站后再通过站内压缩机将氢气增压 卸载至站内高压储氢瓶组,以不大于45MPa的压力储存。车辆加氢时,

从储氢瓶组中输出氢气,通过加氢机充装到燃料电池汽车的车载储氢瓶中。加氢站是对高压氢气的储存、输配、加注等技术的综合应用,世博加氢站系统主要包括:氢气源(站外供氢)、氢气压缩系统(氢气压缩机)、氢气储存系统(高压储氢瓶组)、氢气加注系统(加氢机). 此外还有高压氢气管线、阀门组件和安全、控制系统等[6],加氢站的工艺流程由图所示。氢气长管拖车将小于20MPa的压缩氢气从氢气生产单位运送进加氢站,氢气经卸气柱卸载后通过氢气压缩机增压至4 3.8MPa储存到站内固定储氢瓶组中,氢气长管拖车也可作为站内的一级储氢装置,当对车辆加氢时,通过多级取气的模式从储氢瓶组中输出氢气,通过加氢机充装到燃料电池汽车的车载储氢瓶中。 2.4 加氢站总平面布局 加氢站是甲类火灾危险眭设施,必须在设计上保证其安全可靠。在加氢站进行站址选择和站内建、构筑物及设备平面布局设计时,必须符合上海市城市规划和站区防火安全的要求,参照上海市地方规范《燃料电池汽车加氢站技术规程》,确保加氢站与站外重要公共建筑物、明火或散发火花地点、民用建筑和厂房、库房、储罐、铁道、铁路、架空通信线、架空电力线路等保持足够的防火距离满足表1的要求。 在进行加氢站内部平面布局设计时,应当考虑站内氢气压缩机间、储氢装置、加氢机、站房、变配电间等建构筑物的安全距离满足表2的

天然气制氢气

天然气,是一种主要由甲烷组成的气态化石燃料。它主要存在于油田和天然气田,也有少量出于煤层。 天然气 天然气,是一种多组分的混合气体,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,如氦和氩等。 纯天然气含:CH4(98%) C3H8(0.3%) C4Hm(0.3%) CmHn(0.4%) N2(1.3%),低发热值为(36220KJ/Nm3). 在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。天然气在燃烧过程中产生的能影响人类呼吸系统健康的物质极少,产生的二氧化碳仅为煤的40%左右,产生的二氧化硫也很少。天然气燃烧后无废渣、废水产生,相较于煤炭、石油等能源具有使用安全、热值高、洁净等优势。

从广义的定义来说,天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、生物圈和岩石圈中各种自然过程形成的气体。 而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物,主要存在于油田气、气田气、煤层气、泥火山气和生物生成气中。天然气又可分为伴生气和非伴生气两种。伴随原油共生,与原油同时被采出的油田气叫伴生气;非伴生气包括纯气田天然气和凝析气田天然气两种,在地层中都以气态存在。凝析气田天然气从地层流出井口后,随着压力和温度的下降,分离为气液两相,气相是凝析气田天然气,液相是凝析液,叫凝析油。 依天然气蕴藏状态,又分为构造性天然气、水溶性天然气、煤矿天然气等三种。而构造性天然气又可分为伴随原油出产的湿性天然气、不含液体成份的干性天然气。 天然气管道 天然气与石油生成过程既有联系又有区别:石油主要形成于深成作用阶段,由催化裂解作用引起,而天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终;与石油的生成相比,无论是原始物质还是生成环境,天然气的生成都更广泛、更迅速、更容易,各种类型的有机质都可形成天然气——腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃。因此天然气的成因是多种多样的。归纳起来,天然气的成因可分为生物成因气、油型气和煤型气。近年来无机成因气尤其是非烃气受到高度重视,这里一并简要介绍,最后还了解各种成因气的判别方法。 生物成因气 1.概念

