当前位置:文档之家› 光电效应与康普顿效应比较

光电效应与康普顿效应比较

光电效应与康普顿效应比较
光电效应与康普顿效应比较

光电效应与康普顿效应的比较

周嘉夫

(天水师范学院物理与信息科学学院,甘肃天水741001)

摘要: 光电效应和康普顿效应是光的粒子性的两个重要证据,通过对两效应实验规律的比较及产生条件的分析,论述两效应之间存在的本质差异,进一步说明光电效应和康普效应虽然都是光子与原子的作用过程,但产生条件和现象却是根本不同的。

关键词:光电效应康普顿效应光子散射电子自由电子差异能量作用比较

The Comparison of Photoelectric Effect and Konpton Effect

Zhou Jiafu

( School of Physics and Information Science, Tianshui Normal university, 741001) Abstract:Photoelectric effect and Compton effect is the particle nature of light are two important evidence. Effect of the two experiments and production of comparative law analysis of the conditions discussed between the two effects of differences in the photoelectric effect and further Compton Effect Although they are both the role of photon and atom, but phenomena arising from the conditions and it is step-by-step with the fundamental.

Key words:Scattering, Electron, PhotoelectricEffect, Konpton Effec,Free Electron,Photon,Function,Energy,Comparison

当频率为ν的光子与原子相互作用时,由于作用的形式及产生的后果不同,出现的现象主要有:①光子继续按原来的方式运动,就好象那儿没有原子存在一样,而原子也不受任何扰动;②产生光电效应,光子的能量被原子吸收,转移给某个电子,使该电子脱离原子的束缚(从原子中电离),形成一个自由电子和一个正离子;③产生康普顿效应,在该效应中,光子被原子内较松散的外层电子所散射,光子失掉一部分能量变为电子的反冲动能,散射光子的频率减小,由于原子核对外层电子束缚得很松,可把原子的外层电子看作自由电子。除此之外,光子与原子的相互作用,还可能会产生其它一些更复杂的现象,这里不再赘述。本文仅讨论将光电效应和康普顿效应作为光的粒子性的两个有力证据,说明光不仅具有分立的能量hv ,而且还具有一定的动量c hv 。用爱因斯坦的光子理论可以圆满解释光电效应和康普顿效应的实验结果。现行光学教材[1][2][3]中,均没有深入讨论两种效应的本质上差异。为什么它们同是光子与电子的碰撞过程,却引起了截然不同的两种效应?本文从实验事实出发,对光电效应和康普顿效应规律和本质作了比较。

1 光电效应和康普顿效应实验规律的比较

光电效应首先是由赫兹在1887年发现的。光照射在金属表面时,金属中有电子逸出的现象叫做光电效应。金属中所逸出的电子叫光电子,这一名字仅为了表示它是由于光的照射而从金属表面飞出的这一事实。其实它与通常的电子毫无区别,因此,光电子的定向移动所形成的电流叫做光电流。光电效应的规律可归纳为以下几点:

(1)要产生光电效应,入射光的频率必须0νν≥ (或0λλ≤),0ν叫极限频率,对不同金属0ν的值不同,与0ν相应的波长值0λ叫极限波长。如果人射光的频率0νν<(或0λλ>)则无论入射光强度多大,照射时间多长,都不会产生光电效应。

(2)从金属中释放的电子的最大初动能与光的强度无关,与光的频率有关。光电子的最大初动能随入射光频率的增大而线性地增大。

(3)光电子的发射与光的照射几乎是同时的,它们之间的时间不会超过10-s 。

(4) 入射光频率大于极限频率时,饱和光电流(单位时间内发射的光电子数)与入射光强度成正比。

康普顿效应是表明光具有粒子性的另一个现象。这现象首先是由康普顿于1922-1923年间发现的。当波长很短的X 射线通过某种物质时,散射光中除了有原有波长

0λ的X 射线外,还有较长波长λ的X 射线的散射现象称为康普顿效应。康普顿效应的实验规律可归纳成如下两点:

(1) 康普顿效应中波长的改变与散射角(散射线与人射线之间的夹角)θ的关系由康普顿散射公式确定,即0λλλ-=?=-1(0λcos θ),式中常数=0λ0.2463?

A 叫做电子的康普顿波长,对于同一散射物质,波长差λ?随θ角增大而增大,与入射光波长无关。

(2) 对于不同散射物质,在同样的散射方向上,波长差λ?相同,但较长波长的射线强度随原子序数Z 的增大而减少[4],即随着Z 的增加康普顿效应变得不显著。 1.1光的波动理论不能解释光电效应和康普顿效应

在光电效应和康普顿效应中牵涉到的光子和个别电子的相互作用,光的波动理论是很难解释这种微观世界中的作用的,而必须用量子概念来解释。光电效应实验规律的前两条说明光电效应与光的频率有决定性的关系:入射光频率ν必须大于等于极限频率0ν才能发生光电效应,且发射出光电子的最大初动能随入射光频率的增大而增大,与光的强度无关。从光的波动理论看这是无法理解的,入射光强度大即入射光能量大,金属中电子吸收光的能量就大,应该更容易发生光电效应且光电子动能越大。而实验却说明只要入射光频率0νν<无论光强度多大都不能从物质中照射出电子,只要0νν≥,无论多微弱的光都能从物质中照射出电子,且电子的最大初动能随入射光频率的增大而增大。从波动理论看,“电子的发射与光的照射几乎是同时的”也是不可理解的。深入细致分析原子中电子接收光的能量过程,原子面积很小,在单位时间内吸收入射光的能量也很少,需要很长时间才能发射电子。波动理论能解释实验规律的最后一条,但从整体看,从关键的实验事实看,应该认为波动理论不能解释光电效应的实验规律。

