当前位置:文档之家› 粗糙度轮廓仪功能及原理

粗糙度轮廓仪功能及原理

粗糙度轮廓仪功能及原理

粗糙度轮廓仪功能及原理

粗糙度轮廓仪功能

粗糙度轮廓仪是专门用来检测经机械加工后工件的表面粗糙度、表面轮廓的机电一体化精密测量仪器,其特点除了具有高科技含量外,还将测试表面粗糙度和表面轮廓两种功能有机地设计在同一台仪器上。

该仪器广泛地应用于机械加工、轴承制造、汽车制造、汽摩配、机电设备、航天工业、模具制造、石油化工设备制造、精密五金、刀具、机床等行业和科研院所、大专院校、法定的计量机构的生产、计量、检验部门。

粗糙度轮廓仪工作原理:

测针与被测件接触扫描,实现被测件表面的坐标轨迹测量,获得原始数据,利用弹性支承结构和电感式传感器、自编的专用软件、微电子技术通过计算机最终实现数据采集、数据计算、操作控制、综合分析、计算、处理,达到粗糙度和轮廓形状的相关参数测定,对测定结果进行数据和图像显示、存储、打印输出和发送。

采用光机电算结合达到驱动箱上下有控自动移动,触针可根据与被测件的接近程度快速和慢速变化左右移动速度实现接触定位,按程序操作保证触针不受冲击伤害。

视觉测量系统技术及应用

视觉测量系统技术及应用 1 引言 基于计算机的视觉检测系统是指通过计算机视觉产品将被摄取目标转换成图像信号,传送给图像处理系统,图像处理系统再根据像素分布和亮度、颜色等信息,转变成数字化信号,计算机图像系统对这些信号进行复杂运算来抽取目标的特征,进而根据判别的结果来控制设备动作。它具有非接触、速度快等优点,是一种先进的检测手段,非常适合现代制造业。可用于视觉检测的试验原理很多,如纹理梯度法、莫尔条纹法、飞行时间法等,然而诸多测试原理中,尤其基于三角法的主动和被动视觉测量原理具有抗干扰能力强、效率高、精度合适等优点,非常适合在线非接触测量。本文主要从视觉测量系统在实际中应用出发,展示视觉检测技术在制造业中的广阔应用[1-4]。 2 视觉测量系统技术的应用 2.1 汽车车身视觉检测系统 在汽车制造过程中,车身上总有很多关键的三维尺寸进行测量,采用传统的三坐标测量机只能离线抽样检测,效率低,更不能满足现代汽车制造在线检测的需要,而视觉检测系统能很好的适应该需要,典型的汽车车身视觉检测系统如图1所示[5]。 图1 车身视觉检测系统 车身检测系统主要依靠的是数个视觉传感器,其中还包括传送机构、定位机构,计算机图像采集、网络控制部分。每个传感器对应一个被测区域,然后通过传输总线传至计算机,通过计算机对每个视觉传感器进行过程控制。 汽车车身检测系统的测量效率很高,精度式中,并且可以在完全自动情况下完成,这个包含几十个测点的系统都能再几分钟内测量完成,因此可以适应汽车制造的在线检测。而且传感器的布置可以根据不同车型来布置,增加了应用要求,

因此减少了车身视觉系统的维护费用。 2.2 拔丝模孔形视觉检测系统 使用计算机视觉检测技术开发出的拔丝模孔形检测系统由光学成像系统、工业用摄像机图像采集卡、计算机及监视器组成,可以解决生产实际中的模具孔形检测问题.工作原理如下:先采用注入硅胶方法获得反映待检拔丝模尺寸及形状的硅胶凸模,然后把硅胶凸模放在光学系统的载物台上.硅胶凸模经光学成像放大,成像于CCD像面上,然后用图像采集卡采集CCD图像信息,最后由计算机视觉检测软件完成对孔形尺寸的自动计算,此时图像采集时需要配置特殊的光照系统.系统实现了自动数据采集、处理,实现采样、进样、结果一条龙,形成检测的自动化. 2.3 无缝钢管直线度和截面在线视觉检测 无缝钢管是一类重要的工业产品,在反应无缝钢管质量中,钢管直线度及截面尺寸是主要的几何参数。现代工业已经可以实现无缝钢管的大批量大规模生产,并且并无成熟的直线度、截面尺寸高效率的检测系统,主要原因为:无缝钢管空间尺寸大,需要很大的测量空间,一般的检测手段很难实现如此大尺度的检测。然而视觉检测却非常适合无缝钢管及截面尺寸的测量,其测量原理图如图2所示。 多个传感器组成了视觉检测系统,传感器的结构光所投射的光平面与被测钢管相交,从而得到钢管的部分圆周,传感器测量圆周在传感器三维空间位置,每一个传感器实现一个截面圆周测测量,然后通过拟合得到截面的圆心和其空间位置,从而实现对无缝钢管截面和直径的测量。 图2 无缝钢管在线检测 2.4 视觉测量在逆向工程中的应用 逆向工程是针对现有的工件,利用3D数字化测量仪准确快速地测量出轮廓坐标值,并建构曲面,经过编辑、修改后,将图形存档形成一般的CAD/CAM系统,再由CAM所产生刀具的NC加工路径送至CNC加工机制所需模具,或者以快速成型将物品模型制作出来。视觉测量一般使用三种激光光源:点结构光、线结构光、面结构光,图3为使用线结构光测量物体表面轮廓的结构示意图[6]。

