当前位置:文档之家› 齐次状态方程解

齐次状态方程解

齐次状态方程解
齐次状态方程解

1、齐次状态方程解

【例】已知线性定常系统的齐次状态方程为

x x ??

????--=3210

& 试求该状态方程的解。

解 这里我们应用拉氏变换法求系统的状态转移矩阵。 首先计算矩阵

?

?

????+-=??????---??????=-3213210

00)(s s s s A sI 其次,计算1

()sI A --及状态转移矩阵()t Φ

??????--++-=

--s s s s A sI 2133

211

)(1

????

?

????

???

++++-+++++=)2)(1()

2)(1(2)2)(1(1)2)(1(3s s s s s s s s s s

??

??

????

??++

+-++

+-+-

++-+=2211221221112

112

s s s s s s s s ??

?

???+-+---=-==Φ----------t t t

t t t t

t At

e e e

e e e e e A sI L e

t 222211

2222])[()( 则齐次状态方程的解为

)0(2222)(2222x e e e

e e e e e t x t t t

t t t t

t ???

???+-+---=-------- 或者

???

? ???????

?+-+---=???? ??--------)0()0(2222)()(21222221x x e e e e e e e e t x t x t t t t t t t

t

2、线性变换例题

【例9.15】已知系统具有如下形式

u y y y y 66116')2()3(=+++

试求此系统对角形式的状态方程。

解 令 y x =1,'2y x =,)

2(3y x =

即 21x x =& 32x x =&

u x x x x 661163213+---=&

写成矩阵—向量形式

u x x x x x x ??

??

??????+????????????????????---=?????

?????6006116100010321321&&& (9.76)

[]??

??

?

?????=321001x x x y

可以看出A 阵为友矩阵,且A 的特征值为

321321-=-=-=λλλ,,

即 321λλλ≠≠ 。

这时我们选转换矩阵P 形式为

???????

????

?????=---11211

2

22

2

121

111

n n n n n n P λλλλλλλλλΛ

M ΛM M ΛΛΛ

n 为相同的阶数,这里n =3。

本题中 ????

??????---=921321111

P 令x=Pz

将上式代入(9.42)式,得: Bu APz z P +=&

CPz

y Bu P APz P z =+=--11&

系统可写为

????????????????????---??????????---??????????---=??????????32132194132111161161000105.05.111435.05.23z z z z z z &&&u ????

????????????????---+6005.05.111435.05.23 u z z z z z z ????

??????-+????????????????????---=?????

?????363300020001321321&&& 输出方程为

[][]??

??

?

?????=????????????????????---=321321111921321111001z z z z z z y

3、状态转移矩阵例题

【例9.18】 已知状态转移矩阵 ??

?

???+-+---=Φ--------t t t

t t t t

t e e e

e e e e e t 22222222)(,试求A 。 解 利用性质(1)、(2),有

?????

?--=??????--+-+-=Φ==-------3210

442222)0(02222t t t t

t

t t t

t e e e

e e e e e A & 【例9.19】已知状态方程:x x

?

?

????--=3210

&,试求状态转移矩阵的逆矩阵)(1t -Φ。 解 已知该齐次状态方程的转移矩阵为:

??

?

???+-+---=Φ--------t t t

t t t t

t e e e

e e e e e t 22222222)(, 利用性质(4)得

??

????+-+---=-Φ=Φ-t t t

t t t t

t e e e

e e e e e t t 22221

2222)()(

)(1t -Φ还可以根据)(t Φ按一般矩阵求逆矩阵的方法求取。

4、非齐次状态方程解例题

例9.20试求下列状态方程在)(1)(t t u =作用下的解。

101111x x u ????=+????????&,1(0)0x ??=????

解 (1) 积分法

已知非齐次状态方程解的形式为

?-Φ+Φ=t

d Bu t x t t x 0

)()()0()()(τττ

()1

11112101001()1111(1)

1t t t s e s t sI A s te e s s -----??