1.2用光子理论可以完满地解释光电效应和康普顿效应的物理本质及规律

按照光子理论,当光射到金属表面时,金属中的电子把光子的能量νh (h 为普朗克常数)全部吸收,电子把这部分能量用作两种用途,一部分用来挣脱金属对它的束缚,即

用作逸出功w ,余下一部分转换成电子离开金属表面后的动能22

1mv ,按能量守恒与转换定律,应有w mv h +=22

1ν,这就是有名的爱因斯坦光电效应方程。利用这个方程能圆满地解释光电效应的所有规律。

对规律l ,根据电子吸收一个光子能量hv 逸出金属的动能02

12≥mv ,由光电效应方程推理得到必w h ≥ν,其中w h =0ν, h w =0ν,不同金属逸出功w 不同,故极限频率不同,这就解释了极限频率的存在和不同金属极限频率不同。

对规律2,因为h 为一恒量,对一种金属w 为一定值。所以,由爱因斯坦光电效应方程知,逸出电子的最大初动能随入射光频率的增大而线性地增大。

对规律3,当光子与金属中的电子相互作用时,电子能够一次性全部吸收掉光子的能量,因而光电效应的产生无需积累能量的时间,几乎是一触即发。

对规律4,光的强度大,即单位时间内入射金属表面的光的能量大,根据光子理论,光的能量与光的频率和光子的数目有关,当光的频率一定时,入射光强度大,即单位时间内入射的光子数目多。所以,从金属中逸出的电子数目也多,逸出的光电子数与光的强度成正比。同样用光子理论可以很方便地解释康普顿效应:入射光中的光子与物质中的电子作弹性碰撞,碰撞后光子的能量减少,由=E λνhc h =故波长变长,这就是较长波长的散射光。原子外层的电子或轻原子的电子的结合能(-10ev)比X 射线能量(5410~10ev)要小得多,这些电子的动量也比光子的动量要小,因此作为近似,可以把这些电子看成是自由的并且是静止的。在碰撞过程中,光子与电子作为一个系统遵守能量守恒定律与动量守恒定律。对于原子内层电子,因结合能较大不能忽略,故电子不能看成是自由的,这时光子将与整个原子发生碰撞。由于原子质量远大于光子质量,碰撞结果是光子能量改变甚微,光的波长几乎不变,这就是散射中有原散射光的原因。

随着Z 的增加,原子中结合能小的外层电子在全部电子中所占比例减小,即可以看成自由电子的电子数减少,而原波长的散射光增加,这就是随着Z 的增加康普顿效应变得不显著的原因,从而解释了第二条实验规律。

2 光电效应和康普顿效应的发生几率在宏观统计上是一致的

光与物质相互作用时,可能出现许多现象,但按照量子力学,我们无法确切地预言这许多现象中到底哪一种实际会发生,只能给出各种现象可能出现的几率。我们能说明的仅仅是每一种现象可能出现的几率,而对于任何单个的光子,我们永远也不能确切地预言它在与原子碰撞时究竟会产生那种现象。虽然如此,但这并不是说就不能选择某种条件,使某种现象如光电效应成为主要过程,或者选择其它条件使康普顿效应成为主要过程。实验表明,光电效应和康普顿效应发生的几率,主要由光子的能量来确定。有人用实验得出如下结果

[5]:分别使用1000个光子穿过0.1 mm 厚的铝箔和铅箔时,平均来说将发生什么效应呢?如果以能量为300 Kev 的1000个光子通过0.1 mm 厚的铅箔时,平均只有9--10个光子将产生康普顿效应、约有35个将产生光电效应,约955个光子则穿过铅箔,不受任何影响。与此相反,若能量为30 Kev 的1000个光子通过0.1 mm 厚的铝箔时,大约只有5--6个光子将产生康普顿效应、约有920个参与产生光电效应,约75个光子则无扰动地通过铝箔。总的来说,产生光电效应的几率随着光子的能量增加而迅速减小。而在100--700 Kev 的能量范围内,重原子铅发生光电效应的几率要比轻原子铝要大得多。另外,实验中还发现,光子能量为89Kev 时光电效应出现有趣的突变,说明要从铅原子中撞出一个内层的电子需要89Kev 的能量。如果光子的能量正好比89Kev 稍大一些,铅原子的最内层电子因光电效应有很大的几率被撞出;若光子的能量正好比89Kev 稍小一点,它的能量就不足以使铅原子的最内层电子脱离原子而撞出。与此对应,康普顿效应的几率有一个反方向的降落,究其原因,是由于光电效应的几率变的很大时,参与康普顿效应的光子便寥寥无几了。因而光电效应成为主要过程或康普顿效应成为主要过程,或两效应均不明显等,都只是从它们发生几率上的一种统计结果。

3 光电效应和康普顿效应微观本质上的差异

光电效应与康普顿效应产生的条件及现象是根本不同的[6]。光电效应中,光子将全部能量转移给原子中的束缚电子而使其电离并脱离原子,且不发生任何光辐射。康普顿效应中,光子与原子作用的结果,使光子被散射出来,且散射光子的能量变小(波长变大)。另外,产生光电效应要求的光子能量较小(紫外附近);产生康普顿效应要求的光子能量较大(X 射线)。下面从光子与电子碰撞(即光子与原子的作用)的情况来证明:

①静止或运动的自由电子都不能吸收光子,光电效应是由于束缚电子吸收光子而产生的。

②康普顿效应是由于光子与自由电子相互作用而引起的光的散射的结果。

3.1处于静止状态的自由电子不能吸收光子

设原来静止的自由电子与光子碰撞后吸收了光子而以u 的速度运动,则由能量守恒定律有:2

22

02201c u c m m c c m hv -==+ (1)