粗糙度轮廓仪操作规程(1修改)

监视测量装置和试验设备操作规程 文件编号:YJZGS11-23 版本:A 页码:第 1页共 1页 1设备名称:粗糙度轮廓仪型号/规格: 2出厂编号:242 本公司编号: 3校准(检定)周期:一年 4使用环境:温度18℃到22℃,湿度60±10% 5操作步骤 5.1 开机将光标移到Programs(程序),再移到Taylor Hobso n。 5.2 点击软件名,根据提示符号输入用户名和口令。 注:输入用户名和口令后即可登录到系统。该软件是多用户系统,每一个用户必须用唯一的口令去登录,进入程序后确认光标位置是否与主轴箱和Z轴相符,如果不符,读出光标现在的刻度值后,输入正确的刻度值按OK即可。 5.3 当主窗口显示后,根据所测产品的要求配置需要的传感器和测针。 6 校正 在选用传感器和测针后,先要进行校正,校正前要对标准球进行擦拭,但必须用丝绸布进行清洁。清洁完后再进行校正。标准球经校正后,必须放回标准球专用盒内,且要求轻拿轻放。 7 测量轮廓度 7.1 准备工作:根据试验委托单中的测量要求,选择传感器和探针规格。点击横臂单元右键 进行配置,选择宽范围传感器和测针后并作校准。 7.2测量方法:依据被测量的部位和实际情况,构建一套完整的测量方案。要求测量方案安全、 可靠、实用。测量时要求要过被测产品的轴心线,要找到最高或最低点,且坡 度不能大于45度。 7.3测量步骤:首先将测针移动至被测部件的位置,用手动操作一次被测产品的行程,得到被 测总长。用总长减去0.6毫米,求出数据长度,然后按测量工具栏GO,便会出现 一个对话框,再进行测量的设置,设置测量名称——数据长度——测量速度最后按 OK即可。 7.4测量分析:得到原始轮廓后用鼠标点击右键,将原始轮廓导出到分析软件,然后从分析软 件中调出进行分析,其分析步骤为:选择调平原始轮廓——手动创建最佳拟合— —选择允许/不允许取点。用鼠标左键选择两个元素,作为一个元素的开始点和 结束点,然后按要拟和的这一段。分析完成后可以关闭原始数据,只显示摸板。 7.5标注尺寸:选择尺寸标注工具栏,根据分析的摸板进行尺寸标注,有X方向尺寸、有Y 方 向尺寸、斜边方向尺寸、半径尺寸、角度尺寸。标注完成后即可打印报告。8测量表面粗糙度: 8.1准备工作:根据试验委托单中的测量要求,选择传感器和探针规格。点击横臂单元右键进 行配置,选择1 mm传感器和测针后并作校准。 8.2测量方法:依据试验委托单粗糙度要求,确定评定长度。根据 8.1测量粗糙度步骤同7.3 , 8.3测量分析:数据选择工具栏上点击分析按钮.从对话框中选择合适形状类型.选择其中的参 数――分析参数表――选择需要的参数按OK即可。 8.4点击已分析的图形按右键,从你需要的版式中打开后打印报告。

表面粗糙度轮廓及其检测

第五章表面粗糙度轮廓及其检测 思考题 5-1 为了研究机械零件的表面结构而采用的表面轮廓是怎样确定的?实际表面轮廓上包含哪三种几何误差? 5-2 表面结构中的粗糙度轮廓的含义是什么?它对零件的使用性能有哪些影响? 5-3 测量表面粗糙度轮廓和评定表面粗糙度轮廓参数时,为什么要规定取样长度?标准评定长度等于连续的几个标准取样长度? 5-4 为了评定表面粗糙度轮廓参数,首先要确定基准线,试述可以作为基准线的轮廓的最小二乘中线和算术平均中线的含义? 5-5 试述GB?T3505-2000《产品几何技术规范表面结构轮廓法表面结构的术语、定义及参数》规定的表面粗糙度轮廓更衣室参数中常用的两个幅度参数和一个间距参数的名称、符号和含义? 5-6 规定表面粗糙度轮廓的技术要求时,必须给出的两项基本要求是什么?必要时还可给出哪些附加要求? 5-7 试述在表面粗糙度轮廓代号上给定幅度参数Ra或Rz允许值(上限值、下限值或者最大值、最小值)的标注方法?按GB/T1061 0-1998《产品几何技术规范表面结构要轮廓法评定表面结构的规则和方法》的规定,各种不同允许值的合格条件是什么? 5-8 试述表面粗糙度轮廓幅度参数Ra和Rz分别用什么量仪测量?试述这些量仪的测量原理和分别属于哪种测量方法?

