当前位置:文档之家› 金属腐蚀原理7第七章 金属的高温氧化

金属腐蚀原理7第七章 金属的高温氧化

第一章 金属材料的高温化学腐蚀

绪论 金属腐蚀的定义: 金属材料和环境介质发生化学或电化学作用,引起材料的退化与破坏称为金属的腐蚀. 本课程研究的内容 ? 1. 研究金属和周围介质作用时所发生的化学或电化学的现象、机理及其一般规律。 ? 2. 研究各种条件下金属材料的防止腐蚀的方法和措施。 三、金属腐蚀与防护的重要性 经济损失: ?直接损失:指采用防护技术的费用和发生腐蚀破坏以后的维修、更换费用和劳务费用。 ?间接损失:指设备发生腐蚀破坏造成停工、停产;引起的物资跑、冒、滴、漏损失; 对环境污染以至爆炸、火灾等事故的间接损失更是无法估量。 第一章金属材料的高温化学腐蚀 第一节概述 一、高温化学腐蚀定义: 高温化学腐蚀是研究金属材料和与它接触的环境介质在高温条件下所发生的界面反应过程的科学。 金属高温腐蚀与常温腐蚀的区别: 高温腐蚀:主要是以界面的化学反应为特征。常温腐蚀:主要是电化学过程。 金属材料的高温腐蚀反应式: Me(金属)+X(介质)--MeX(腐蚀产物) 二、高温腐蚀分类 按环境介质状态分 1)高温气态介质腐蚀(2)高温液态介质腐蚀(3)高温固态介质腐蚀 (1)高温气态介质腐蚀: 气态介质中包括有单质气体分子。非金属化合物气体分子。金属氧化物气态分子,和金属盐气态分子。由于这种高温腐蚀是在高温,干燥的气体分子环境中进行的,所以常被称为“高温气体腐蚀”“干腐蚀”“化学腐蚀”。 (2)高温液态介质腐蚀: 液态介质(包括液态金属,液态融盐及低熔点氧化物)对固态金属材料的高温腐蚀。这种腐蚀包括界面化学反应,也包括液态物质对固态物质的溶解。 (3)高温固态介质腐蚀: 金属材料在带有腐蚀性的固态颗粒状物质的冲刷下发生的高温腐蚀。这类腐蚀包括固态燃灰与盐颗粒对金属材料的腐蚀。又包括这些固态颗粒状物质对金属材料表面的机械磨损,所以人们又称为“磨蚀”或“冲蚀”。 高温腐蚀现象 (1)在金属热处理过程中,碳氮共渗和盐浴处理易于产生增碳、氮化损失和熔融盐的腐蚀。(2)含有燃烧的各个过程,比如柴油发动机、燃气轮机、焚烧炉等所产生的复杂气氛的高温氧化等腐蚀。 (3)核反应堆运行过程中,煤的气化和液化所产生的高温硫化腐蚀。 (4)在航空领域,宇宙飞船返回大气层过程中的高温氧化和高温硫化腐蚀,以及航空发动

金属熔焊原理

金属熔焊原理 一.基础题: 1焊接参数包括:焊接电流、电弧电压、焊接速度、线能量等。 2焊条的平均熔化速度、熔敷速度均与电流成正比。 3短路过渡的熔滴质量和过渡周期主要取决于电弧长(电弧电压),随电弧长度的增加,熔滴质量与过渡周期增大。当电弧长度到达一定值时,熔滴质量与过渡周期突然增大,这说明熔滴的过渡形式发生了变化,如果电弧长度不变,增大电流则过渡频率增高,熔滴变细。 4一般情况下,增大焊接电流,熔宽减小,熔深增大;增大电弧电压,熔宽增大,熔深减小。5熔池的温度分布极其不均匀(熔池中部温度最高)。 6焊接方法的保护方式:手弧焊(气-渣联合保护),埋弧焊、电渣焊(熔渣保护),氩弧焊CO2焊、等离子焊(气体保护)。 7焊接化学冶金过程是分区域连续进行的。 8焊接化学冶金反应区:手工焊有药皮反应区、熔滴反应区、熔池反应区三个反应区;熔化极气保焊只有熔滴和熔池两个反应区;不填充金属的气焊、钨极氩弧焊和电子束焊只有熔池反应区。 9熔滴阶段的反应时间随焊接电流的增加而变短,随电弧电压的增加而变长。 10焊接材料只影响焊缝成分而不影响热影响区。 11焊接区周围的空气是气相中氮的主要来源。 12熔渣在焊接过程中的作用:机械保护、改善焊接工艺性能、冶金处理。 13分理论中酸碱性以1为界点,原子理论中,以0为界点。 14影响FeO分配系数的主要因素有:温度和熔渣的性质。 15焊缝金属的脱氧方式:先期脱氧、沉淀脱氧、扩散脱氧。