制氢装置转化炉简介

一、 概述 随着炼油厂加氢装置的逐渐增多,所需要的氢气也越来越多,使得制氢装置相应的发展很快。目前大型工业装置采用的制氢方法均为烃类水蒸汽转化法,利用的原料主要有天然气、炼厂气、石脑油等轻质烃类。这些烃类在特定的温度、压力以及催化剂存在的条件下与水蒸汽发生反应,生成氢气及一氧化碳。 烃类化合物的水蒸汽转化反应是一个复杂的反应平衡系统,高分子烃类先裂解或转化成甲烷,最终与水蒸汽进行转化反应。大体上可用下列反应式表达:CnHm + 2H2O → Cn-1Hm-2 + CO2 + 3H2 – Q CH4 + 2H2O = CO2 + 4H2 – Q CO2 + H2 = CO + H2O - Q 转化炉是制氢装置中转化反应的反应器,属于装置的心脏设备。这是一种非常特殊的外热式列管反应器,由于转化反应的强吸热及高温等特点,这种反应器被设计成加热炉的形式,催化剂装在一根根的转化炉管内,在炉膛内直接加热,反应介质通过炉管内的催化剂床层进行反应。 转化炉苛刻的操作条件,使得这种炉子有很多有别于其它加热炉的特殊性,在炉子结构、炉管材料、管路系统支撑、管路系统应力、管路系统膨胀及补偿、燃烧、烟气流动及分配、耐火材料等各方面都必须精心考虑。 二、 炉型及结构 1. 炉型 制氢装置转化炉按辐射室供热方式进行分类,可分为以下四种方式: 1) 顶烧炉:这是很多公司都采用的一种炉型。这种炉型的燃烧器布置在辐射室顶部,转化管受热形式为单排管受双面辐射,火焰与炉管平行,垂直向下燃烧,烟气下行,从炉膛底部烟道离开辐射室。这种炉型的对流室均布置在辐射室旁边。 2) 侧烧炉:这种炉型以丹麦TOPSφE公司为代表。这种炉子的燃烧器布置在辐射室的侧墙,火焰附墙燃烧。早期转化管的受热形式多为炉膛中间的双排管受侧墙的双面辐射,由于受热形式不好,操作条件苛刻时,炉管易弯曲,现在大部分都改为单排管受双面辐射的形式。这种炉子的烟气上行,对流室置于辐射室顶部,大型装置的对流室考虑到结构及检修等原因,对流室经常放置在辐射室旁边。 3) 梯台炉:这种炉型以美国FOSTER WHEELER公司为代表。这种炉子的辐射室侧墙

制氢转化炉施工方案1概论

目录 一、工程概况 (1) 二、施工标准 (2) 三、适用范围 (3) 四、制氢转化炉钢结构施工要求 (4) 五、炉管及配件的制作 (12) 六、炉管的安装 (19) 七、炉管系统的试压 (21) 八、配件的安装 (22) 九、辐射室炉管的安装 (25) 十、安全措施和文明施工 (27) 十一、施工机具 (29) 十二、施工人员 (31) 十二、施工平面布置图 (35)

山东海化集团80万吨/年重油催化项目制氢转化炉施工方案 编制: 审核: 批准: 中国化学工程第十六建设公司 重油项目经理部 二OO六年十月十日

一工程概况: 山东海化集团80万吨/年重油催化项目气制氢装置的制氢转化炉炉体(辐射室部分)高为16.935米,端面宽为8.06米。炉型为立管式厢式炉,分为辐射室、对流室、烟风道三部分。 辐射室加热联合油及轻蜡油,炉管为单排管双面辐射,共72根炉管,分为4排,炉底30台新型小能量扁平火焰燃烧器分成5排,炉墙中间设置中间火墙将辐射室分为两部分。对流室4排炉管,每排14根,其中58根为翅片管,最下面一排炉管为光管。 二施工标准 1施工图纸 2 SH3070-1995《石油化工管式炉钢结构设计规范》 3 SH3526-1992《石油化工异种钢焊接规程》 4 JB4730-94 《压力容器无损检测》 5 SH3506-2000 《管室炉安装工程施工及验收规范》 6 SHT3523-1999《石油化工铬镍奥氏体、铁镍合金和镍合金管道焊接规程》 7 JBT-4730.1~4730.6-2005 《承压设备无损检测》 8 JB T6046-92 《碳钢、低合金钢焊接构件焊后热处理方法》 9 SHJ509《石油化工工程焊接工艺评定》