??

??-??

??-????Φ=-===??????????--??????

??????--??

L L L 在)(1)(t t u =作用下,为了简化计算,令ττ-=t '

,有

?Φ-+Φ=0

)()0()()(t

Bd x t t x ’‘ττ

?Φ+Φ=t

Bd x t 0

'')()0()(ττ

?Φ+Φ=t

Bd x t 0

)()0()(ττ

则: 00101()1t t

t t e e Bd d e

e te τ

τ

τττττ????-??

Φ==?????????

???

?? 所以, 10121()02t

t t t

t t t e e e x t te

e te te ??????

--??=+=????????????????

(2) 拉氏变换法

()()11

11()(0)()x t sI A x sI A BU s ----????=-+-????

L L

()1111

2

2

110111(0)1

110(1)1(1)t t e s s sI A x te s s s ----????

????????--??-===?

???????????????

??????---????

L L L ()111

12211

01(1)111()1101(1)1(1)t t s s e s sI A BU s s te s s s ----??????

??????-??-??-??????-===?

?????????

??????????

???

?--??-??????

L L L ()()

1

1

1

1

21()(0)()2t t e x t sI A x sI A BU s te ----??

-????=-+-=????

?

???

L

L

齐次和非齐次线性方程组的解法

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】r(A)= r

齐次状态方程解

1、齐次状态方程解 【例】已知线性定常系统的齐次状态方程为 x x ?? ????--=3210 & 试求该状态方程的解。 解 这里我们应用拉氏变换法求系统的状态转移矩阵。 首先计算矩阵 ? ? ????+-=??????---??????=-3213210 00)(s s s s A sI 其次,计算1 ()sI A --及状态转移矩阵()t Φ ??????--++-= --s s s s A sI 2133 211 )(1 ???? ? ???? ??? ++++-+++++=)2)(1() 2)(1(2)2)(1(1)2)(1(3s s s s s s s s s s ?? ?? ???? ??++ +-++ +-+- ++-+=2211221221112 112 s s s s s s s s ?? ? ???+-+---=-==Φ----------t t t t t t t t At e e e e e e e e A sI L e t 222211 2222])[()( 则齐次状态方程的解为 )0(2222)(2222x e e e e e e e e t x t t t t t t t t ??? ???+-+---=-------- 或者 ??? ? ??????? ?+-+---=???? ??--------)0()0(2222)()(21222221x x e e e e e e e e t x t x t t t t t t t t 2、线性变换例题 【例9.15】已知系统具有如下形式 u y y y y 66116')2()3(=+++

齐次和非齐次线性方程组的解法

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12L ξξξ; (3) 写出通解n r n r k k k --=+++1122L X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

第三章线性系统状态方程的解

第三章 系统的分析——状态方程的解 §3-1线性连续定常齐次方程求解 一、齐次方程和状态转移矩阵的定义 1、齐次方程 状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为: )()(t Ax t x =& 线性定常连续系统: Ax x =& 初始条件:00x x t == 2、状态转移矩阵的定义 齐次状态方程Ax x =&有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为 )0()(x e t x At ?=。其中At e 称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为: At e t =)(φ。 若初始条件为)(0t x ,则状态转移矩阵记为:) (0 0)(t t A e t t -=-Φ 对于线性时变系统,状态转移矩阵写为),(0t t φ,它是时刻t ,t 0的函数。但它一般不能写成指数形式。 (1)幂级数法——直接求解 设Ax x =&的解是t 的向量幂级数 Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( 式中ΛΛ,,, ,,k b b b b 210都是n 维向量,是待定系数。则当0=t 时, 000b x x t === 为了求其余各系数,将)(t x 求导,并代入)()(t Ax t x =&,得: Λ ΛΛΛ&+++++=-1232132)(k k t kb t b t b b t x )(2210ΛΛΛΛ+++++=k k t b t b t b b A