5-9 试述表面粗糙度轮廓幅度参数允许值的选用原则? 5-10 GB/T131-1993《机械制图表面粗糙度符号、代号及其注法》规定了哪三种表面粗糙度轮廓符号? 5-11 试述表面粗糙度轮廓代号中幅度参数允许值和其他技术要求的标注位置? 习题 一、判断题〔正确的打√,错误的打X〕 1. 确定表面粗糙度时,通常可在三项高度特性方面的参数中选取。() 2. 评定表面轮廓粗糙度所必需的一段长度称取样长度,它可以包含几个评定长度。() 3. R z参数由于测量点不多,因此在反映微观几何形状高度方面的特性不如Ra参数充分。() 4. R y参数对某些表面上不允许出现较深的加工痕迹和小零件 的表面质量有实用意义。() 5. 选择表面粗糙度评定参数值应尽量小好。() 6. 零件的尺寸精度越高,通常表面粗糙度参数值相应取得越小。() 7. 零件的表面粗糙度值越小,则零件的尺寸精度应越高。() 8. 摩擦表面应比非摩擦表面的表面粗糙度数值小。() 9. 要求配合精度高的零件,其表面粗糙度数值应大。()

轮廓测量仪和三坐标测量机的区别

轮廓仪,顾名思义,测量产品表面轮廓尺寸的仪器。随着轮廓仪的迭代更新,现在的轮廓仪是一款对物体的轮廓、二维尺寸、二维位移进行测试与检验的精密设备,在汽车制造和铁路行业的应用十分广泛。 今天小编要为大家分享一下轮廓仪和三坐标测量机区别,希望能够帮助到大家。 1、用途的区别 轮廓仪可测量各种精密机械零件的粗糙度和轮廓形状参数。用拟合法来评定园弧和直线等。从而可测量园弧半径、直线度、凸度、沟心距、倾斜度、垂直距

离、水平距离、台阶等形状参数。仪器还可对各种零件表面的粗糙度进行测试;可对平面、斜面、外园柱面、内孔表面、深槽表面、圆弧面和球面的粗糙度进行测试,并实现多种参数测量。 接触过一款三坐标测量机CMM,是意大利coord3的,对于这种cmm我自己认为有很大缺陷,当然也有优点。它可以测量模具产品,电子类产品,通讯类,汽车类等等很多。在一个工厂它的用途确实很广泛,但它的价格却也不菲。 2、结构的区别 轮廓仪由花岗岩平板、工作台、传感器、驱动箱、显示器、电脑和打印机等部分组成.测量时可选定被测零件的不同位置,设定各种测量长度进行自动测量,评定段内采样数据达数万个点。并可显示或打印轮廓形状及其尺寸,各种粗糙度参数及轮廓的支承长度率曲线等。 三坐标主要有机械系统,测头系统,电气控制硬件系统,数据处理软件系统组成。 以上就是深视智能小编对轮廓仪和三坐标测量机区别的分享内容,希望能够帮到有需要的朋友,深圳市深视智能科技有限公司重点针对机器视觉领域的三维

视觉系统产品线投入研发,推出激光轮廓仪,轮廓仪,激光轮廓传感器,激光轮廓扫描仪,激光轮廓测量仪,3D线扫相机,线扫描相机,3d激光测量仪,线激光扫描仪,3D激光扫描仪等产品,广泛应用于各大检测行业,欢迎来电咨询。

轮廓测量仪操作规程

轮廓测量仪操作规程 轮廓测量仪能够对各种工件轮廓进行长度、高度、间距、水平距离、垂直距离、角度、圆弧半径等几何参数测量,并且具有强大的CNC功能,能进行一系列操作自动化,可高效率地进行测量作业。 一.操作步骤 1.测量前准备。 2.开启电脑、打开机器电源开关、检查机器启动是否正常。 3.擦净工件被测表面。 二.测量 1.将测针正确、平稳、可靠地移动在工件被测表而上。 2.工件固定确认工件不会出现松动或者其它因素导致测针与工件相撞的情况出现。 3.在仪器上设置所需的测量条件。 4.开始测量。测量过程中不可触摸工件更不可人为震动桌子的情况产生。

5.测量量完毕,根据图纸对结果进行分析,标出结果,并保存、打印。 三.保养 1.每天开机前及测量完毕后用高织纱棉布沾无水酒精清洁工装表面、测针、轨道。2.平时不使用时将所有电源关闭,且将测针的保护套套上。 3.严禁用扫帚清扫地面,以免灰尘扬起。 4.对仪器进行全面的维护和精度调整。 四.维护 1.测力标定 如图1所示。此界面用于对测针扫描时测量力的设置。 (图1)测力标定界面 测力标定示意图,如图2所示。 (图2)测力标定示意图

注意:请在专业人员的指导下进行测力标定和测杆摆动调整! 下针尖测力设置:如图2所示。 1)把电子称放置在测量位置下方,把电子称清零(注意:电子称开机后自动清零,电子称 显示的单位应为“g”)。 2)控制测针移到电子称上方。 3)软件上先设置“测力大小”(普通工件测力一般为7g),然后点击“设置”按钮,则输 入框变为可编辑状态。 4)点击“向下测力”(绿色标志表示选中),此时测针向下接触电子称。 5)同时在主界面观察Z0光栅值,看摆杆是否处于水平位置(注意:测力标定应在摆杆处 于水平位置时进行操作,摆杆处于水平位置时的Z0光栅值主要由机械安装确定,一般情况下,此时Z0光栅值等于0.000mm,具体参数见“测力标定”界面的提示值),若不处于水平位置,则上下移动Z轴使Z0光栅值等于提示值即可。 6)观察电子称的读数应在7g左右(注意:读数前先轻轻抬起摆杆,再轻轻放下,不能通 过摆杆的重力和张力落下,然后重复3-5次观察电子称读数),若不是7g左右,则应通过调整“向下位置”下方的角度值来调整测力,然后点击“保存”按钮。 7)重复步骤(5),直至测力正常。 2.编码器标定 如图3所示。此界面用于使用激光干涉仪对光栅示值进行标定,非专业人员不允许随意操作。