16脱硫比脱磷更困难。 17随焊芯中碳含量的增加,焊接时不仅焊缝中的气孔、裂纹倾向增大,并伴有较大飞溅,是焊接稳定性下降。 18焊条的冶金性能是指其脱氧、去氢、脱硫磷、掺合金、抗气孔及抗裂纹的能力,最终反映在焊缝金属的化学成分、力学性能和焊接缺陷的形成等方面。 19焊剂按制造方法分为:熔炼焊剂和非熔炼焊剂。 20焊丝的分类:实芯焊丝和药芯焊丝。 21焊接中的偏析形式:显微偏析、区域偏析、层状偏析。 22相变组织(二次结晶组织)主要取决于焊缝化学成分和冷却条件。 23焊接热循环的基本参数:加热速度、最高加热速度、相变温度以上停留的时间、冷却速度或冷却时间t8/5、t8/3、t100。 24产生冷裂纹的三要素:拘束应力、淬硬组织、氢的作用 25冷裂纹的断口组织,宏观上看冷裂纹的断口具有淬硬性断裂的特征,表面有金属光泽,呈人字形发展,从微观上看,裂纹多起源于粗大奥氏体晶粒的晶界交错处。 26冷裂纹的种类:延迟裂纹、淬硬脆化裂纹、低塑性脆化裂纹。 27熔滴过度的作用力:重力、表面张力、电磁压缩力及电弧吹力等。 二.名词解释: 1焊接温度场:焊接过程中某一瞬时间焊接接头上个点的温度分布状态。 2焊缝金属的熔合比:熔化焊时,被熔化的母材在焊缝金属中所占的百分比。 3药皮重量系数:单位长度药皮与焊芯的质量比。 4随温度降低黏度缓慢增加的称为长渣。随温度降低黏度迅速降低的称为短渣。 5合金元素的过度系数:指某合金元素在熔敷金属中的实际质量分数与其在焊材中的原始质

金属腐蚀原理

3.3 金属腐蚀原理 3.3.1概述 从腐蚀的定义及分类,我们知道腐蚀主要是化学过程,我们可以把腐蚀过程分为两种可能的主要机理-----化学机理和电化学机理. 化学腐蚀是根据化学的多相反应机理,金属表面的原子直接与反应物(如氧﹑水﹑酸)的分子相互作用。金属的氧化和氧化剂的还原是同时发生的,电子从金属原子直接转移到接受体,而不是在时间或空间上分开独立进行的共轭电化学反应。 金属和不导电的液体(非电解质)或干燥气体相互作用是化学腐蚀的实例。最主要的化学腐蚀形式是气体腐蚀,也就是金属的氧化过程(与氧的化学反应),或者是金属与活性气态介质(如二氧化硫﹑硫化氢﹑卤素﹑蒸汽和二氧化碳等)在高温下的化学作用。 电化学腐蚀是最常见的腐蚀,金属腐蚀中的绝大部分均属于电化学腐蚀。如在自然条件下(如海水、土壤、地下水、潮湿大气、酸雨等)对金属的腐蚀通常是电化学腐蚀。 图3-11 铁的电化学腐蚀模型电化学腐蚀机理与纯化学腐蚀机理 的基本区别是:电化学腐蚀时,介质与金属的相互作用被分为两个独立的共轭反应。阳极过程是金属原子直接转移到溶液中,形成水合金属离子或溶剂化金属离子;另一个共轭的阴极过程是留在金属内

的过量 电子被溶液中的电子接受体或去极化剂接受而发生还原反应。左图即是铁的电化学腐蚀模型。(点击放大播放flash) 3.3.2金属腐蚀的电化学概念 1.电极反应及电极 相:由化学性质和物理性质一致的物质组成的、与系统的其他部分之间有界面隔开的集合叫做相。 电极系统:如果系统由两个相组成,一个相是电子导体(叫电子导体相),另一个相是离子导体(叫离子导体相),且通过它们互相接触的界面上有电荷在这两个相之间转移,这个系统就叫电极系统。 将一块金属(比如铜)浸在清除了氧的硫酸铜水溶液中,就构成了一个电极系统。在两相界面上就会发生下述物质变化: Cu (M)→Cu 2+(sol)+2e (M) 这个反应就叫电极反应,也就是说在电极系统中伴随着两个非同类导体相(Cu 和CuSO 4溶液)之间的电荷转移而在两相界面上发生的 化学反应,称为电极反应。这时将Cu 称为铜电极。 同样我们将一块金属放入某种离子导体相中,也会发生类似的电极反应:

金属的腐蚀及其原理

金属的腐蚀及其原理 【引入】大家如果细心的话就可以发现生活中的金属器皿,使用久了后,就会生锈。例如,或防盗网、风扇的护栏,或者铜器会出现铜绿(Cu2(OH)2CO3)。大家翻倒课本的 23页,看看图1—26,可以先想象一下,这辆车刚买时是白白亮亮的,风光无限,现在呢,还风不风光?已经是锈迹斑斑,风光不在了。无论是防盗网的生锈还是汽 车的生锈都是由于金属的腐蚀引起的,那大家知道金属为什么会发生腐蚀吗?它的 原理是什么呢? 【讲述】带着这两个问题我们今天就来学习这方面的内容。 【板书】金属的腐蚀及其原理 【讲述】大家看到课本的23页的第三段,一起说一下金属腐蚀的概念是什么? 【板书】一、金属的腐蚀 1、定义:金属或合金与其他物质发生化学反应而被腐蚀的现象。 【讲述】现在举个例子来理解这个概念。在制取H2时,往Zn片中滴加稀盐酸,如果稀盐酸量足够的话,可以看到锌片逐渐的消失了。 【提问】为什么锌片会消失呢? 【讲述】是由于Z n—2e- =Z n2+,锌离子进入到溶液中了。 【提问】大家思考一下,金属腐蚀的本质是什么? 【引导】金属腐蚀是指金属或合金与其他物质发生化学反应,金属在化学反应中是得点子还是失去电子? 【讲述】是失电子的。所以金属腐蚀的本质就是金属原子失去电子而被氧化的过程,用式子表示为M—ne- =M n+,例如:Z n—2e- =Z n2+ 【过渡】金属腐蚀是不是都是一样的呢,不一样的话,可分为哪两种腐蚀? 【讲述】化学腐蚀与电化学腐蚀 【板书】金属腐蚀 电化学腐蚀 【提问】大家一起说一下化学腐蚀的概念? 【讲述】化学腐蚀是金属与其他物质直接接触发生氧化还原反应,举几个例子: 这些都是化学腐蚀。【提问】大家一起说一下电化学腐蚀的概念? 【讲述】不纯的合金或金属发生原电池反应,使较活泼金属被腐蚀。比如:防盗网的生锈、自行车轮子、链条的生锈都是电化学腐蚀。 【提问】现在我们学习化学腐蚀与电化学腐蚀,那它们之间有什么共同点或不同点? 【讲述】首先我们来看电化学腐蚀。它形成了原电池,有微弱的电流产生,而化学腐蚀是直接发生氧化还原反应,所以无电流产生。 【讲述】化学腐蚀与电化学腐蚀都是金属失去电子变为离子,所以它们的共同点就是金属腐蚀的本质:M—ne- =M n+ 【讲述】现在跟大家分享一组数据,我国每年钢铁的腐蚀量占全年钢铁产量的1/10,占国民生生产总值的页也就是GDP的4%,4%是什么概念呢?我国每年的教育经费都不 足4%的。这说明每年钢铁的腐蚀都会造成巨大的经济损失。 【过渡】那钢铁的腐蚀属于化学腐蚀还是电化学腐蚀?