上式对于所有的t 都成立,故而有: ????? ??????======00 3 230 21201!1!31312121b A k b b A Ab b b A Ab b Ab b K K M 且有:00x b = 故以上系数完全确定,所以有: Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( ΛΛ++++ +=k k t b A k t b A t Ab b 020200! 1 !21 )0()! 1!21(22x t A k t A At I k k ΛΛ+++++= 定义(矩阵指数或矩阵函数): ∑∞==+++++=022! 1!1!21K k k k k At t A k t A k t A At I e ΛΛ 则 )0()(x e t x At ?=。 (2)拉氏变换解法 将Ax x =&两端取拉氏变换,有 )()0()(s AX X s sX =- )0()()(X s X A sI =- )0()()(1X A sI s X ?-=- 拉氏反变换,有 )0(])[()(1 1x A sI L t x ?-=--

2.状态方程的解

Chapter2状态方程的解 我们要解决的问题是:在系统初始时刻0t t =时,初始状态为00)(x t x =的条件下,对该系统施加控制)(t u ,求出系统状态)(t x 的变化,即求解非齐次方程 (0)(≠t u )初值问题的解: 00 0)()()()()()(t t x t x t u t B t x t A t x ≥=+=& 或者在系统不加控制)(t u ,(0)(=t u 称为自由系统)的条件下,求出初值)(0t x 对系统状态)(t x 的影响,即求解齐次方程初值问题的解: 00 0)(),()()(t t x t x t x t A t x ≥==& ????离散连续线性定常????离散连续线性时变?? ?? ? ??????数值解解析解非齐次数值解解析解齐次 2.1 线性定常系统状态方程的解 2.1.1 n 阶、线性、定常(无关与时间t A )连续系统齐次状态方程的解 我们知道:常系数线性微分方程(标量方程))()(t ax t x =&,0)0(x x =,0≥t 其解为 00 0!)(x k t a x e t x k k k at ∑∞ === 对齐次状态方程(矩阵方程) )()(t Ax t x =&,0)0(x x =,0≥t 很自然,仿照常系数线性微分方程,可得到n 阶线性、定常、连续系统齐次(0)(=t u )状态方程的解 000! )(x k t A x e t x k k k At ∑ ∞ === 定义矩阵指数:k k k k k At t A k t A At I k t A e ! 1 21!220 ++++=≡∑ ∞ =Λ,它仍是一个矩阵。 若初始时间为0t ,则状态方程的解为 00 00) (!)()(0x k t t A x e t x k k k t t A ∑∞ =--== ∑ ∞ =--=0 0) (! )(0k k k t t A k t t A e 称为定常(连续)系统的状态转移矩阵。 )(0t t A e -物理意义:将系统从初始状态)(0t x 转移到(时刻t 的)状态)(t x 。 2.1.2 矩阵指数At e 的性质

二阶线性微分方程解的结构

二阶线性微分方程解的结构

————————————————————————————————作者: ————————————————————————————————日期: ?

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于

'()y p x y =- 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A .2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -????=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5)

求解系统的状态方程

求解系统的状态方程 一、实验设备 PC计算机,MATLAB软件,控制理论实验台 二、实验目的 (1)掌握状态转移矩阵的概念。学会用MATLAB求解状态转移矩阵 (2)学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; (3)通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制输出响应和状态响应曲线; (4)掌握利用MATLAB导出连续状态空间模型的离散化模型的方法。 三、实验原理及相关基础 (1)参考教材P99~101“3.8利用MATLAB求解系统的状态方程” (2)MATLAB现代控制理论仿真实验基础 (3)控制理论实验台使用指导 四、实验内容 (1)求下列系统矩阵A对应的状态转移矩阵 (a)