轮廓测量仪原理及应用

轮廓测量仪概述 SJ5700轮廓测量仪是一款集成表面粗糙度和轮廓测量的测量仪器;采用进口高精度光栅测量系统、高精度研磨导轨、高性能非接触直线电机、音圈电机测力系统、高性能计算机控制系统技术,实现对各种工件表面粗糙度和轮廓进行测量和分析。通过高精度研磨导轨、高性能直线电机保证测量的高稳定性及直线度,采用进口高精度光栅测量系统建立工件表面轮廓的二维坐标,计算机通过修正算法对光栅数据进行修正,最终还原出工件轮廓信息并以曲线图显示出来,通过软件提供的分析工具可对轮廓进行各种参数分析。 轮廓仪为全自动测量设备,操作者只需装好被测工件,在检定软件上设定扫描的开始、结束位置,点击“开始”按钮,测针会自动接 触工件表面,并按设定的位置扫描;可高精度地测量精密加工零部件的粗糙度和轮廓形状,再选择所需评价参数即可进行评价。 系统软件为简体中文操作系统,操作方便。

轮廓测量仪功能 SJ5700 轮廓测量仪可测量各种精密机械零件的素线轮廓形状参数,角度处理(坐标角度,与 Y 坐标的夹角,两直线夹角)、圆处理(圆弧半径,圆心到圆心距离,圆心到直线的距离,交点到圆心的距离,直线到切点的距离)、点线处理(两直线交点,交点到直线距离,交点与交点距离,交点到圆心的距离)、直线度、凸度、对数曲线、槽

深、槽宽、沟曲率半径、沟边距、沟心距、轮廓度、水平距离等形状参数。 轮廓测量仪性能特点 1、高精度、高稳定性、高重复性:完全满足被测件测量精度 要求。 1) 选用国际领先的高精度光栅测量系统和高精度电感测量系 统,测量精度高; 2) 自主研发高精度研磨导轨系统,导轨材料耐磨性好、保证 系统稳定可靠工作; 3) 高性能直线电机驱动系统,保证测量稳定性高、重复性好; 2、智能化管理与检测软件系统: 仪器操作界面友好,操作者很容易即可基本掌握仪器操作,使用十分简便。 1) 10多年积累的实用检定软件设计经验,向客户提供简洁、 实用、快速的操作体验; 2) 功能强大、自动处理数据、打印各种格式的检定报告,自 动显示、打印、保存、查询测量记录; 3) 测量围广,可满足绝大多数类型的工件粗糙度轮廓测量; 4) 可自动和手动选取被测段进行评定,可依据客户要求进行 软件功能的定制; 5) 纯中文操作软件系统,更好的为国用户服务; 6) 打印格式正规、美观。检定数据可存档,或集中打印,不 占用检定操作时间;

JB—5C粗糙度轮廓测试仪说明书

JB—5C粗糙度轮廓仪 上海泰明光学仪器有限公司

目录1. 概述 1.1 仪器总图 1.2 主要技术指标 2. 操作方法 2.1 电缆连接 2.2 操作与显示 2.2.1进入测量程序 2.2.2形状测量 2.2.3粗糙度测量 2.2.4打印 3. 系统标定 3.1仪器的标定 3.2数据的修正 4. 电脑简介 4.1系统软件 4.2硬件 5. 参数说明

1. 概述: JB-5C粗糙度轮廓仪广泛应用于机械加工、汽车、轴承、机床、摸具、精密五金、光学加工等行业。该仪器可测量各种精密机械零件的粗糙度和轮廓形状参数。用拟合法来评定园弧和直线等。从而可测量园弧半径、直线度、凸度、沟心距、倾斜度、垂直距离、水平距离、台阶等形状参数。该仪器还可对各种零件表面的粗糙度进行测试;可对平面、斜面、外园柱面、内孔表面、深槽表面、圆弧面和球面的粗糙度进行测试,并实现多种参数测量。本仪器依据GB/T3505-2000、GB/T6062-2001、GB/T10610-1998国家标准及ISO5436、ISO11562国际标准制造。 仪器驱动箱提供了一个行程为100毫米长的高精度直线基准导轨,传感器沿导轨作直线运动,位移量通过精密光栅以及电感传感器进行数据采集。驱动箱可通过水平调节钮作±10度的水平调整,并可分别用控制箱的操作键或软件界面进行水平和垂直方向的移动。仪器带有电脑及专用测量软件,在WINDOWS XP操作系统下的测量软件操作直观方便,功能丰富。 仪器由花岗岩平板、工作台、传感器、驱动箱、显示器、电脑和打印机等部分组成.测量时可选定被测零件的不同位置,设定各种测量长度进行自动测量,评定段内采样数据达数万个点。并可显示或打印轮廓形状及其尺寸,各种粗糙度参数及轮廓的支承长度率曲线等。

接触式轮廓测量仪与非接触式轮廓测量仪对比分析

接触式轮廓测量仪与非接触式轮廓测量仪对比分析 前言:目前市场上的轮廓测量仪主要有接触式轮廓测量仪和非接触式轮廓测量仪,本文将从功能、原理、应用三个方面对这两种轮廓测量仪进行对比分析。 功能 1.接触式轮廓测量仪(以中图仪器SJ5700为例)可测量各种精密机械零件的素线轮廓形状参数,角度处理(坐标角度,与Y坐标的夹角,两直线夹角)、圆处理(圆弧半径,圆心到圆心距离,圆心到直线的距离,交点到圆心的距离,直线到切点的距离)、点线处理(两直线交点,交点到直线距离,交点与交点距离,交点到圆心的距离)、直线度、凸度、对数曲线、槽深、槽宽、沟曲率半径、沟边距、沟心距、轮廓度、水平距离等形状参数。 2.非接触式轮廓测量仪(以中图仪器SuperView W1光学3D轮廓仪为例)适用于各类