金属腐蚀学原理教案(正文-第一部分)-2006-2007

备注 第一章 绪论 第一节 腐蚀的基本概念 研究对象:金属腐蚀学是一门研究金属材料在与其周围环境下发生破坏以及如何减缓或者防止 这种破坏的一门科学。 金属材料最常见也最重要的三种破坏形式: (1)断裂(fracture ) 指金属构件受力超过其弹性极限、塑性极限而发生的破坏。可以分为脆性断裂、塑性断裂、沿晶断裂、穿晶断裂、机械断裂等。一般指结构材料。 (2)磨损(wear and tear ) 指金属表面与其相接触的物体或与其周围环境发生相对运动,因摩擦而产生的损耗或破坏。这是一个渐变的过程。 (3)腐蚀(corrosion ) 指金属在与其周围环境的作用下引起的破坏或变质现象。 其定义为:金属与周围环境(介质)之间发生化学或电化学作用而引起的破坏或变质。 金属腐蚀学是在金属学、金属物理、物理化学、电化学、力学等学科基础上发展起来的一门综合性的边缘科学,学习金属腐蚀学的主要目的和内容是: 研究和了解金属材料与环境介质作用的普遍规律,从热力学的角度研究腐蚀进行的可能性,从动力学方面研究腐蚀进行的速度和机理。研究和了解金属在各种条件下发生的原因以及控制或防止金属腐蚀的各种措施。研究和掌握金属腐蚀速度的测试方法和技术,制定腐蚀评定方法和防护措施的各种标准,发展腐蚀和现场监控技术等。 研究金属腐蚀具有重要的意义。例如,航空发动机的腐蚀与控制。钢铁的腐蚀与控制。等等。 第二节 腐蚀的分类方法 一、按腐蚀的环境分类 1.干腐蚀(dry corrosion 化学机理): (1)失泽(tarnish ):金属在露点以上的常温干燥气体中腐蚀(氧化),生成很薄的表面腐蚀产物,使金属失去光泽,主要为化学腐蚀的机理。 (2)高温氧化(high temperature oxidation ):金属在高温气体中腐蚀(氧化),有时生成很厚的氧化皮(scaling ) 。在热应力和机械应力作用下引起氧化皮剥落(spalling )。属于高温腐蚀(high temperature corrosion )。 2.湿腐蚀(wet corrosion ) 湿腐蚀主要是指潮湿环境和含水的介质中的腐蚀。绝大部分常温腐蚀(ordinary temperature corrosion )属于这一种。一般为电化学腐蚀机理。分为: (1)自然环境下的腐蚀 大气腐蚀(atmospheric corrosion ) 土壤腐蚀(soil corrosion ) 海水腐蚀(corrosion in sea water ) 微生物腐蚀(microbial corrosion ) (2)工业介质中的腐蚀 酸、碱、盐溶液中的腐蚀

金属的高温氧化原理

发布: 2009-11-08 23:08 | 作者: 张立吴恩熙黄伯云 | 来源: 稀有金属与硬质 合金 | 查看: 636次 张立1,2,吴恩熙1,黄伯云1 (1·粉末冶金国家重点实验室,湖南长沙410083;2·中南大学粉末冶金厂,湖南长沙 410083) 1金属氧化的过程 高温氧化是金属化学腐蚀的一种特殊形式。金属氧化首先从金属表面吸附氧分子开始,即氧分子分解为氧原子被金属表面所吸附,并在金属晶格内扩散、吸附或溶解。而当金属和氧的亲和力较大,且当氧在晶格内溶解度达到饱和时,则在金属表面上进行氧化物的成核与长大。 金属表面一旦形成了氧化膜,其氧化过程的继续进行将取决于以下两个因素[1]: (1)界面反应速度。这包括金属/氧化物界面及氧化物/气体界面上的反应速度。 (2)参加反应的物质通过氧化膜的扩散速度。它包括浓度梯度化学位引起的扩散, 也包括电位梯度电位差引起的迁移扩散。 这两个因素控制进一步氧化的速度。在一般情况下,当金属的表面与氧开始反应生成极薄的氧化膜时,界面反应起主导作用,即界面反应是氧化膜生长的控制因素。但随着氧化膜的生长增厚,扩散过程将逐渐起着越来越重要的作用,成为继续氧化的控制因素。

2金属的氧化膜 金属氧化时,其表面上形成的氧化膜一般是固态。但是根据氧化膜的性质不同,在较高温度下,有些金属的氧化物为液态或气态。例如在1093℃下的大气中,Cr、Mo、V被氧化时,其氧化物呈不同状态: 2Cr+3/2O2→Cr2O3(固态); 2V+5/2O2→V2O5(液态,熔点658℃); Mo+3/2O2→MoO3(气态,450℃以上开始挥发) 显然,只有固态的Cr2O3才有保护性,而V2O5和MoO3不但无保护性,反而表现为加速氧化,甚至引起灾难性的事故。 同时实践还证明,并非所有的固态氧化膜都具有保护性,其保护性的好坏取决于氧化物的高温稳定性、氧化膜的完整性、致密性、氧化膜的组织结构和厚度、膜与金属基体的相对热膨胀系数以及氧化膜的生长应力等因素。在这些因素中,氧化膜的完整性和致密性是至关重要的。而这两个因素又与膜的组织结构和氧化物的高温稳定性密切相关。 3单独生成保护性氧化膜的合金元素选择依据 如果在合金表面上能生成保护性极强的合金元素氧化物,或者能在基体金属氧化物的底部生成合金元素的氧化物相,则可有效地阻止基体金属的氧化。选作这种用途的合金元素应具有下述三方面的基本特性。 3·1合金元素能形成具有良好保护性的氧化膜