(b) 代码: syms lambda A=[lambda 0 0;0 lambda 0;0 0 lambda];syms t;f=expm(A*t) (c) 代码: syms t;syms lambda;A=[lambda 0 0 0;0 lambda 1 0;0 0 lambda 1;0 0 0 lambda];f=expm(A*t) (2) 已知系统

a) 用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。观察并记录这些曲线。 (1) 代码: A=[0 1; -2 -3]; B=[3;0]; C=[1 1]; D=[0]; u=1; syms t; f=expm(A*t);%状态转移矩阵 x0=0; s1=f*B*u; s2=int(s1,t,0,t)%状态方程解析解 状态曲线: (2)A=[0 1;-2 -3]; syms t; f=expm(A*t); X0=[1;0]; t=[0:0.5:10]; for i=1:length(t); g(i)=double(subs(f(1),t(i))); end plot(t,g)

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 '()y p x y =-

而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -??? ?=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1) 的解等于一阶线性齐次常微分方程(A.2)的通解()d p x x Ce -?加上函数

齐次和非齐次线性方程组的解法精编日

齐次和非齐次线性方程组的解法精编日 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理齐次线性方程组一定有解: (1) 若齐次线性方程组() =,则只有零解; r A n (2) 齐次线性方程组有非零解的充要条件是() r A n <.(注:当=时,齐次线性方程组有非零解的充要条件是它的系数行列式 m n A=.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于() -. n r A 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1)当m n <时,() ≤<,此时齐次线性方 r A m n 程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0 A=; (3)当m n A≠,故齐次线=且() =时,此时系数矩阵的行列式0 r A n 性方程组只有零解;

(4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组12 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=? 解法一:将系数矩阵A 化为阶梯形矩阵 显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====. 解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式: 231531 2132704 13 6 1247 A --= =≠---,知方程组仅有零解,即12340x x x x ====. 例 解线性方程组123 451 2 3452 34512 3 4 5 0,3230,2260,54330. x x x x x x x x x x x x x x x x x x x ++++=??+++-=??+++=??+++-=? 解:将系数矩阵A 化为简化阶梯形矩阵 可得()2r A n =<,则方程组有无穷多解,其同解方程组为 134523 4 55,226. x x x x x x x x =++??=---?(其中3x ,4x ,5x 为自由未知 量) 令31x =,40x =,50x =,得121,2x x ==-;令30x =,41x =,50x =,得121,2x x ==-;令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为

阶线性微分方程解的结构

阶线性微分方程解的结 构 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方 程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= () 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(),则称其为常微分方程()在 I 上的一个解。,()f x 称为方程()的自由项,当自由项()0f x ≡时方程()称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. () 当()0f x ≡,方程退化为 '()0y p x y +=, ()

假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而()的通解为 ()d ()p x x y x Ce -?= ( ) 对于非齐次一阶线性常微分方程(),在其两端同乘以函数()d p x x e ? 注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程()的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ () 其中C 是任意常数。 观察()式和()式,我们发现一阶线性非齐次常微分方程()的解等于一阶线性齐次常微分方程()的通解()d p x x Ce -?加上函数 ()d ()d *()()d p x x p x x y x e e f x x -??=? 。容易验证,*()y x 是方程()的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程

常系数线性微分方程的解的结构分析

常系数线性微分方程的解的结构分析 【 摘要】在参考和总结了许多场系数线性微分方程的解法的基础上,本文总结了一些常系数微分方程的解的解法,并针对一类常系数线性微分方程的已有结论给予证明,以解给予一些结论证明思路,以及一些实例,并向高阶推广。 【关键词 】常系数 线性 微分方程 结构 一阶常系数齐次线性微分方程 0=+ax dt dx , (1.1) 的求解 上式可以改写为 adt x dx -= , (1.2) 于是变量x 和t 被分离,再将两边积分得 c at x +-=ln , (1.3) 这里的c 为常数。又由对数的定义,上式可以变为 at ce x -= , (1.4) 其中c= , 因为x=0也是方程的解,因此c 可以是任意常数。 这里首先是将变量分离,然后再两边积分,从而求出方程的解。这便要方程式可以分离变量的,也就是变量分离方程。 一阶常系数微分方程 )()(x Q y x P dx dy += , (2.1) 其中P (x ),Q(x)在考虑的区间上式连续函数,若Q (x )=0 ,上式就变为 y x P dx dy )(= , (2.2) 上式为一阶齐次线性微分方程。还是变量分离方程我们可以参考上面变量分离方程的解法,先进行变量分离得到 dx x P y dy )(= , (2.3) 两边同时积分,得到 ? =dx x p ce y )( , (2.4) 这里c 是常数。 若Q (x )≠ 0 , 那么上式就变成了 一阶非齐次线性微分方程。 我们知道一阶齐次线性微分方程是一阶常微分方程的一种特殊情况,那么可以设想将一阶