制氢方法

工业制氢方法概述 世界上大多数氢气通过天然气、丙烷、或者石脑油重整制得。经过高温重整或部分氧化重整,天然气中的主要成分甲烷被分解成 H2、 CO2、CO 。这种路线占目前工业方法的 80 %, 其制氢产率为 70 %—90 %。烃类重整制氢技术已经相当成熟,从提高重整效率,增强对负载变换的适应能力,降低生产成本等方面考虑,催化重整技术不断得到发展,产生了不少改进的重整工艺 , 其中包括可再生重整、平板式重整、螺旋式重整、强化燃烧重整等。煤直接液化工艺中一个重要单元就是的单元就是加氢液化,下面着重介绍几种工业上制氢工艺: 一、烃类蒸汽转化法 蒸汽转化法可以采用从天然气到石油脑的所有轻烃为原料。主要利用高温下水蒸气和烃类发生反应。转化生成物主要为氢、一氧化碳和二氧化碳。该过程需要消耗大量的能量,只不过要脱除或分离二氧化碳是件很麻烦的事,虽然目前分离二氧化碳的方法在不断推出,如变压吸附法( PSA)、吸收法( 包括物理吸收和化学吸收法),低温蒸馏法,膜分离法等等,然而,二氧化碳的处理仍是很费脑筋,若是直接排入大气,势必造成环境污染。 二、烃类分解生成氢气和炭黑的制氢方法 该方法是将烃类分子进行热分解,产物为氢气和炭黑,炭黑可用于橡胶工业及其它行业中,同时避免了二氧化碳的排放。目前,主要有如下两种方法用于烃类分解制取氢气和炭黑。 ( 1 ) 热裂解法:将烃类原料在无氧( 隔绝空气),无火焰的条件下,热分解为氢气和炭黑。生产装置中可设置两台裂解炉,炉内衬耐火材料并用耐火砖砌成花格成方型通道,生产时,先通入空气和燃料气在炉内燃烧并加热格子砖,然后停止通空气和燃料气,用格子砖蓄存的热量裂解通入的原料气,生成氢气和炭黑,两台炉子轮流进行蓄热和裂解,循环操作,将炭黑与气相分离后气体经提纯后可得纯氢,其中氢含量依原料不同而异,例如原料为天然气,其氢含量可达 85 % 以上。 天然气高温热裂解制氢技术,其主要优点在于制取高纯度氢气的同时,不向大气排放二氧化碳,而是制得更有经济价值、易于储存且可用于未来碳资源的固体碳,减轻了环境的温室效应。除了间歇反应有人曾做过天然气连续裂解的尝试。天然气催化裂解可以提高裂解速度,生成的纳米碳也能催化甲烷裂解过程。甲烷分解反应吸热 kJ/mol,因此最少需要甲烷燃烧( 887kJ/mol ) 的9 % 来提供反应所需热量。该方法技术较简单 , 经济上也还合适。 ( 2 ) 等离子体法:在反应器中装有等离子体炬,提供能量使原料发生热分解。等离子气是氢气,可以在过程中循环使用,因此,除了原料和等离子体炬所需的电源外不需要额外能量源。用高温产品加热原料使其达到规定的要求,多余的热量可以用来生成蒸汽。在规模较大的装置中,用多余的热量发电也是可行的。由于回收了过程的热量,从而降低了整个过程的能量消耗。等离子体法原料的适应性强,几乎所有的烃类,从天然气到重质油都可作为制氢原料,原料的改变,仅仅会影响产品中的氢气和炭黑的比例,此外,装置的生产规模可大可小。 三、烃类部分氧化法

氨分解制氢系统生产安全操作规程标准范本

操作规程编号:LX-FS-A99655 氨分解制氢系统生产安全操作规程 标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

氨分解制氢系统生产安全操作规程 标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、开机检查 1)、检查设备气、电各系统是否畅通或是否漏气,电气接触不良或仪表失灵等现象,发现问题及时修复。 2)、气路系统各阀门应处于关闭状态。 3)接好进出水管道,打开冷却系统阀门。 4)接通外部电源。 5)有氨瓶的时是否连接好。 6)汽化器设定温度,电接点穴温度计或电接点菜压力表。

2、开机程序 1)管路吹扫用氨气扫分解炉和气体管路,以置换系统中的空气,吹扫时间表2-4小时。 2)接通电源,打开电控箱电源开关,温控仪指示灯亮,分解炉加温指示灯亮,观察电流表工作是否正常,设备开始加热升温。 3)开减压阀、排污阀,使设备内的残余气体在升温过程中放空至室外。 4)炉膛温度较低时,氨不易分解,不能通气,炉温升至500C以上时,缓慢打开进氨阀,进气流量调整在放空囗无浓烈氨味为准,所产生的分解和水由排污阀及放空阀放至室外。随着炉温的升高,进气流量逐渐增大;当炉温达到800C时,将进气流量尽量打大,并在此状态下稳定3-5小时,待放空囗气体用鼻嗅无明显的氨味或观察气体燃烧时火焰呈桔红色