光滑、连续光滑和适度粗糙物体表面从毫米到亚微米、纳米尺度的3D形貌轮廓、坐标、厚度、粗糙度、体积、表面纹理等测量。 ●工作原理 1.接触式轮廓测量仪测量原理为直角坐标测量法,即通过X轴、Z轴传感器,测绘出被测零件的表面轮廓的坐标点,通过电器组件,将传感器所测量的坐标点数据传输到上位PC 机,软件对所采集的原始坐标数据进行数学运算处理,标注所需的工程测量项目。 2.非接触式轮廓测量仪是利用光学显微技术、白光干涉扫描技术、计算机软件控制技术和PZT垂直扫描技术对工件进行非接触测量,还原出工件3D表面形貌宏微观信息,并通过软件提供的多种工具对表面形貌进行各种功能参数数据处理,实现对各种工件表面形貌的微纳米测量和分析的光学计量仪器。 ●典型应用 1.接触式轮廓测量仪广泛应用于机械加工、汽车、摩托车、精密五金、精密工具、刀具、模具、光学元件等行业。适用于科研院所、大专院校、计量机构和企业计量室。 在汽车、摩托车、制冷行业,可测汽车、摩托车、压缩机的活塞、活塞销、齿轮和气门顶杆的母线参数等.并可测量各种斜形零件的参数。 在轴承行业,可测内外套圈的密封槽形状(角度、倒角R、槽深、槽宽等);各种滚子轴承的滚子和套圈母线的凸度、角度、对数曲线; 电机轴、圆柱销、活塞销、滚针轴承、圆柱滚子轴承、直线轴承的滚动体和套圈的直线度;球轴承沟道的沟曲率半径及沟边距;双沟轴承的沟心距;四点接触轴承(桃形沟)的沟心距和沟曲率半径等。

固定式粗糙度及轮廓测量设备简介 - 霍美尔

OPTICAL SYSTEMS LASERS & MATERIAL PROCESSING INDUSTRIAL METROLOGY TRAFFIC SOLUTIONS DEFENSE & CIVIL SYSTEMS HOMMEL-ETAMIC T8000 / C8000 霍梅尔-艾达米克 T8000 / C8000 Stationary roughness and contour measurement 固定式粗糙度和轮廓测量设备 PRECISION IS OUR BUSINESS

您的工业测量伙伴 霍梅尔-艾达米克公司隶属德国耶拿集团,不仅是全球接触式和非接触式测量技术的领航者,也是各种检测设备的系统供货商。我们的产品种类繁多,品种齐全,不仅能为用户提供各类气电接触式和光学非接触式的粗糙度仪和轮廓仪,也能为用户提供生产过程中不同工序间的各种测量设备、最终测量机以及测量室使用的精密测量设备。除此之外我们也提供从技术咨询、培训、服务、到和用户签订维修合同的一条龙服务。 霍梅尔-艾达米克公司,与您共进, 无限精确。为您的测量需求提供最完美的解决方案 您可以在我们的众多产品中选择最符合应用的一款。我们的产品种类繁多,有粗糙度仪 (包含表面形貌测量)、轮廓仪以及粗糙度和轮廓组合仪。组合仪当中有 带独立探测系统的测量设备,也有共用一个探测系统 的测量设备。 一仪多用是我们贯穿始终的设计宗旨, 所以如果有 特殊测量需求,您可以随时通过选购附件拓展测量仪的功能。 当然我们也可以完全根据您的要求为您量身配置测量仪。凭借我们不断创新的技术实力和百年老厂的丰富经验,我们将为您提供最高精度的测量仪,使您从中受益。 工业计量技术

触针式轮廓测量仪基础知识

触针式轮廓测量仪基础知识 SJ5760触针式轮廓测量仪是机械加工企业和计量检定单位应用针描法测量工件表面轮廓一种常用仪器。 触针式轮廓测量仪功能: ①角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 ②点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到 点距离 ③圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离

触针式轮廓测量仪工作原理: 当驱动器带动传感器沿工件被测表面作匀速运动时,传感器的测针随工件表面的微观起伏作上下运动,测针的运动经传感器转换为电信号的变化,电信号的变化量再经后期电路的处理和计算,得到工件表面轮廓参数。 测针标定: 轮廓测量仪的测针在出厂前已经标定过,后续使用不需要再标定,可以直接测量。若重新购买了新的测针,或使用久了,怀疑测针参数不准,可重新标定。 轮廓测针标定分为量块标定和标准球标定。 量块标定:主要用来标定仪器的系统误差和测针误差。 标准球标定:主要用来标定测针的针尖半径。选用的标准球,直径越小,标定结果越准确。 触针式轮廓测量仪使用说明: 操作步骤 1.测量前准备。 2.开启电脑、打开机器电源开关、检查机器启动是否正常。 3.擦净工件被测表面。 测量 1.将测针正确、平稳、可靠地移动在工件被测表而上。 2.工件固定确认工件不会出现松动或者其它因素导致测针与工件相撞的情况出现。3.在仪器上设置所需的测量条件。 4.开始测量。测量过程中不可触摸工件更不可人为震动桌子的情况产生。 5测量完毕,根据图纸对结果进行分析,标出结果,并保存、打印。 维护和保养 1.每天开机前及测量完毕后用高织纱棉布沾无水酒精清洁工装表面、测针、轨道。2.平时不使用时将所有电源关闭,且将测针的保护套套上。