材料腐蚀与防护 绪论、 第1章 金属与合金的高温氧化

绪论+ 第一章金属与合金的高温氧化 名词解释 1、耐蚀性:指材料抵抗环境介质腐蚀的能力。 2、腐蚀性:指环境介质腐蚀材料的强弱程度。 3、高温氧化(或高温腐蚀):在高温下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程。 4、P-B比:氧化物与金属的体积差对氧化物的保护性的影响,即氧化生成的金属氧化膜的体积与生成这些氧化膜所消耗的金属的体积的比值叫PB比。 5、腐蚀过程的本质:金属→金属化合物 6、(高温)热腐蚀:指金属材料在高温工作时,基体金属与沉积在其工作表面上的沉积盐及周围工作气体发生总和作用而产生的腐蚀现象称为热腐蚀. 7、p型半导体:通过电子的迁移而导电的半导体; n型半导体:通过空穴的迁移而导电的半导体。 n型:加Li(低价),导电率减小,氧化速度增加;加Al(高价),导电率增加,氧化速度降低。 p型:加Li(低价),导电率增加,氧化速度降低;加Cr(高价),导电率减小,氧化度增加。 1、腐蚀的危害:1)造成巨大的经济损失;2)造成金属资源和能源的浪费 造成设备破坏事故,危及人身安全;3)引起环境污染。 2、金属一旦形成氧化膜,氧化过程的继续进行将取决于两个因素:1)界面反应速度,包括金属/氧化物界面以及氧化物/气体两个界面上的反应速度;2)参加反应物质通过氧化膜的扩散速度。(这两个因素实际上控制了继续氧化的整个过程,也就是控制了进一步氧化速度。在氧化初期,氧化控制因素是界面反应速度,随着氧化膜的增厚,扩散过程起着愈来愈重要的作用,成为继续氧化的速度控制因素) 3、反映物质通过氧化膜的扩散,一般可有三种传输形式:1)金属离子单向向外扩散;2)氧单向向内扩散;3)两个方向的扩散。 4、反应物质在氧化膜内的传输途径:1)通过晶格扩散:温度较高,氧化膜致密,而且氧化膜内部存在高浓度的空位缺陷的情况下,如钴的氧化;2)通过晶界扩散。在较低的温度下,由于晶界扩散的激活能小于晶格扩散,而且低温下氧化物的晶粒尺寸较小,晶界面积大,因此晶界扩散显得更加重要,如镍、铬、铝的氧化; 3)同时通过晶格和晶界扩散。如钛、锆、铅在中温区域(400一600℃)长时间氧化条件。 5、氧化膜具有保护作用必要条件:P-B比大于1。 氧化膜具有保护作用充分条件:1)膜要致密、连续、无空洞,晶体缺陷少;2)稳定性好,蒸气压低,熔点高;3)膜与基体的附着力强,不易脱落;4)生长内应力小;5)与金属基体具有相近的热膨胀系数;6)膜的自愈能力强。 6、当PB>l时,金属氧化膜受压应力,金属氧化膜不易破裂,具有保护性;当PB 〉〉1时,膜脆容易破裂,完全丧失了保护性;当PB <1时,金属氧化膜受张应力,所生成的氧化膜不能完全覆盖整个金属表面,会形成疏松多孔的氧化膜,不能有效地把金属与环境隔离开来,这类氧化膜不具有保护性。 7、提高金属抗氧化性途径:1)减小氧化膜中晶格缺陷的浓度;2)生成复合氧化

金属腐蚀原理

《金属腐蚀原理》作业题 绪论 1、金属腐蚀按照腐蚀过程的特点可以分为几类? 2、均匀腐蚀情况下金属腐蚀速度的衡量指标有哪几种? 第一章金属电化学腐蚀倾向的判断 1、什么是内电位、外电位、电化学位? 2、什么是绝对电极电位、相对电极电位?两者有何区别? 3、相间电位差产生的原因是什么? 4、什么是金属的平衡电极电位? 5、结合电位-pH图说明处于腐蚀状态的金属可以采取哪几种防腐蚀方法? 第二章电化学腐蚀动力学 1、什么是原电池的极化作用?什么是阳极极化、阴极极化? 2、极化现象的本质是什么? 3、掌握电化学极化时,极化电流与过电位之间的关系方程式。 4、熟练掌握稳态极化时的动力学公式,掌握强极化区和微极化区极化过电位和极化电流之间近似极化公式的推导过程。 5、什么是共轭体系?分析课本p61页图2-17中各点所对应的电流和电位的物理意义。 6、结合图2-19详细说明牺牲阳极保护法的基本原理。 7、结合活化控制的腐蚀体系极化公式(课本公式2-60)分析金属腐蚀速度测试的电化学方法都有哪些?