天然气转化制氢工艺进展及其催化剂发展趋势

专论与综述 天然气转化制氢工艺进展及其催化剂发展趋势 催化剂厂谢建川 摘 要 介绍了以天然气为原料的转化制氢工艺技术的发展概况以及天然气蒸汽转化用催化剂的发展趋势。 关键词 天然气 转化 催化剂 自从20世纪中期天然气在美国得以发展,壳牌化学公司首次在世界上用天然气生产合成氨以来,转化制氢工艺在世界范围内迅速发展。天然气、油田伴生气、焦炉气、石脑油(国内称为轻油)、渣油、炼厂气和煤等成为了当今制氢、制氨原料的主流。就转化制氢制氨工艺而言,其发展主要是以节能、降耗、扩产、缩小装置尺寸、降低投资费用以及延长运转周期等为目标进行工艺改进。而在转化催化剂方面,国内外研究人员也进行了大量的研究开发工作,主要是围绕不同原料和不同工艺开发新型转化催化剂,并且还要保证开发的新催化剂在适合于不同原料和工艺的前提下,提高催化剂的活性、抗压强度、抗碳性和抗毒性等。 1 天然气转化制氢工艺进展 我国自20世纪70年代从国外引进大型合成氨装置,现已有14套以天然气或炼厂气为原料的大型合成氨装置。近年来国外推出了一系列节能型工艺,如美国Kellogg公司MEAP节能流程, Tops e公司低能耗流程;美国Braun低能耗深冷净化工艺,I CI的AMV节能工艺以及德国UHDE-I C I-AMV工艺等,主要从以下几方面达到节能降耗的目的。 (1)将传统流程转化炉的热效率从原有的85%提高到90%~92%,烟气排出温度降至120 ~125 ,增加燃烧空气预热器等。 (2)提高一段炉操作压力,由原来的2.8M Pa 提高到4.0~4.8MPa。 (3)降低一段炉出口温度,由原来的820 降到695~780 。 (4)转化炉管采用新型材料MANAUR I T E (25C r-35N-i Nb-T i),使管壁厚度降低,并使管壁中因温度梯度造成的热应力降低至接近内部压力的水平,与HK-40转化管相比,工作寿命更长,性能更稳定。 (5)降低水碳比,由原来的3.5降到2.5~ 2.7。 (6)增加二段炉燃烧空气量,提高燃烧空气温度至610~630 ,采用性能更好的二段燃烧器。 (7)降低一段炉负荷,增加预转化工艺,将一段炉负荷部分转移到二段炉。 预转化工艺是在一段炉前,在较低的水碳比下进行原料的预转化,主要用于以石脑油等高碳烃为原料的转化制氢工艺。但近年来为了降低一段炉负荷,达到增产节能,提高效益,以天然气为原料的装置,在新建和改造中也开始采用预转化工艺技术。国内锦西大化就率先采用了该技术。 Tops e公司首次在合成氨装置中采用预转化技术是在20世纪80年代,使现有制氢装置在增产节能方面取得了明显效果:减少了一段炉燃烧量,增加生产能力,延长了炉管使用周期,降低了工艺蒸汽使用量,减少了设备投资以及在装置改造中的所谓瓶颈问题。国外使用预转化工艺除了在制氢制氨厂使一部分甲烷转化成氢或使部分石脑油预转化为较低级的甲烷外;另一方面是用石脑油制取富甲烷气,可直接作城市煤气使用,也

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

氨分解制氢站安全注意事项

氨分解制氢站安全注意事项 1经常检查设备的气密性,防止有螺帽、螺栓松动漏气,否则气体纯度难以保证,氮氢混合气体泄漏会影响安全. 2经常注意温度仪表和热电偶工作是否正常,若温度仪失灵或热电偶接触不良,易造成指示温度和实际温度的指示不一致,使加热温度过高,烧坏设备,故发现温度仪失灵或热电偶接触不良,必须立即检修。 3当在较长时间不通入氨气而氨分解制氢纯化装置需要保温时,自动控温不能高于500℃,否则将使局部氨分解制氢装置触媒烧坏。 4试漏时进气、放气必须缓慢,以免由于流量计里面浮子的突然跳动而把玻璃管打碎。 5用压缩空气对氨分解制氢纯化装置试漏时,必须使炉内温度降至室温后方可进行,否则将造成触媒的迅速氧化而失去活性。 6使用时流量计内浮子上下跳动时,应关小流量计阀,直至使浮子平静下来。 7氨分解纯化装置再生时,每小时打开排污阀,排水。