T粗糙度轮廓仪

T1000小型粗糙度轮廓仪产品介绍: T1000粗糙度轮廓仪T1000粗糙度仪霍梅尔T1000粗糙度仪 T1000“世纪星”小型粗糙度轮廓仪——面向21世纪的新一代小型粗糙度轮廓仪 测量头可以转90度, 横向扫描, 测量曲轴凸轮轴的轴颈,曲柄, 桃子的粗糙度. 有标准, 圆弧面, 小孔, 深槽等各种测头。 ISO 4287 国际标准 / DIN德国标准 Ra, Rz(Rz4, Rz3, Rz2, Rz1), Rmax, Rt, Rz-ISO, Rpc, Rp, Rpm, Rq, R3z, RSm, Rmr(c) (= tp), 珩磨表面参数Roughness Parameters (ISO 13565): Rk, Rpk, Rvk, Mr1, Mr2 日本标准:JIS- B 0601:Rz-JIS, Rmax-JIS 法国标准:Motive Parameters(ISO 12085):R, Rx, AR, P dc (CR, CL, CF) T1000粗糙度轮廓仪的技术参数:

T1000 BASIC“世纪星”小型粗糙度仪测量速度和截止波长与测量长度相关联

T1000粗糙度仪一整套包括: Hommel Tester T1000Basic 主机 T1000Basic Traverse unit LV 16 驱动扫描单元 LV16 Integrated Printer 集成化热敏打印机 Pick-up T1E 标准传感器 TIE 2 1rolls paper T45 (L=10m) 2小卷记录纸Carring case 手提箱 Operating manual 操作手册

测量投影仪使用原理与结构介绍

数字式测量投影仪又名光学投影仪、轮廓投影仪,是一种光、机、电、计算器一体化的精密高效光学测量仪器,适用于精密工 业二维尺寸测量。本仪器能高效地检测各种形状复杂工件的轮廓和表面形状,如样板、冲压件、凸轮、螺纹、齿轮、成形锉刀、丝攻等各种刀具、工具和零件等,被广泛地应用于机械、仪表、电子、轻工业等行业,院校、研究所以及计量部门的计量室、试验 室和生产车间。 测量投影仪分类: 测量投影仪品类繁多,商业名称和俗称五花八门,按成像分为成像区分:正像和反像;反像是利用投影仪光学成像原理,工件 与图像成反向;正像是通过对投影仪的认知对其加一个棱镜将其成像改为正像,工件与图像同步。常用的为反像,为方便测量,有 时特意加上正像系统把反像变成正像,但这无疑会增加成本而且测量精度也会随之有所降低。因此,若无绝对必需,选择反像是正 确的选择。 就投影方式而言测量投影仪只有两类:即立式测量投影仪、卧式测量投影仪两种。 立式测量投影仪卧式测量投影仪

测量投影仪使用原理: 被测工件置于工作台上,在透射或反射照明下,它由物镜成放大实像(倒像)并经 2 个反光镜反射于投影屏的磨沙面上。当反 光镜换成正像系统后,即成为正像,一个与工作完全同向的影像,观察很直观,给使用者带来极大的方便。 a. 立式测量投影仪:这类投影仪的主光轴平行于影屏平面,多数投影仪均属此类,它们最适合测量平面型零件或体积较小的工件。 立式轮廓投影仪仪器工作原理如下图 1 所示,被测工件Y 置于工作台上,在透射或反射光照明下,它由物镜0 成放大实像Y’并经反射镜M反射于投影屏P 的磨砂面上。 P Y' M M 2 S 2 S Y 1 K 1 S 1 C 图1 在投影屏上可用标准玻璃工作尺对Y’进行测量,也可以用预先绘制好的标准放大图对它进行比较测量,测得数值除以物镜 的放大倍数即工件的测量尺寸。还可以利用工作台上的数字测量系统对工件Y 进行坐标测量:也可以利用投影屏旋转角度数数显系 统对工件的角度进行测量。 图中S1 为透射照明光源,2-S2 为用于反射照明的二支光导纤维(VP系列立式投影仪为 3.2V/10W 透射LDE灯照片组),K1为透射聚光镜,C1 为球面反射镜。视工件的性质,两种照明可分别使用,也可以同时使用。 b. 卧式测量投影仪:这类投影仪的主光轴垂直于投影屏平面,中型和大型投影仪多属此类,它们最适合测量轴类零件或体积较大的 重型工件。 仪器工作原理如下图 2 所示,被测工件Y 置于工作台上,在透射或反射光照明下,它由物镜0 成放大实像Y’并经反射镜M反射于投影屏P 的磨砂面上。 P Y' M S2 M C1 S1 K1 Y 0

零件表面粗糙度和轮廓测量及分析

零件表面粗糙度和轮廓测量及分析 一、实验目的 了解零件表面形貌的概念; 掌握粗糙度标准样板(比较法)和粗糙轮廓仪(针描法)测量表面粗糙度; 掌握粗糙轮廓仪测量零件形状误差; 二、实验装置 1.表面粗糙度比较样块; 2.零件样品若干; 3.霍梅尔T8000粗糙轮廓仪(精度0.03μm)。 三、实验原理 (一)概述 被加工零件表面的形状是复杂的,一般包括表面粗糙度、表面波纹度和形状误差,可以按波距(波形起伏间距)λ来划分: 波距λ<1mm属于表面粗糙度 波距λ在1~10mm属于表面波纹度 波距λ>10mm属于形状误差