式中0m 和m 分别是电子的静止质量和运动质量,ν为入射光子的频率。又由动量守恒定律

有:==mu c h ν2

201c u u m - (2) 由(1)式得:202

0222c m hv c hvm v h c u ++=

由(2)式得:42022c m v h hvc

u +=

显然,分别由能量守恒定律和动量守恒定律决定的电子运动速度不相同,说明自由电子吸收光子这一过程不能同时满足自然界普遍存在的能量守恒定律和动量守恒定律,表明这一过程是不能发生的。

3.2处于运动状态的自由电子也不能吸收光子

为了简便起见,假设碰撞前电子的运动速度与入射光子的速度相互垂直,光子与处于运动状态的自由电子碰撞后被吸收,则由能量守恒定律应有:

2222

022211c u c m c m c m hv -==+ (3)

式中0m 为电子的静止质量,1m 为电子碰撞前的动质量,2m 为电子碰撞后的动质量。又由动量守恒定律有:

X 方向:2222

0221cos cos c

u u m u m c hv -==θθ Y 方向:2222022111sin sin c u u m u m u m -==θ

θ

将两式取平方并相加,得: 22222

2021121)()(c u u m u m c h -=+ν (4)

由式(3)得:212

1420212222)(c

m hv c hvm c m m v h c u ++-+= 由式(4)得:22121420222

2121222c u m c m v h c u m v h c u +++=

可见,由式(3)和式(4)决定的速度不同,即这一过程不能同时满足能量守恒定律和动量守

恒定律,表明此过程亦不能发生。

3.3只有束缚电子才能吸收光子而产生光电效应

因为电子被束缚,故必然具有一束缚能量:A ,这样电子方能吸收光子,此时的能量守恒定律为:

22202201c u c m mc c m hv -=

=A -+ 即:A +--=20222

01c m c u c m hv , 当u <

221mu hv 显然,若0>A -hv ,则u >0,即发生光电效应。这便是爱因斯坦的光电效应方程。

3.4光子与自由电子作用,产生康普顿效应

康普顿效应是入射光子被原子中束缚很弱的电子散射后产生的波长变长(能量变小)的现象。为了简单,一般光学教科书均采用由光子与自由电子产生弹性碰撞的假设,按能量守恒定律和动量守恒定律给出与实验事实相一致的解释[7],在此就不再复述了。从前面的讨论可见,光电效应与康普顿效应的根本差异在于:光电效应是光子与原子中束缚电子相互作用而产生的现象;而康普顿效应是光子与原子外层束缚较松散的电子相互作用所产生的现象。要说明的是产生康普顿效应的X 射线(?

A ≤1λ 410≥hv ev)的能量远大于电子的束缚能。可见在康普顿效应中把外层电子看作是自由的是可行的。但对光电效应,入射光子一般为紫外光,其能量与金属中电子的束缚能比较接近,故束缚电子就不能看作是自由电子了。 4 结束语

由光电效应和康普顿效应实验规律的比较,可以得到光子理论可以完满的解释两效应的实验规律,而波动理论则不能很好的解释。光电效应或康普顿效应或其它现象的发生也只是光子与原子在不同条件作用下的一种宏观统计结果。而光子与束缚或自由电子的作用也使的两效应有了本质的差异。这样就更全面和更深入的认识了光电效应和康普顿效应。

参考文献:

[1]母国光,战元令.光学[M].北京:人民教育出版社,1978.619-642.

[2]姚启均.光学教程[M]. 北京:人民教育出版社,1981.403-426.

[3]赵凯华,钟锡华.光学:下册[M].北京:北京大学出版社,1984.258 -285.

[4]徐云.对于康普顿散射中λ′>λ的解释的探讨[J].工科物理教学.1987(2).9

[5]沈鼎权.康普顿效应有关的几个问题[J].工科物理教学. 1986(1).6-10

[6]杨涌泉.光电效应与康普顿效应在微观本质上的差异[J].工科物理教学. 1982(2).2-4

[7] 梁绍荣.普通物理学:第一分册光学.北京:高等教育出版社,1994:245-276.

光电效应与康普顿效应比较

光电效应与康普顿效应的比较 周嘉夫 (天水师范学院物理与信息科学学院,甘肃天水741001) 摘要: 光电效应和康普顿效应是光的粒子性的两个重要证据,通过对两效应实验规律的比较及产生条件的分析,论述两效应之间存在的本质差异,进一步说明光电效应和康普效应虽然都是光子与原子的作用过程,但产生条件和现象却是根本不同的。 关键词:光电效应康普顿效应光子散射电子自由电子差异能量作用比较 The Comparison of Photoelectric Effect and Konpton Effect Zhou Jiafu ( School of Physics and Information Science, Tianshui Normal university, 741001) Abstract:Photoelectric effect and Compton effect is the particle nature of light are two important evidence. Effect of the two experiments and production of comparative law analysis of the conditions discussed between the two effects of differences in the photoelectric effect and further Compton Effect Although they are both the role of photon and atom, but phenomena arising from the conditions and it is step-by-step with the fundamental. Key words:Scattering, Electron, PhotoelectricEffect, Konpton Effec,Free Electron,Photon,Function,Energy,Comparison

光电效应及其应用

目录 摘要 (1) Abstract (1) 1 光电效应的概念 (1) 1.1光电导效应 (2) 1.2光生伏特效应 (2) 2 光电效应的实验规律 (2) 3 光电效应和经典理论的矛盾处 (3) 4 光电效应的科学解释 (3) 5 光电效应的物理意义 (3) 6光电效应在近代技术中的应用 (4) 6.1常用的光电器件 (4) 6.2常用光电器件的检测 (5) 结语 (6) 参考文献 (6)