9、再生时注意温控仪能否正常工作,防止失控超温烧坏电加热棒和干燥器。 10、操作时按不同工作状态,开闭各阀门,防止操作失误,达不到纯化要求。 11、在可能条件下,宜于定期检查气体纯度,以保证装置正常工作和用合格优质气体送使用点。 12、要经常注意温控仪是否正常工作,防止失控使分解炉超温,烧坏设备。 13、打开氨阀一定要缓慢,以防止大量液氨冲入装置,无法控制进氨压力。 14、每次停机后,系统内压力降为零时,由需重新启用装置,则应该充入氮气,吹扫系统,将有可能进入系统中的空气吹扫清。 15、电接点压力表的上限设定在0.08MPa,下限设定在0.03MPa,电接点压力表是用来报警的,当系统压力达到0.08Mpa或小于0.03Mpa,均发出报警声。以保证系统的工作压力。

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO 而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。 八、金属与酸反应制氢气, 当然,金属必须是活动性排在氢前的(钾,钙,钠不行),可以用镁铝锌铁锡铅。酸不能用硝酸和浓硫酸。 工厂生产方法有: 1、电解水制氢. 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及

氨分解制氢控制系统 2

氨分解制氢控制系统方案 一、概述 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。下面介绍液氨的理化特性、毒性和燃烧爆炸3个方面的基础知识。 A、氨的理化性质分子式:NH3 气氨相对密度(空气=1):0.59 分子量:17.04 液氨相对密度(水=1):0.7067(25℃) CAS编号:7664-41-7 自燃点:651.11℃熔点(℃):-77.7 爆炸极限:16%~25% 沸点(℃):-33.4 1%水溶液PH值:11.7 蒸气压:882kPa(20℃) B、毒性 (一)毒性及中毒机理液氨人类经口TDLo:0.15 ml/kg 液氨人类吸入LCLo:5000 ppm/5m 氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。 (二)接触途径及中毒症状 1.吸入吸入是接触的主要途径。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。(1)轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。(2)急性吸入氨中毒的发生多由意外事故如管道破裂、

阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。(3)严重吸入中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。 2.皮肤和眼睛接触低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。 C、燃烧爆炸1.燃烧爆炸特性常温下氨是一种可燃气体,但较难点燃。爆炸极限为16%~25%,最易引燃浓度为17%。产生最大爆炸压力时的浓度为22.5%。 在小化工行业中,我国现行的生产运行管理仍处于手工操作阶段,运行数据不全,难以实现量化管理。直接影响产品的质和量。 小化工的自动化系统在提小化工行业的管理水平,保证产品的质量、安全生产、经济节能等方面都具有十分重要的作用。小化工行业的自动化势在必行。因此,建立网络自动监控系统,来实现各“段”现场参数的采集、控制与各“段”之间的通讯联系。达到小化工行业

天然气制氢

天然气制氢 1.制氢原理 1.天然气脱硫本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1?5%1 勺氢,在约400C高温 下发生下述反应: RSH+H 2=H2S+RH H 2S+MnO=MnS2+OH 经铁锰系脱硫剂初步转化吸收后,剩余勺硫化氢,再在采用勺氧化锌催化剂作用下发生下述脱硫反应而被吸收: H 2S+ZnO=ZnS+2OH C 2H5SH+ZnO=ZnS+2HC4+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至O.lppm以下,以满足蒸汽转化催化剂对硫的要求。 2蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃--- 蒸汽转化反应, 主要反应如下: CH 4+H3CO+3HQ ⑴ 一氧化碳产氢CO + H 2O CO2 + H 2 +Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积炭,氧化等。 在转化反应中,要使转化率高,残余甲烷少,氢纯度高,反应温度就要高。但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积炭,增加收率,要控制较大的水碳比。 3变换反应的反应方程式如下: CO+H 2O=CO2+H2+Q 这是一个可逆的放热反应,降低温度和增加过量的水蒸汽,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。为使最终CO浓度降到低的程度,只有低变催化剂才能胜任。高低变串联不仅充分发挥了两种催化剂各自的特点,而且为生产过程中的废热利用创造了良好的条 4改良热钾碱法 改良热钾碱溶液中含碳酸钾,二乙醇胺及VO。碳酸钾做吸收剂、二乙醇胺做催化剂、它起着加快吸收和解吸的作用。VO5为缓蚀剂,可以使碳钢表面产生致密的保护膜,从而防止碳钢的腐蚀。KCO吸收CO的反应机理如下: K2CO+CO+H