粗糙度——反映零件微观几何形状特性。主要由加工工艺因素产生。这些微观不平度包括横向进给的痕迹和刀具、砂轮或其它与加工有关因素的痕边。 波纹度——由于机床——刀具——工件系统的强迫振动、刀具进给的不规则和回转质量的不平衡等原因,在零件表面留下波距较大且具有较强周期性的误差。 形状误差——在加工过程中,由于刀具导轨倾斜等原因造成的宏观的误差。 (二) T8000粗糙轮廓仪的介绍 霍梅尔T8000粗糙轮廓仪是专门用来检测零件的表面粗糙度、表面轮廓的精密计量仪器。包括粗糙度测量系统、直接轮廓测量系统和形状测量系统。它可以测量和评估粗糙度和直接轮廓参数,还可以测量角度、圆弧半径、相互位置等形状参数。它采用触针与被测零件直接接触的方式来测定表面粗糙度和表面轮廓,通过传感器和专用软件定量地测量零件表面的几何形状,计算各种所需参数,按需要显示、存储、打印数据和图像。 粗糙轮廓仪见下图所示由主机、电脑、电气控制箱、打印机组成,其中主机包括大理石平台、立柱升降系统、驱动器、传感器。驱动器可随升降套在立柱上垂直移动,万能工作台置于大理石平台上,可前后左右移动,粗糙度传感器和轮廓传感器可水平左右移动。

粗糙度、轮廓仪安全注意事项

粗糙度、轮廓仪安全注意事项 1.请务必避免在超出规格许可范围的温度、湿度、水滴、尘埃、油烟、直射阳光、强烈冲击、剧烈震动、腐蚀性气体等环境中使用本仪器。否则可能会引起仪器故障而导致触电,或引起仪器倾倒而导致人身伤害。 2.安装仪器使用的支架相对仪器重量必须具有足够的强度。另外,还必须确保支架的稳定性。否则可能会因仪器或支架的倾倒而导致人身伤害。 3.请将电源电缆插入仪器名牌上规定电压范围内的电源插座中。否则可能会导致触电或火灾。 4.请务必使用仪器名牌上规定压力范围内的供气源。请务必使用不含有机溶剂或有毒气体的气源。否则可能会导致仪器故障或人身伤害。(使用专用配件-空气式减振装置时) 5.请务必将地线接地。否则在仪器故障、漏电时可能会导致触电。 6.电源及通讯电缆中有危险电流。为了防止触电,在安装或移动本仪器或与之相连的设备时,请务必先切断所有电源,将电源插头从电源插座拔出后再进行作业。 7.请勿拽拉、踩踏电源电缆或与各仪器设备相连的电缆。另外,拔出电缆时,请务必抓住插头部分。否则可能会损坏电缆。切勿使用损坏的电源电缆或连接电缆。电源电缆或连接电缆中,有些电缆中有危险电流,一旦触电,可能导致死亡或重伤。

8.切勿在仪器设备的缝隙中插入异物(特别是金属片等导电性物体)。否则可能会引起触电、火灾、故障,进而导致重伤。 9.切勿在仪器设备的载物台上装载或卸下夹具或测量物时,请务必谨慎小心地操作。夹具或测量物体落到脚上或夹住手指,可能会导致重伤。另外,对于容易倾倒的不稳定测量物,请务必使用夹具将它固定牢。 10.请勿用沾有水或油污的手操作本设备。否则可能会引起触电,进而导致死亡或重伤。 「安全注意事项」 1.连接空气管时,请先关闭供气侧的气源再进行连接。另外,请将供气侧的空气管固定在连接部位附件的支架上。空气管剧烈摆动可能会导致人身伤害。(使用专用配件-空气式减振装置时) 2.只能使用所附带的电源电缆。另外,切勿将附带的电缆用于其他设备。 3.插拔电源电缆或仪器设备间的连接电缆时,请务必先切断仪器设备的电源后再进行插拔,防止触电事故。 4.探针的尖端非常锋利。请勿无故窥视或用手触摸尖端部分。否则可能导致受伤。 5.仪器设备自动移动过程中,请勿让身体触碰移动部位。否则身体的一部分货手可能被夹住而导致受伤。 6.请勿将手指插入柱杆孔内。否则可能会被夹住手而受伤。

粗糙度轮廓测量仪解决方案

产品解决方案产品名称:SJ5701-200粗糙度轮廓一体式测量仪

一、产品开发背景 目前国内的粗糙度轮廓一体机测量仪精度与国外相差较大,且在测量稳定性上也有一定的差距。由于技术上的差距,导致了国内的高端市场一直由国外占领,且形成了价格垄断。SJ5701-200粗糙度轮廓一体式测量仪在精度、稳定性方面基本达到进口品牌的水平,在价格和技术上打破国外的垄断,提升了我国在测量领域的测量水平,并且给国家节省大量外汇,填补我国在中高端粗糙度轮廓一体式测量仪技术上的空白。 SJ5701-200粗糙度轮廓仪广泛应用于机械加工、汽车、轴承、机床、摸具、精密五金、光学加工等行业。该仪器可测量各种精密机械零件的粗糙度和轮廓形状参数。用拟合法来评定圆弧和直线等。从而可测量圆弧半径、直线度、凸度、沟心距、倾斜度、垂直距离、水平距离、台阶等形状参数。该仪器还可对各种零件表面的粗糙度进行测试;可对平面、斜面、外圆柱面、内孔表面、深槽表面、圆弧面和球面的粗糙度进行测试,并实现多种参数测量。本仪器依据GB/T3505-2009、GB/T6062-2009、GB/T10610-2009国家标准及ISO5436、ISO11562国际标准制造。 二、产品图片 产品型号:SJ5701-200 产品名称:粗糙度轮廓测量仪 图 1 SJ5701-200粗糙度轮廓仪 轮廓及粗糙度测量功能可互换