8、腐蚀体系中,当电流处于强极化区时采用何种测试方法?微极化区采用何种测试方法?各有何适用条件?各自的原理和具体操作步骤是什么?弱极化区的测试方法有哪几种?掌握两点法和三点法的推导过程。 第三章氢去极化腐蚀和氧去极化腐蚀 1、什么是氢去极化?什么是氧去极化?各自发生的条件是什么? 2、什么是氢过电位?氢过电位的数值大小对氢去极化腐蚀有何影响? 3、金属中具有不同氢过电位的杂质存在对基体金属腐蚀速度的影响情况是什么? 4、什么是铂盐效应?以铁和锌在酸中的腐蚀速度为例说明氢过电位对于腐蚀速度的影响情况。 5、氧去极化腐蚀的影响因素有哪些? 6、什么是氧浓差电池?在氧浓差电池中何者做阳极,何者做阴极?第四章金属的钝化 1、什么是钝化作用?什么是化学钝化、电化学钝化? 2、结合金属的钝化曲线分析钝化过程中的电化学参数,并说明阳极保护的基本原理是什么? 3、阳极钝化曲线的测定和塔菲尔法测定金属腐蚀速度时的极化曲线各自采用什么方法测定? 4、目前钝化理论主要包括哪几种?每种钝化理论所能够成功解释的问题是什么?

金属高温腐蚀的利与弊

金属高温腐蚀的利与弊 摘要:金属高温腐蚀的主要机理 关键词:金属高温腐蚀 正文: 1 金属氧化的过程 高温氧化是金属化学腐蚀的一种特殊形式。金属氧化首先从金属表面吸附氧分子开始,即氧分子分解为氧原子被金属表面所吸附,并在金属晶格内扩散、吸附或溶解。而当金属和氧的亲和力较大,且当氧在晶格内溶解度达到饱和时,则在金属表面上进行氧化物的成核与长大。金属表面一旦形成了氧化膜,其氧化过程的继续进行将取决于以下两个因素:(1)界面反应速度。这包括金属/氧化物界面及氧化物/气体界面上的反应速度。 (2)参加反应的物质通过氧化膜的扩散速度。它包括浓度梯度化学位引起的扩散,也包括电位梯度电位差引起的迁移扩散。这两个因素控制进一步氧化的速度。 在一般情况下,当金属的表面与氧开始反应生成极薄的氧化膜时,界面反应起主导作用,即界面反应是氧化膜生长的控制因素。但随着氧化膜的生长增厚,扩散过程将逐渐起着越来越重要的作用,成为继续氧化的控制因素。 2 金属的氧化膜 金属氧化时,其表面上形成的氧化膜一般是固态。但是根据氧化膜的性质不同,在较高温度下,有些金属的氧化物为液态或气态。例如在1093℃下的大气中,Cr、Mo、V被氧化时,其氧化物呈不同状态:2Cr+3/2O2→Cr2O3(固态) 2V+5/2O2→V2O5(液态,熔点为658℃) Mo+3/2O2→MoO3(气态,450℃以上开始挥发) 显然,只有固态的Cr2O3才有保护性,而V2O5和MoO3不但无保护性,反而表现为加速氧化,甚至引起灾难性的事故。同时实践还证明,并非所有的固态氧化膜都具有保护性,其保护性的好坏取决于氧化物的高温稳定性、氧化膜的完整性、致密性、氧化膜的组织结构和厚度、膜与金属基体的相对热膨胀系数以及氧化膜的生长应力等因素。 在这些因素中,氧化膜的完整性和致密性是至关重要的。而这两个因素又与膜的组织结构和氧化物的高温稳定性密切相关。 3 单独生成保护性氧化膜的合金元素选择依据 如果在合金表面上能生成保护性极强的元素氧化物,或者能在基体金属氧化物的底部生成合金元素的氧化物相,则可有效地阻止基体金属的氧化。选作这种用途的合金元素应具有下述三方面的基本特性。 (1)合金元素能形成具有良好保护性的氧化膜为了满足这一条件,合金元素应具有以下特性: ①应符合Pilling-Bedworth原理,即合金元素氧化物的体积与该合金元素的体积之比(V'/V)应大于1。 ②合金元素的氧化物应具有高的电阻,以便有效地阻止金属离子的扩散。 ③金元素的离子半径应小于基体金属的离子半径。 (2)元素的氧化物应有足够高的稳定性这包括如下两个方面: ①使合金元素的氧化物能在金属表面优先形成,并且在氧化条件下不会被基体金属还原,必须选择其氧化物的生成吉布斯自由能比基体金属氧化物的生成吉布斯自由能更小的合金元素。这是保证保护膜产生和稳定存在的必须满足的热力学特性。 ②合金元素的氧化膜在高温下稳定存在,合金元素的氧化膜必须有低的分解压、高的熔点和升华点,以免在高温下分解、挥发或成为液体而丧失其保护性。当然这些氧化物也不应与其他合金组元的氧化物生成低熔混合物。因此,凡其氧化物在高温下易于挥发(如Mo) 和熔融的元素(如B),都不宜于用作合金化元素。