制氢方法简介

各种制氢方法简介 ........................................................................................... 氢能是一种二次能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质力UI后方能得到氢气。最丰富的含氢物质是水(H2O),其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。因此要开发利用这种理想的清洁能源,必需首先开发氢源,即研究开发各种制氢的方法。从长远看以水为原料制取氢气是最有前途的方法,原料取之不尽,而且氢燃烧放出能量后又生成产物水,不造成环境污染。各种矿物燃料制氢是目前制氢的最主要方法,但其储量有限,且制氢过程会对环境造成污染。其它各类含氢物质转化制氢的方法目前尚处次要地位,有的正在研究开发,但随着氢能应用范围的扩大,对氢源要求不断增加,也不失为一种提供氢源的方法。 1.电解水制氢 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定的能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75~85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。目前水电解的工艺、设备均在不断的改进:对电解反应器电极材料的改进,以往电解质一般采用强碱性电解液,近年开发采用固体高分子离子交换膜为电解质,且此种隔膜又起到电解池阴阳极的隔膜作用;在电解工艺上采用高温高压参数以利反应进行等。但水电解制氢能耗仍高,一般每立方米氢气电耗为4.5~5.5kWh左右。电能可由各种一次能源提供,其中包括矿物燃料、核能、太阳能、水能、风能及海洋能等等,核能、水能和海洋能其资源丰富,能长期利用。我国水力资源丰富,利用水力发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高、成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电解制得氢气并用氢作为中间载能体来调节、贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制得氢气作原料而非作为能源。对电解反应中电极过程、电极材料等方面课题南开大学、首都师范大学等单位均曾开展研究,随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。 以水为原料的热化学循环分解水制氢方法,避免了水直接热分解所需的高温(4000K以上),且可降低电耗,受人们的重视小该方法是在水反应系统中加入一中间物,经历不同的反应阶段,最终将水分解为氢和氧,中间物不消耗,各阶段反应温度均较低。如美国通用原子能公司(GA公司)提出的硫一碘热化学制氢循环: 近年已先后研究开发了20多种热化学循环法,有的已进入中试阶段,我国在该领域基本属空白,应积极赶上。 光化学制氢是以水为原料,光催化分解制取氢气的方法。光催化过捏是指含有催化剂的反应体系,在光照下由于有催化剂存在,促使水解制得氢气。在70年代开始国外有研究报道,我国中科院感光所等单位也开展了研究。该方法具有开发前景,但目前尚处于基础研究阶段。 2.矿物燃料制氢 以煤、石油及天然气为原料制取氢气是当今制取氢气最主要的方法。制得氢气主要作为化工原料,如生产合成氨、合成甲醇等。有时某些含氢气体产物亦作为气体燃料供城市煤气。用矿物燃料制氢的方法包括含氢气体的制造、气体中CO组份变换反应及氢气提纯等步骤。该方法在我国都具有成熟的工艺,井建有工业生产装置。 (1)以煤为原料制取氢气 以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在900-1000°C制取焦碳,副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)、甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤

1500Nm3-h天然气转化制氢装置项目建议书

xxxx集团有限公司 1500Nm3/h天然气转化制氢装置 项目建议书 编号:xxxx-xxxx-1112

一、总论 1.1 装置名称及建设地点 装置名称:1500Nm3/h 天然气制氢装置 建设地点:xxxx 1.2 装置能力和年操作时间 装置能力: :1500Nm3/h; H 2 纯度: ≧99.99(V/V) 压力≧2.0 MPa(待定) 年操作时间:≧8000h 操作范围:40%-110% 1.3 原料 天然气(参考条件,请根据实际组分修改完善): 1.4 产品 氢气产品

1.5 公用工程规格 1.5.1 脱盐水 ●温度:常温 ●压力:0.05MPa(G) ●水质:电导率≤5μS/cm 溶解O2 ≤2 mg/kg 氯化物≤0.1 mg/kg 硅酸盐(以SiO2计) ≤0.2 mg/kg Fe ≤0.1 mg/kg 1.5.2 循环冷却水 ●供水温度:≤28℃ ●回水温度:≤40℃ ●供水压力:≥0.40MPa ●回水压力:≥0.25MPa ●氯离子≤25 mg/kg 1.5.3 电 ●交流电:相数/电压等级/频率 3 PH/380V/50Hz ●交流电:相数/电压等级/频率 1 PH/220V/50Hz ● UPS交流电:相数/电压等级/频率 1 PH/220V/50Hz 1.5.4 仪表空气 ●压力: 0.7MPa