齐次线性微分方程的解 ? =dx x p ce y )( , (2.5) 中的常数c 变易成为待定的函数c (x ),令 ?=dx x p e x c y )()( , (2.6) 微分之,就可以得到 ?+?=dx x p dx x p e x P x c e dx x dc dx dy )()()()()( , (2.7) 以(2.7),(2.6)代入2.1,得到 )()()()()()()()()(x Q e x c x p e x P x c e dx x dc dx x p dx x p dx x p +?=?+?,(2.8) 即 ?=-dx x p e x Q dx x dc )()() (, 积分后得到 c (x )=c dx e x Q dx x p +?? -)()( , (2.9) 这里c 是任意常数,将上式代入(2.6)得到方程(2.1)的通解 ))(()()(c dx e x Q e y dx x p dx x p +? ? =?- (2.91) 在上面的一阶线性微分方程中,是将一阶齐次线性微分方程中的通解中的常数c 变成c(x) ,常数变易法一阶非齐次线性微分方程的解, 感觉这个方法之所以用x 的未知函数u(x)替换任意常数C,是因为C 是任意的,C 与x 形成函数关系,要确定C,需要由初始条件确定,一个x,确定一个C,也就形成一对一或多对多的映射,也就是函数关系,而这里的C 是任意的,也就可以用一个未知的,也就是任意的函数u(x)来代替,进而求得非齐次线性微分方程的解。这种将常数变异为待定函数的方法,我们通常称为常数变易法。常数变易法实质也是一种变量变换的方法,通过变换(2.6可将方程(2.1)化为变量分离方程。 二阶常系数线性微分方程 (1)二阶常系数线性齐次方程 022=++qy dx dy p dx y d (3.1) 其中p 、q 是常数,我们知道,要求方程(3.1)的通解,只要求出其任意两个线性无关的特 解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(3.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) I 上满A.1)的) 当f ) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理 A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解 阶函数y ) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

定理 A.2 如果函数12()()y x y x 与是线性齐次方程(A.7)的两个解,则函数1122()()y c y x c y x =+仍为该方程的解,其中12,c c 是任意的常数。 定理1 说明齐次线性常微分方程(A.7)的解如果存在的话,一定有无穷多个。为了说明齐次线性常微分方程(A.7)通解的结构,首先给出函数线性无关的定义。 定义A.1设函数12(),(),,()n y x y x y x L 是定义在区间I 上的n 个函数,如果存在n 个 不全为零的常数12,,n k k k L , ,使得1122()()()0n n k y x k y x k y x ++=L 在区间I 上恒成立, (,a (A.7)。 则y 其基础解系。 关于二阶线性非齐次常微分方程(A.6)的通解,有如下结论 定理A.5 若函*()y x 是方程(A.6)的一个特解,()Y x 是方程(A.6)相伴的齐次方程的通解,则()()*()y x y x Y x =+是二阶线性非齐次常微分方程(A.6)的通解。 从定理A.4,A.5可以得到求解二阶线性非齐次常微分方程(A.6)的通解的一般步骤: (1)求解与(A.6)相伴的齐次方程(A.7)的线性无关的两个特解12()()y x y x 与,得该