金属腐蚀机理及分类

1.1 金属的腐蚀机理 1.1.1 金属腐蚀的定义 金属及其制品在生产和使用过程中,在周围环境因素的作用下,发生破坏变质,改变了原有的化学、物理、机械等特性,称为金属腐蚀。 根据金属腐蚀过程,可以把腐蚀分为化学腐蚀和电化学腐蚀两大类。 1.1.2 化学腐蚀 化学腐蚀是金属与环境介质直接发生化学反应而产生的损伤。 特点:○1在腐蚀过程中没有电流产生,○2腐蚀产物直接产生并覆盖在发生腐蚀的地方。○3化学腐蚀往往在高湿的气体介质中发生。 钢铁在高温气体环境中很容易被腐蚀,如果同时有盐类或含硫物质存在,则会加速高温氧化,这称为热腐蚀。 1.1.3 电化学腐蚀 航空器上所发生的腐蚀大多数属于电化学腐蚀。 一、原电池 凡能将化学能转变为电能的装置称作原电池。 电化学腐蚀的最显著的特征是电化学腐蚀过程中有自由电子流动,产生电流。 二、电化学腐蚀与腐蚀电池 电化学腐蚀就是在金属上产生若干原电池(实际上是短路原电池,即称腐蚀电池),金属成为阳极,遭到溶解而发生腐蚀。 形成原电池的条件:1、两种金属(或两个区域)之间存在电位差;2、两种金属之间有导电通路;3、有腐蚀环境或腐蚀溶液。 铝合金的电化学腐蚀: 含有铜的铝合金构件处在潮湿的大气中,在其表面形成一层电解质溶液薄膜。这就构成了腐蚀电池。该腐蚀电池的阳极为电位较低的基体铝(-1.66V),阴极为电位较高的添加元素铜(+0.337V)。 电子由铝流向铜,铝遭到溶解。 根据组成腐蚀电池的大小,可以把腐蚀电池分为宏电池及微电池两类。 造成金属表面电位不同,形成微电池的原因很多,常见的有: (1)金属表面化学组成不均,夹杂有杂质。 (2)金属表面组织不均。 (3)金属表面生成氧化膜不均匀。 (4)金属表面物理状态不均匀。金属在机械加工过程中,受到拉、压、剪切作用,或由于热处理不均匀,造成不同部位表面的内应力和变形不同。通常,变形大,内应力高的地方为阳极,易受到腐蚀。 常见金属及其合金的电位: 一、Mg及其合金,铝合金5052、5056、5036、6061、6063、5356 二、Zn、Cd、除以上6种以外的铝合金 三、除不锈钢之外的碳钢、合金钢、Fe、Pb、Sn 四、Cu、Cr、Ni、Ag、Au、Pt、Ti、钴、铑、不锈钢 同一组中,电位基本一致,基本不发生电化学腐蚀;不同组中,第一组电位最低,为阳极,被腐蚀。