●温度:常温 ●露点: -55 ℃ ●含尘量: <1mg/m3,含尘颗粒直径小于3μm。 ●含油量:油份含量控制在1ppm以下 1.5.5 氮气 ●压力: 0.6MPa ●温度: 40℃ ●需求量:在装置建成初次置换使用,总量约为5000 Nm3 正常生产时不用 1.6 公用工程及原材料消耗 注:电耗与原料天然气压力有关。

常规的制氢方法及几种制氢技术的优劣势

常规的制氢方法及技术的优劣势 1、工业上常用的制氢方法 工业制氢方案很多,主要有以下几类: (1)煤制氢; (2)天然气制氢; (3)甲醇制氢:包括甲醇水蒸汽重整制氢、甲醇直裂制氢、甲醇部分氧化制氢; (4)水解制氢 (5)富氢气体提纯制氢:各种富氢尾气(氯碱厂副产氢、炼油厂副产氢、合成氨厂副产氢、煤化工副产氢等)。 2、主流的工业制氢方案选择 (1)煤制氢工艺流程复杂,环保问题也突出,目前中小型的煤制氢已经不再审批。 (2)富氢气体提纯制氢主要依托上游主装置,依赖性较强。 (3)在制氢领域,目前主要的是水电解制氢、甲醇制氢、天然气制氢,我们分别作详细介绍: 3、主流的工业制氢方案介绍对比 (1)电解水制氢 原理是电解液(一般是含有30%左右氢氧化钾(KOH)的溶液),在接通直流电后,水分解为氢气和氧气。 该方法技术成熟、设备简单、运行可靠、管理方便、不产生污染、可制得氢气纯度高、杂质含量少,适用于各种应用场合,唯一缺点是耗能大,制氢成本高;目前商品化的水电解制氢装置的操作压力为0.8~3.0MPa,操作温度为80~90℃,制氢纯度可达99.7%,制氧纯度达99.5%。 (2)甲醇制氢 原理是甲醇和水反应生成氢气和二氧化碳的合成气,再经过PSA提纯,得到高纯度的氢气。 该方法原料为甲醇和脱盐水,原料来源方便,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气;甲醇的单程转化率可达95%以上,氢气的选择性高于99.5%,再利用变压吸附技术,可得到纯度为99.999%的氢气,一氧化碳的含量低于1ppm。 (3)天然气制氢 原理是天然气和水反应生成氢气和二氧化碳的合成气,再经过PSA提纯,得到高纯度的氢气。 该方法原料来源方便,不需要设置原料储罐,单系列能力较大, 原料费用较低。反应温度在600-800℃,制氢过程需吸收大量的热,高温高压必然对设备的要求

电解水制氢工艺描述

电解水制氢工艺描述电解水生产氢气氧气是一个比较成熟的工艺。其主要组成部分有:电解槽、气水分离罐、加碱罐、洗涤罐、脱水罐、缓冲罐、冷却水箱等,电气、仪表及配套的设备元器件主要有:直流电解电源(简称电解电源)、电源冷却循环泵(简称电源冷却泵或电源泵)、电解液循环泵(简称循环泵)、电解系统冷却循环泵(简称电解冷却泵或冷却泵)、补水泵、电磁阀、压力变送器、温度变送器、差压变送器、流量计、压力表、减压阀、回火防止器、纯净水生产装置等。 电解水制氢工艺流程示意图见图1。 图1 电解水制氢工艺流程示意图