光电效应及其应用 摘要:本文介绍了光电效应的发现及发展,简要叙述了爱因斯坦的光量子假说对光电效应的解释及通过实验来验证了爱因斯坦的光量子假说对光电效应解释的正确性。并介绍了光电效应在现代科学技术中的应用。 关键词:光电效应;光量子;频率;相对论 The photoelectric effect and its application Absract:This passage introduce the discovery and development of photo-electr- ic effect, it brief introduce Einstein's light quanta hypothesis's contribute to explainin- g photo-electric effect and theory physics,it also introduce the application of photo-electric effect in modern scientific technology. Key words:Photoelectric effect;Light quantum;Frequency;Theory of Relativity 引言 光照射到某些物质上,引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。 光照射到某些物质上,有电子从物质表面发射出来的现象称之为光电效应(Photoelectric effect)。这一现象最早是1887年赫兹在实验研究麦克斯韦电磁理论时偶然发现的。之后霍尔瓦克斯、J·J·汤姆孙、勒纳德分别对这种现象进行了系统研究,命名为光电效应,并得出一些实验规律。1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论,使其逐渐地被人们所接受。 1 光电效应的概念 光电效应分为:外光电效应和内光电效应。光电效应中多数金属中的光电子 )逸出,不能从金属内深层逸出的结论。只能从靠近金属表面内的浅层(小于m

大学物理练习题 光电效应 康普顿效应

练习二十一光电效应康普顿效应 一、选择题 1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是 (A) 535nm。 (B) 500nm。 (C) 435nm。 (D) 355nm。 2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射。若反冲电子的动能为0.1MeV,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A) 0.20。 (B) 0.25。 (C) 0.30。 (D) 0.35。 3. 用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为E k,若改用频率为2ν的单色光照射此种金属,则逸出光电子的最大动能为 (A)hν+E k。 (B) 2hν?E k。 (C)hν?E k。 (D)2E k。 4. 下面这此材料的逸出功为:铍,3.9eV;钯, 5.0eV;铯,1.9eV;钨,4.5eV。要制造能在可见光(频率范围为3.9×1014Hz-7.5×1014Hz)下工作的光电管,在这此材料中应选: (A)钨。 (B)钯。 (C)铯。 (D)铍。 5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程。对此过程,在以下几种理解中,正确的是: (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程。 (B) 两种效应都相当于电子与光子的弹性碰撞过程。 (C) 两种效应都属于电子吸收光子的过程。 (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 6. 一般认为光子有以下性质 (1) 不论在真空中或介质中的光速都是c; (2) 它的静止质量为零; (3) 它的动量为hν/c2; (4) 它的动能就是它的总能量; (5) 它有动量和能量,但没有质量。 以上结论正确的是 (A)(2)(4)。 (B)(3)(4)(5)。 (C)(2)(4)(5)。 (D)(1)(2)(3)。 7. 某种金属在光的照射下产生光电效应,要想使饱和光电流增大以及增大光电子的初动能,应分别增大照射光的

各种接近开关的种类与应用

各种接近开关的种类与应用 各种接近开关的种类与应用 1、涡流式接近开关 这种开关有时也叫电感式接近开关。它是利用导电物体在接近这个能产生电磁场接近开关时,使物体内部产生涡流。这个涡流反作用到接近开关,使开关内部电路参数发生变化,由此识别出有无导电物体移近,进而控制开关的通或断。这种接近开关所能检测的物体必须是导电体。 2、电容式接近开关 这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。这个外壳在测量过程中通常是接地或与设备的机壳相连接。当有物体移向接近开关时,不论它是否为导体,由于它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。这种接近开关检测的对象,不限于导体,可以绝缘的液体或粉状物等。 3、霍尔接近开关 霍尔元件是一种磁敏元件。利用霍尔元件做成的开关,叫做霍尔开关。当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。这种接近开关的检测对象必须是磁性物体。 4、光电式接近开关 利用光电效应做成的开关叫光电开关。将发光器件与光电器件按一定方向装在同一个检测头内。当有反光面(被检测物体)接近时,光电器件接收到反射光后便在信号输出,由此便可“感知”有物体接近。 5、热释电式接近开关 用能感知温度变化的元件做成的开关叫热释电式接近开关。这种开关是将热释电器件安装在开关的检测面上,当有与环境温度不同的物体接近时,热释电器件的输出便变化,由此便可检测出有物体接近。 6、其它型式的接近开关 当观察者或系统对波源的距离发生改变时,接近到的波的频率会发生偏移,这种现象称为多普勒效应。声纳和雷达就是利用这个效应的原理制成的。利用多普勒效应可制成超声波接近开关、微波接近开关等。当有物体移近时,接近开关接收到的反射信号会产生多普勒频移,由此可以识别出有无物体接近。

高考物理一轮复习 专题60 光电效应 波粒二象性(练)(含解析)1

专题60 光电效应波粒二象性(练) 1.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加 电压U的关系如图.下列说法中正确 ..的是:() U I a b A.a光光子的频率大于b光光子的频率,a光的强度小于b光的强度; B.a光光子的频率小于b光光子的频率,a光的强度小于b光的强度; C.如果使b光的强度减半,则在任何电压下,b光产生的光电流强度一定比a光产生的光电流强度小; D.另一个光电管加一定的正向电压,如果a光能使该光电管产生光电流,则b光一定能使该光电管产生光电流。 【答案】D 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关;对于本题解题的关键是通过图象判定a、b两种单色光谁的频率大,反向截止电压大的则初动能大,初动能大的则频率高,故b光频率高于a 光的.逸出功由金属本身决定。 2.(多选)已知钙和钾的截止频率分别为14 7.7310Hz ?和14 5.4410H ?z,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钾逸出的光电子具有较大的:() A.波长 B.频率 C.能量 D.动量 【答案】BCD 【解析】根据爱因斯坦光电效应方程得:E k=hγ-W0,又 W0=hγc;联立得:E k=hγ-hγc,据题钙的截止频率比钾的截止频率大,由上式可知:从钾表面逸出的光电子最大初动能较大,