不锈钢的点腐蚀机理

不锈钢的点腐蚀机理 在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。金属腐蚀按机理分为化学腐蚀和电化学腐蚀。点腐蚀属于电化学腐蚀中的局部腐蚀。一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。 4.1 电化学腐蚀的基本原理 通过原电池原理可以更好地说明电化学腐蚀机理。当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生 成量相关,即电流密度越大腐蚀速度越快。 各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K (25℃),气体分压1.01MPa下的平衡电极电位。 标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。另外一个重要影响因素是金属表面覆盖着的薄膜。除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。 4.2 不锈钢的耐腐蚀原理 不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。起完全保护作用所需的铬的比例取决于使用条件。在水溶液中,需要12%的铬产生自钝化作用形成包含大量Cr2O3的很薄的保护膜。在气态氧化条件下,低于1000℃时,12%的铬有很好的抗氧化性,在高于1000℃时,17%的铬也有很好的抗氧化性。当金属含铬量不够或某些原因造成不锈钢晶界出现贫铬区的时候,就不能形成有效的保护性膜。 4.3 氯离子对不锈钢钝化膜的破坏 处于钝态的金属仍有一定的反应能力,即钝化膜的溶解和修复(再钝化)处于动平衡状态。当介质中含有活性阴离子(常见的如氯离子)时,平衡便受到破坏,溶解占优势。其原因是氯离子能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氯化物,结果在新露出的基底金属的特定点上生成小蚀坑(孔径多在20~30μm),这些小蚀坑称为孔蚀核,亦可理解为蚀孔生成的活性中心。氯离子的存在对不锈钢的钝态起到直接的破环作用。图1表征了金属钝化区随氯离子浓度增大而减小。 A-不存在氯离子;B-低浓度氯离子;C-高浓度氯离子 图1 对于呈现出钝化性的金属,氯离子对阳极极化曲线的作用[2] 图1是对含不同浓度氯离子溶液中的不锈钢试样采取恒电位法测量的电位与电流关系曲线,从中看出阳极电位达到一定值,电流密度突然变小,表示开始形成稳定的钝化膜,其电阻比较高,并在一定的电位区域(钝化区)内保持。图中显示,随着氯离子浓度的升高,其临界电流密度增加,初级钝化电位也升高,并缩小了钝化区范围。对这种特性的解释是在钝化电

铁金属腐蚀及防腐处理

铁金属在大气中的腐蚀及原理

铁金属在大气中的腐蚀及原理 摘要:本文根据铁的化学性质、大气的成分,结合所学的化学知识,分析了铁在空气中氧化腐蚀过程和原理,探讨了在大气中影响铁及合金的主要因素。 关键词:铁金属氧化腐蚀大气 1 引言 众所周知,各种金属工程材料都有一定的使用寿命。这是由于它们在使用或存放的过程中都会受到不同形式的直接或间接的损坏,如最常见的氧化腐蚀现象。 金属腐蚀是多种多样的,习惯上把金属或合金在大气中由于氧、水分及其他物质的作用而发生的腐蚀或变色称为锈蚀,这种腐蚀产物称为“锈”。例如钢铁在潮湿的大气中与氧作用腐蚀生成棕褐色的铁锈,它是一种含水的Fe2O3和FeO的化合物,其化学成份一般式可用χFe2O3?yFeO?zH2O表示。铜氧化腐蚀后表面变绿即铜锈,如青铜器博物馆出土的青铜器,经过2500多年的氧化腐蚀,表面形成的翠绿色物质。 铁及其合金是我们日常生活和建筑工程中使用量最大的金属材料,研究铁在大气环境中氧化腐蚀是铁金属及其合金腐蚀的重要形式,十分必要。 2 大气中的成分 铁容易腐蚀主要因为它是非常活泼的金属元素,易与其他元素反应形成化合物,纯金属铁遇到大气中的氧更容易发生氧化腐蚀,所以我们平常见到的铁制品基本上是褐色。

铁金属氧化的确切定义,可分为狭义氧化和广义氧化两种。 狭义氧化,是指铁与氧气反应生成氧化物的过程。广义氧化,是指铁与含氧、含硫、含卤素、含碳、含氮等其他气体反应生成相应的氧化物、硫化物、卤化物、碳化物、氮化物等化合物的过程。 铁及其合金材料在大气环境中氧化腐蚀的外在因素主要包括以下几个方面: (1)大气环境介质组分:如气相中的O2、H2O、CO、CO2、H2、N2、NH3、H2S、HCl等。 (2)大气环境介质的状态因素:气体分压、流速、温度、压力、冷热循环等。 (3)氧化—还原循环。 (4)燃烧物与附着物:燃灰等积灰物。 地球表面自然状态的空气叫做大气。大气中的主要成分是氮气、氧气、少量其他气体和一定量的水分。在典型的农村环境中,大气成分接近于自然大气的成分;而在城镇工业环境中还有SO2、H2S、酸、碱、盐挥发物以及粉尘等。 铁金属、合金钢及其构筑物,在其加工制造、贮运和使用过程中都处于大气环境之下。这些铁金属或构筑物在大气环境下发生的氧化腐蚀现象,就叫做大气氧化腐蚀。 3 铁金属在大气环境中氧化腐蚀的历程 铁金属在大气中氧化腐蚀是一个复杂的过程。这里只探讨狭义的铁金属大气氧化腐蚀历程,按其化学反应、电化学反应和扩

相关主题
文本预览
相关文档 最新文档