压力的单位为Mpa,小数点后面保留3位。差压的单位为kPa,小数点后面保留2位,流量单位为m3/h,小数点后面保留2位。温度的单位为°C,小数点后面保留1位,累计流量的单位为m3,小数点后面保留1位,累计工作时间的单位为h,小数点后面保留1位。 所有的电磁阀均为电开阀,通电开启,断电关闭。 一、电解电源DDY、电源冷却泵DLB、循环泵XHB及冷却泵LQB控制 表1 电解系统与冷却系统对应输入输出关系表 1、氢气压力P H 由压力变送器PT101变送为4~20mA直流信号,根据氢气压力P H 控制电 解电源DDY(电解电源DDY由一个开关量信号控制运行与停止)、电源冷却泵DLB和循环泵 XHB(电源冷却泵DLB和循环泵XHB与电解电源DDY同步受氢气压力P H 控制)的通断,氢气压力可以在触摸屏上设置: ○1氢气压力上限设定值(简称压力设定上限)P HH 的设置范围0~3.00Mpa(参考值0.40Mpa); ○2氢气压力下限设定值(简称压力设定下限)P HL 的设置范围0~3.00MPa(参考值0.35Mpa)。 参考值就是第一次开机设置时(或者长时间断电数据丢失时)推荐使用的数值。 ○3当氢气压力P H 高于压力设定上限P HH ,P H >P HH ,DO1输出为OFF,电解电源DDY、电源泵 DLB和循环泵XHB停止运行; ○4氢气压力P H 低于压力设定下限P HL ,P H <P HL , DO1输出为ON,电解电源DDY、电源泵DLB 和循环泵XHB通电运行。 2、当电解系统温度(实际为电解系统电解液的温度,简称电解温度)T E 由温度变送器TT101 变送为4~20mA直流信号,根据电解温度T E 控制电解电源DDY的通断,电解温控温度可在触摸屏上设置: ○1电解系统温度上限设定值(简称电解温控上限)T EH 设置范围55~95°C(参考值90°C); ○2电解系统温度下限设定值(简称电解温控下限)T EL 设置范围50~90°C(参考值85°C)。 ○3当电解系统温度T E 超过电解温控上限T EH ,T E >T EH ,发出报警信号,DO9输出为ON,同 时DO1输出为OFF,电解电源DDY、电源泵DLB和循环泵XHB停止运行,但这时其他系统继续正常工作。

制氢转化炉施工方案(修改版8.5)

延长石油(集团)公司煤-油共炼试验示范项目40000Nm3/h制氢装置制氢转化炉 安 装 施 工 方 案 编制: 审核: 江苏威达建设有限公司 2013年7月1日 目录

一、编制说明 0 二、工程概况 0 三、编制依据 (1) 四、施工准备 (2) 五、加热炉施工及衬里耐火砖砌筑流程图 (3) 6.1基础验收 (3) 6.2钢结构安装 (4) 6.3转化管安装 (7) 6.4烟囱、烟道、配件的安装 (8) 6.5平台梯子安装 (10) 6.6构件的预制 (10) 6.7 附件的安装 (16) 七、主要工序的施工方法及要求 (17) 7.1 材料检验 (17) 7.2 焊接 (18) 7.3钢结构施工重点、难点及采取的措施 (20) 7.4加热炉主要施工机具表 (20) 八、加热炉钢结构的防腐 (21) 8.1加热炉钢结构的除锈方法 (21) 8.2钢结构涂装施工 (21) 9.1工程质量目标 (22) 9. 2 工程质量保证的原则 (23) 9.3施工前的质量预控及材料验收: (24) 9.4质量控制措施: (25) 9.5施工材料现场保管相关规定 (25) 十、施工安全措施 (25) 10.1HSE管理目标: (25) 10.2 HSE组织责任 (26) 10.3 安全管理细则 (26) 十一、现场文明施工措施相关规定 (31)

一、编制说明 本方案适用于延长石油(集团)公司煤-油共炼试验示范项目40000Nm3/h制氢装置制氢转化炉的钢结构施工。为了较好地控制施工质量,确保安装工作的顺利进行,特制定本方案,作为指导性文件。施工中除应符合本方案的同时,还应符合设计图纸及相应的国家标准。 二、工程概况 2.1 本工程为延长石油(集团)公司煤-油共炼试验示范项目40000Nm3/h制氢装置制氢转化炉的现场安装。转化炉在工厂最大化预制,然后分片发至现场进行安装。转化炉主要由以下部分组成:辐射室、雨棚钢结构、对流室及余热回收系统。转化炉辐射室标高EL+25430mm,长19060mm;转化炉炉顶雨棚标高EL+29578mm;对流室主要由原料预热段、过热蒸汽段、高温板式预热器、蒸发段及低温板式预热器组成。制氢转化炉衬里耐火材料的施工,炉衬施工是炉子的关键工作之一,炉衬的施工直接关系到炉子的生产效率和使用寿命,因此对炉衬的施工应引起足够的重视。炉衬施工前必须做好充分的准备,合理的安排施工人员,与相关工种紧密配合,努力提高工作效率,克服困难,创造条件,高标准,严要求,建精品工程,保证工程按计划顺利进行。 2.2制氢转化炉的主要安装工作量见表 制氢转化炉主要安装工程量

相关主题
文本预览
相关文档 最新文档