由2 k P mE =,可知钾光电子的动量较大,根据 h P λ= 可知,波长较小,则频率较大.故A 错误,BCD正确.故选BCD. 【名师点睛】解决本题的关键要掌握光电效应方程E k=hγ-W0,明确光电子的动量与动能的关 系、物质波的波长与动量的关系 h P λ= . 3.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加电压U的关系如图所示.则这两种光:() A.照射该光电管时a光使其逸出的光电子最大初动能大 B.从同种玻璃射入空气发生全反射时,b光的临界角大 C.通过同一装置发生双缝干涉,a光的相邻条纹间距大 D.通过同一玻璃三棱镜时,a光的偏折程度大 【答案】C 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关。 4.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV,用波长为2.5×10- 7 m的紫外线照射阴极,已知真空中的光速为3.0×108 m/s,元电荷为1.6×10-19 C,普朗克常量为6.63×10-34 J·s。则钾的极限频率是Hz,该光电管发射的光电子的最大初动能是J。(保留二位有效数字) 【答案】5.3×1014 ,4.4×10-19 【解析】(1)根据据逸出功W0=hγ0,得: 19 14 034 2.21 1.610 5.310 6.6310 W Hz h γ - - ?? ===? ? ; (2)根据光电效应方程:E k=hγ-W0…①

光电效应的应用

University 《近代物理实验》课程论文 光电效应的应用 学院: 专业: 学号: 学生姓名: 指导教师: 二〇一四年五月

光电效应的应用 1887年赫兹在做电磁波的发射与接收实验中,他发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,即光生电。1900年普朗克在研究黑体辐射问题时,将能量不连续观点应用于光辐射,提出了“光量子”假说,从而给予了光电效应正确的理论解释。1905年爱因斯坦应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部实验结果。密立根经过十年左右艰苦的实验研究,于1916年发表论文证实了爱因斯坦方程的正确性,并精确地测定了普朗克常数。 光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。如今光电效应已经广泛地应用于现代科技及生产领域,利用光电效应制成的光电器件(如光电管、光电池、光电倍增管等)已广泛用于光电检测、光电控制、电视录像、信息采集和处理等多项现代技术中。 1.光控制电器 在工业制造上,大部分光电控制的设备都要用到光控制电器。它包括电磁继电器、光电管、放大电路和电源等部件。如下图所示,当有光照在光电管K上时,便产生了电流,经过放大器后,使电磁铁M磁化,从而把衔铁N吸住。而当K上没光照射时,光电管电路就没有了电流,这时M和N便会自动离开。在实际的应用中,为了使射出的光线是一束平行光,我们把光源装在平行光管内,这样的平行光管在工程上称为发射头。光电管(多数情况下是用光敏二极管)也装在一个光管内(管末端装有聚光透镜),这种管在工程上称为接受头。 利用光电管制成的光控制电器,可以用于自动控制,如自动计数、自动报警、自动跟踪等等。如记录生产线上的产品件数。我们把产品放在传送带上,跟着传送带一起运动。在传送带的两则分别装上发射头和接收头。发射头所发射的平行光正好射入接收头。这时从发射头发出的光线射入接收头时,电路中所产生的电流,经过放大器放大,使电磁铁M磁化,吸引衔铁N,这时计数器的齿轮被卡住,计数器不发生动作。每逢产品把光线挡住的时候,电路中的电流就会消失,电磁铁自动放开衔铁,使计数器的齿轮转过一齿。这样,计数就自 动地把产品的数目记录下来。]1[ 2.光电倍增管在电视图像中应用

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

光电效应与光的波粒二象性.pdf

光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v =0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV C.5.0 eV D.6.5 eV 解析:本题考查光电效应方程及逸出功. 由W hv E k ?= 得W =hv -k E =5.0 eV-1.5 eV=3.5 eV 则入射光的最低能量为h min v =W =3.5 eV

康普顿效应及其解释

第二节光子 第三节康普顿效应及其解释 1.能量子 (1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的________.即:能量的辐射或者吸收只能是____________.这个不可再分的最小能量值叫做________. (2)能量子大小为hν,其中ν是谐振子的振动频率,h称为________常量.h =________________J·s. (3)能量的量子化 在微观世界中微观粒子的能量是________的,或者说微观粒子的能量是______的.这种现象叫能量的量子化. 2.光的能量是不连续的,而是____________的,每一份叫做一个光子,一个光子的能量为________.这就是爱因斯坦的光子说. 3.要使物体内部的电子脱离离子的束缚而逸出表面,必须要对内部电子做一定的功,这个功称为________.在光电效应中,金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的________,剩下的表现为逸出的光电子的____________,公式表示为____________________.4.康普顿效应 (1)用X射线照射物体时,散射出来的X射线的波长会________,这种现象称为康普顿效应. (2)光电效应表明光子具有________,康普顿效应表明光子还具有________,两种效应深入地揭示了光的________性的一面. (3)光子的动量p=__________.在康普顿效应中,由于入射光子与物体中电子的碰撞,光子的动量______,因此波长______. 【概念规律练】 知识点一能量子