非齐次状态方程解例题 (3)

例9.20试求下列状态方程在)(1)(t t u =作用下的解。 101111x x u ????=+????????&,1(0)0x ??=???? 解 (1) 积分法 已知非齐次状态方程解的形式为 ?-Φ+Φ=t d Bu t x t t x 0 )()()0()()(τττ ()1 11112101001()1111(1) 1t t t s e s t sI A s te e s s -----?? ?? ??-?? ??-????Φ=-===??????????--?????? ??????--?? L L L 在)(1)(t t u =作用下,为了简化计算,令ττ-=t ' ,有 ?Φ-+Φ=0 )()0()()(t Bd x t t x ’‘ττ ?Φ+Φ=t Bd x t 0 '')()0()(ττ ?Φ+Φ=t Bd x t 0 )()0()(ττ 则: 00101()1t t t t e e Bd d e e te τ τ τττττ????-?? Φ==????????? ??? ?? 所以, 10121()02t t t t t t t e e e x t te e te te ?????? --??=+=???????????????? (2) 拉氏变换法 ()()11 11()(0)()x t sI A x sI A BU s ----????=-+-???? L L ()1111 2 2 110111(0)1 110(1)1(1)t t e s s sI A x te s s s ----???? ????????--??-===? ??????????????? ??????---???? L L L ()11112211 01(1)111()1101(1)1(1)t t s s e s sI A BU s s te s s s ----?????? ??????-??-??-??????-===? ????????? ?????????? ??? ?--??-?????? L L L ()() 1 1 1 1 21()(0)()2t t e x t sI A x sI A BU s te ----?? -????=-+-=???? ? ? ?? L L

第三章线性系统状态方程的解

第三章 线性系统的运动分析 §3-1线性连续定常齐次方程求解 一、齐次方程和状态转移矩阵的定义 1、齐次方程 状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为:)()(t Ax t x = 线性定常连续系统:Ax x = 2、状态转移矩阵的定义 齐次状态方程Ax x = 有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为)0()(x e t x At ?=。 其中At e 称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为:At e t =)(φ。 若初始条件为)(0t x ,则状态转移矩阵记为:)(00 )(t t A e t t -=-Φ 对于线性时变系统,状态转移矩阵写为),(0t t φ,它是时刻t ,t 0的函数。但它一般不能写成指数形式。 (1)幂级数法 设Ax x = 的解是t 的向量幂级数 +++++=k k t b t b t b b t x 2210)( 式中 ,,, ,,k b b b b 210都是n 维向量,则 +++++=-1232132)(k k t kb t b t b b t x )(2210 +++++=k k t b t b t b b A 故而有: ????? ?? ????== ====003 230 2 12 01!1! 3131 2 121b A k b b A Ab b b A Ab b Ab b K K

且有0)0(b x =。 故 +++++=k k t b t b t b b t x 2210)( ++ +++=k k t b A k t b A t Ab b 02 02 00! 1! 21 )0()! 1!21(22 x t A k t A At I k k ++ ++ += 定义:∑ ∞ == ++ +++=0 2 2! 1! 1!21K k k k k At t A k t A k t A At I e 则)0()(x e t x At ?=。 (2)拉氏变换解法 将Ax x = 两端取拉氏变换,有 )()0()(s Ax x s sx =- )0()()(x s x A sI =- )0()()(1x A sI s x ?-=- 拉氏反变换,有 )0(])[()(11x A sI L t x ?-=-- 则 ])[()(11---==A sI L e t At φ 【例3.1.1】 已知系统的状态方程为x x ?? ? ???=00 10 ,初始条件为)0(x ,试求状态转移矩阵和状态方程的解。 解:(1)求状态转移矩阵 ++ ++ +==k k At t A k t A At I e t ! 1! 21)(2 2φ 此题中: ???? ??=00 10A , ?? ? ???====00 0032n A A A 所以

相关主题
文本预览
相关文档 最新文档