1.已知某种单色光的波长为λ,在真空中光速为c ,普朗克常量为h ,则电磁波辐射的能量子ε的值为( ) A .h c λ B.h λ C.c hλ D .以上均不正确 2.神光“Ⅱ”装置是我国规模最大,国际上为数不多的高功率固体激光系统,利用它可获得能量为2 400 J 、波长λ为0.35 μm 的紫外激光,已知普朗克常量h =6.63×10-34J·s ,则该紫外激光所含光子数为( ) A .2.1×1021个 B .4.2×1021个 C .2.1×1015个 D .4.2×1015个 知识点二 爱因斯坦光电效应方程 3.下表给出了一些金属材料的逸出功. 现用波长为400 nm 的单色光照射上述材料,能产生光电效应的材料最多有几种(普朗克常量h =6.6×10-34 J·s ,光速c =3.0×108 m/s)( ) A .2种 B .3种 C .4种 D .5种 4.某种单色光的频率为ν,用它照射某种金属时,在逸出的光电子中动能最大值为Ek ,则这种金属的逸出功和极限频率分别是( ) A .hν-E k ,ν-k E h B .E k -hν,ν+k E h C .hν+E k ,ν- k E h .E k +hν,ν+ k E h 知识点三 光子说对光电效应的解释 5.(双选)对光电效应的理解正确的是( ) A .金属内的每个电子要吸收一个或一个以上的光子,当它积累的能量足够大时,就能逸出 B .如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应 C .发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动

光电效应与康普顿效应的区别

一、选题的依据、意义和理论或实际应用方面的价值 光电效应和康普顿效应是光学课程最主要的内容之一,在大学本科层次的光学教学中的光学教学中,我们对光的反射、折射现象和成像规律已比较熟悉。但对光的波动性、干涉和衍射现象,还是比较生疏的,理论解释也比较困难,光与物质相互作用的光电效应和康普顿效应更抽象,因此,不易讲解,我们在理解过程中存在一些概念的错误和混淆。光的本质是电磁波,它具有波动的性质。近代物理又证明,光除了具有波动性之外还具有另一方面的性质,即粒子性。光具有粒子性,最好的例证就是著名的“光电效应”和“康普顿效应”。光电效应与康普顿效应研究的都是光子与电子之间的相互作用,都是光具有粒子性的体现,但两者存在重要的不同。光电效应是指电子在光的作用下从金属表面发射出来的现象. 我们把逸出来的电子称为光电子. 而康普顿效应是指在X 射线的散射现象中, 发现散射谱线中除了波长和原射线相同的成分以外, 还有一些波长较长的成分, 两者差值的大小随散射角的大小而改变, 其间有确定关系的这种波长改变的散射. 上述两种效应都牵涉到光子和个别电子的相互作用,用简单的波动理论是是很难解释这些微观世界的相互作用, 这必须用量子概念来解释. 还可以从光的粒子性出发, 谈谈对光电效应和康普顿效应的不同。所以科学家将光信号(或电能)转变成电信号(或电能)的器件叫光电器件。现已有光敏管、光敏电阻、光敏二极管、光敏三极管、光敏组件、色敏器件、光敏可控硅器件、光耦合器、光电池等光电器件。这些器件已被广泛应用于生产、生活、军事等领域。 二、本课题在国内外的研究现状 光电效应是当光照在金属中时,金属里的表面有电子逸出的现象。而康普顿效应是让光波射入石墨,石墨中的价电子对光进行散射,然而散射光比入射光波长略大,这是由于光子和电子碰撞时将一部分能量转移给电子。这样,光的能量减小,波长便增加。而且如果将光子当做实物粒子的话,计算结果与实验结果符合。这便证明了光子也具有动量。即证明了光的粒子性。两个实验都证明了光的粒子性,下面谈谈光电效应与康普顿效应的区别。 1、观察到的条件不同; 2、对光量子能量的吸收程度不同; 3、能量与动量守恒方式不同; 光不仅具有波动性, 也具有粒子性. 同时我们也可以发现, 质量守恒定律,动量守恒定律、能的转化和守恒定律同样适用于微观物质间的相互作用。 三、课题研究的内容及拟采取的方法 1,光电效应 (1)概念 (2)光电效应的实验规律 2,康普顿效应 (1)概念 (2)康普顿效应实验规律 3,光的波动性不能解释光电效应和康普顿效应 4,用光子理论可以完美的解释光电效应和康普顿效应的本质 (1)观察到的条件不同; (2)对光量子能量的吸收程度不同; (3)能量与动量守恒方式不同; 5,光电效应和康普顿效应的联系与区别 6,光电效应和康普顿效应中的能量守恒与动量守恒 7,发生光电效应与康普顿效应的概率 方法:实验,查书,找资料

第十三章第三节 光电效应 波粒二象性

第三节光电效应波粒二象性 [学生用书P243]) 一、黑体和黑体辐射 任何物体都具有不断辐射、吸收、发射电磁波的本领.辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布.这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射.为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体,以此作为热辐射研究的标准物体. 二、光电效应 1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子). 2.产生条件:入射光的频率大于极限频率. 3.光电效应规律 (1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多. (2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应. (3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s. 1.判断正误 (1)我们周围的一切物体都在辐射电磁波.() (2)光子和光电子都是实物粒子.() (3)能否发生光电效应取决于光的强度.() (4)光电效应说明了光具有粒子性,证明光的波动说是错误的.() (5)光电子的最大初动能与入射光的频率有关.() (6)逸出功的大小与入射光无关.() 答案:(1)√(2)×(3)×(4)×(5)√(6)√ 三、光电效应方程 1.基本物理量 (1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量). (2)逸出功:使电子脱离某种金属所做功的最小值. (3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸

光电子器件笔记

光电子器件 第一章 1、 光电探测器输出信号电压或电流与单位入射光功率之比,即单位入射光功率作用下探测器输出信号电压或电流称为响应率. 光谱响应率(R λ):光电器件在单色 (在波长λ附近一个很小的波长范围里) 辐射功率作用下产生的信号电压或信号电流。 ——其中Rm 为光谱响应率的最大值 R λ(单位:A/W ) 光谱响应率及量子效率仅由器件的响应特性所决定,而与光源无关。 2. 器件的光谱响应与光源辐射功率谱密度紧密相关,它们之间的匹配系统 α—称为器件与光源的光谱匹配系数,它反映了器件响应的波长范围同光源光谱的吻合程度。 在光源固定的情况下,面积A1是不变的,如果与曲线重合得愈多,面积A2愈大, α愈大,也就是光谱匹配愈好;反之, 如果两曲线没有重合之处,α=0,即二者完全失配,则该光电器件对光源辐射没有探测能力。光谱匹配是选择光电子器件,如像管、光电倍增管、红外成像器件的材料的重要依据。 3.光电探测器输出的电流或电压在其平均值上下无规则的、随机的起伏,称为噪声。噪声是物理过程所固有的,人为不可能消除。它的计算是在足够长时间内求其平方平均或均方根。 dP du R s u λλ=dP di R s i λλ=m R R R λλ=)( λR m R 1.24λ λη )(λ R λ 1 2A A =α

光电探测器的噪声来源主要有热噪声、散粒噪声、温度噪声、放大器噪声、频率噪声、复合噪声等。 当输出信号电压等于输出噪声电压均方根值时的探测器的入射辐射功率叫做最小可探测辐射功率,也叫做噪声等效功率NEP 。 Pmin 越小,器件的探测能力越强。 对Pmin 取倒数可作为衡量探测器探测能力的参数,称为探测率。研究指出:探测率与器件的面积和工作带宽成反比。 4.光吸收厚度:设入射光的强度为 I0,入射到样品厚度为x 处的光强度为 I ,则: α为线吸收系数,单位为(1/cm ) α大时,光吸收主要发生在材料的表层;α小时,光入射得深。当厚度d=1/α时,称为吸收厚度,有64%的光被吸收。 5.本征吸收:价带中的电子吸收了能量足够大的光子后,受到激发,越过禁带,跃入导带,并在价带中留下一个空穴,形成了电子空穴对,这种跃迁过程所形成的光吸收称为本征吸收。 本征吸收条件:光子的能量必须大于或等于禁带的宽度Eg 。 6. 内光电效应: 材料在吸收光子能量后,出现光生电子-空穴,由此引起电导率变化或电压、电流的现象,称之为内光电效应。 光电导效应:当半导体材料受光照时,吸收光子引起载流子浓度增大,产生附加电导率使电导率增加,这个现象称为光电导效应。在外电场作用下就能得到电流的变化。 光电导效应分为本征型和非本征型。 7.设本征半导体在没有光照时,电导率为 (称为暗电导率) 当有光注入时,半导体电导率: 电导率的增量称为光电导率: 8. 增加载流子寿命: 好处:增益提高,灵敏度提高,响应率提高。 缺点:惰性增加,频率响应特性变差。 所以增益和惰性不可兼得。 9. 影响光谱响应的两个主要因素:光电导材料对各波长辐射的吸收系数和截流子表面复合率。 光电导光谱响应特点:都有一峰值,峰值一般靠近长波限(长波限约为峰值一半处所对应的波长)。 u n n s R u u u P P ==min x e I I α-=00σP n e p e n μ μσ000+=P n p p e n n e μμσ)()(00?++?+=0() n P e n p σσσμμ?=-=?+?

光电效应与康普顿效应

光电效应与康普顿效应 专业:机械设计制造及其自动化学号:5901108267 姓名:李庆 摘要 本文对光电效应和康普顿效应进行了简单介绍,分别对光电效应和日康普顿效应的基本原理和其实验类推法进行了简单的概述,介绍了爱因斯坦光电方程和用X 射线投射石墨实验。同时本文对光电效应和康普顿效应的相同之处和不同之处进行了分析。两者的物理本质相同,但是两者观测的条件和对光量子能量的吸收程度不同,两者在过程中产生的粒子也不同。 关键词:光电效应;康普顿效应;爱因斯坦光电方程;光电子;散射 Photoelectric effect and Compton effect Abstract This article has carried on the simple introduction to the photoelectric effect and the Compton effect respectively, of the photoelectric effect and Compton effect on the basic principles and its experimental analogy method a simple overview describes the Einstein photoelectric equation and use X-ray projection of graphite experiments. And on the photoelectric effect and Compton effect of the similarities and differences were analyzed. The physical nature of both the same, but the two observation conditions and the optical absorption of quantum energy in varying degrees, both in the process produced particles are also different. Keyword:photoelectric effect; Compton effect; Einstein's photoelectric equation; optoelectronics; scattering

光电成像原理与应用复习资料

1、光电效应应按部位不同分为内光电效应和外光电效应,内光电效应包括(光电导)和(光伏效应)。 2、真空光电器件是一种基于(外光电)效应的器件,它包括(光电管)和(光电倍增管)。 3、光电导器件是基于半导体材料的(光电导)效应制成的,最典型的光电导器件是(光敏电阻)。 4、硅光电二极管在反偏置条件下的工作模式为(光电导),在零偏置条件下的工作模式为(光伏模式)。 5、变象管是一种能把各种(不可见)辐射图像转换成为(可见)图像的真空光电成像器件。 6、固体成像器件电荷转移通道主要有两大类,一类是(SCCD),另一类是(BCCD)。 7、光电技术室(光子技术)和(电子技术)相结合而形成的一门技术。 8、场致发光有(直流)、(交流)和结型三种形态。 9、常用的光电阴极有(正电子亲合势光电阴极)和(负电子亲合势光电阴极),正电子亲和势材料光电阴极有哪些(Ag-O-Cs,单碱锑化物,多碱锑化物)。 10、根据衬底材料的不同,硅光电二极管可分为(2DU)型和(2CU)型两种。 11、像增强器是一种能把(微弱)增强到可以使人眼直接观察的真空光电成像器件,因此也称为(微光管)。 12、光导纤维简称光纤,光纤有(纤芯)、(包层)及(外套)组成。 13、光源按光波在时间,空间上的相位特征可分为(相干)和(非相干)光源。 14、光纤的色散有材料色散、(波导色散)和(多模色散)。 15、光纤面板按传像性能分为(普通OFP)、(变放大率的锥形OFP)和(传递倒像的扭像器)。 16、光纤的数值孔径表达式为(),它是光纤的一个基本参数、它反映了光纤的(集光)能力。 17、真空光电器件是基于(外光电)效应的光电探测器,他的结构特点是有一个(真空管),其他元件都置于(真空管)。 18、根据衬底材料的不同,硅光电电池可分为(2DR)型和(2CR)型两种。 19、根据衬底材料的不同,硅光点二、三级管可分为(3DU)型和(3CU)型两种。 20、为了从数量上描述人眼对各种波长辐射能的相对敏感度,引入视见函数V(f), 视见函数有(明视见函数)和(暗视见函数)。 21、PMT有哪几部分组成?并说明店子光学系统的作用是什么?PMT的工作原理? PMT主要由入射窗口、光电阴极、电子光学系统、电子倍增系统和阳极五个主要部分组成。 电子光学系统的主要作用有两点: 1、使光电阴极发射的光电子尽可能全部汇聚到第一倍增极上,而将其他部分的杂散热电子散射掉,提高信噪比. 2 . PMT的工作原理 1.光子透过入射窗口入射在光电阴极K上 2.光电阴极K受光照激发,表面发射光电子 3.光电子被电子光学系统加速和聚焦后入射到第一倍增极D1上,将 发射出比入射电子数更多的二次电子。入射电子经N级倍增后, 光电子数就放大N次. 4.经过倍增后的二次电子由阳极P收集起来,形成阳极光电流I p,在负载R L上产生信号电压U0。 22、PMT的倍增极结构有几种形式?个有什么特点? 鼠笼式,盒栅式,直线聚焦型,百叶窗式,近贴栅网式,微通道板式。 23、什么是二次电子?并说明二次电子发射过程的三个阶段是什么?光电子发射过程的三步骤? 答:当具有足够动能的电子轰击倍增极材料时,倍增极表面将发射新的电子。称入射的电子为一次电子,从倍增极表面发射的电子为二次电子。 二次电子发射过程的三个阶段: 1) 材料吸收一次电子的能量,激发体内电子到高能态,这些受激电子称为内二次电子; 2) 内二次电子中初速指向表面的那一部分向表面运动,在运动中因散射而损失部分能量; 3) 到达界面的内二次电子中能量大于表面势垒的电子发射到真空中,成为二次电子。 24、简述Si-PIN光电二极管的结构特点,并说明Si-PIN管的频率特性为什么比普通光电二极管好?p69 25、简述常用像增强器的类型?并指出什么是第一、第二和第三代像增强器,第四代像增强器在在第三代基础上突破的两个技术室什么?p130 1). 级联式像增强器2) 第2代像增强器(微通道板像增强器)3).第3代像增强器4).第4代像增强器 26、什么是光电子技术?光电子技术以什么为特征? 光电子技术是:光子技术与电子技术相结合而形成的一门技术。主要研究光与物质中的电子相互作用及其能量相互转

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

2020届高三高考物理复习知识点复习卷:光电效应波粒二象性

光电效应 波粒二象性 1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D .实物的运动有特定的轨道,所以实物不具有波粒二象性 2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是( ) A .遏止电压 B .饱和光电流 C .光电子的最大初动能 D .逸出功 3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是( ) 甲 乙 丙 A .单个光子的运动没有确定的轨道 B .曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子 C .干涉条纹中明亮的部分是光子到达机会较多的地方 D .大量光子的行为表现为波动性 4.(多选)下列说法正确的是( ) A .光子不仅具有能量,也具有动量 B .光有时表现为波动性,有时表现为粒子性 C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h D .光波和物质波,本质上都是概率波 5.(多选)已知某金属发生光电效应的截止频率为νc ,则( ) A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子 B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大 D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

光电效应(含解析)

光电效应 1. 知识详解: 知识点1 光电效应和波粒二象性 1.光电效应的实验规律 (1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间发射的光电子数越多,饱和光电流越大. (2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.使光电流减小到零的反向电压叫遏止电压. (3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s. 2.光子说 爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量ε=h ν,其中h =6.63×10-34 J ·s. 3.光电效应方程 (1)表达式:h ν=E k +W 0或E k =h ν-W 0. (2)物理意义:金属中的电子吸收一个光子获得的能量是h ν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =1 2 mv 2. 4.光的波粒二象性 (1)波动性:光的干涉、衍射、偏振现象证明光具有波动性. (2)粒子性:光电效应、康普顿效应说明光具有粒子性. (3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 5.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波. (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量. 易错判断 (1)光子说中的光子,指的是光电子.(×) (2)只要光足够强,照射时间足够长,就一定能发生光电效应.(×) (3)极限频率越大的金属材料逸出功越大.(√) 知识点2 α粒子散射实验与核式结构模型 1.实验现象

相关主题
文本预览
相关文档 最新文档