三、产品描述 SJ5701-200是一款集成表面粗糙度和轮廓测量的测量仪器;采用进口高精度光栅测量系统、高精度研磨导轨、高性能非接触直线电机、音圈电机测力系统、高性能计算机控制系统技术,实现对各种工件表面粗糙度和轮廓进行测量和分析。通过高精度研磨导轨、高性能直线电机保证测量的高稳定性及直线度,采用进口高精度光栅测量系统建立工件表面轮廓的二维坐标,计算机通过修正算法对光栅数据进行修正,最终还原出工件轮廓信息并以曲线图显示出来,通过软件提供的分析工具可对轮廓进行各种参数分析。 轮廓仪为全自动测量设备,操作者只需装好被测工件,在检定软件上设定扫描的开始、结束位置,点击【开始】按钮,测针会自动接触工件表面,并按设定的位置扫描;可高精度地测量精密加工零部件的粗糙度和轮廓形状,再选择所需评价参数即可进行评价。 系统软件为简体中文操作系统,操作方便。 四、产品功能 1. 表面轮廓评定:评定半径、角度、距离、坐标、圆、圆截面;确定各个点、相交各点、坐标轴、 直线、垂直线、圆和圆截面,可对轮廓进行直线度、圆度分析等; 同时实现下列功能: (1)建立回归直线和圆形; (2)建立点、交点、自由点、中心点、最高点和最低点; (3)建立坐标系统; (4)计算半径、距离、角度、坐标及线性偏差; (5)实际值与标称值比较; (6)测量程序自动运行。 2. 表面粗糙度评定:Ra、Rz、Rt、RS、RSm、Rp、Rv、Rq、Rt、Rmax、D、Rmr曲线、Rdc 等; 3. 滤波:2RC滤波,高斯滤波和零相位滤波器; 4. 界面友好,更符合中国用户操作习惯; 5. 测量记录采用集中式数据库管理,可按被测件类型、生产单位、出厂编号、检测员、送检单位、 设备编号、检定日期和有效日期等查询和管理测量记录; 6. 可从数据库中选定多条记录成批打印测量记录; 7. 可将检定数据输出到Word、Excel、AutoCAD(选配)文档; 8. 具有数据备份和还原数据库功能;

轮廓测量仪基础知识

轮廓测量仪功能 SJ5700轮廓测量仪可测量各种精密机械零件的粗糙度和轮廓形状参数。用拟合法来评定圆弧和直线等。从而可测量圆弧半径、直线度、凸度、沟心距、倾斜度、垂直距离、水平距离、台阶等形状参数。该仪器还可对各种零件表面的粗糙度进行测试;可对平面、斜面、外圆柱面、内孔表面、深槽表面、圆弧面和球面的粗糙度进行测试,并实现多种参数测量。 轮廓测量仪结构

轮廓测量仪工作原理 SJ5700轮廓测量仪是一种两坐标测量仪器,仪器传感器相对被测工件表而作匀速滑行,传感器的触针感受到被测表而的几何变化,在X和Z方向分别采样,并转换成电信号,该电信号经放大和处理,再转换成数字信号储存在计算机系统的存储器中,计算机对原始表而轮廓进行数字滤波,分离掉表而粗糙度成分后再进行计算,测量结果为计算出的符介某种曲线的实际值及其离基准点的坐标,或放大的实际轮廓曲线,测量结果通过显示器输出,也可由打印机输出。

轮廓测量仪性能特点 1、高精度、高稳定性、高重复性:完全满足被测件测量精度 要求。 1)选用国际领先的高精度光栅测量系统和高精度电感测量系 统,测量精度高; 2)自主研发高精度研磨导轨系统,导轨材料耐磨性好、保证 系统稳定可靠工作;

3)高性能直线电机驱动系统,保证测量稳定性高、重复性好; 2、智能化管理与检测软件系统: 仪器操作界面友好,操作者很容易即可基本掌握仪器操作,使用十分简便。 1) 10多年积累的实用检定软件设计经验,向客户提供简洁、 实用、快速的操作体验; 2) 功能强大、自动处理数据、打印各种格式的检定报告,自 动显示、打印、保存、查询测量记录; 3) 测量范围广,可满足绝大多数类型的工件粗糙度轮廓测量; 4) 可自动和手动选取被测段进行评定,可依据客户要求进行 软件功能的定制; 5) 纯中文操作软件系统,更好的为国内用户服务; 6) 打印格式正规、美观。检定数据可存档,或集中打印,不 占用检定操作时间; 7) 本仪器采用计算机大容量数据库储存,可自动记录保存所 有检定结果。 3、可进行多参数测量 粗糙度自动评价,包括Ra,,Rz,Rp,Rt等 4、测量力系统: 采用音圈电机测力系统,测力可实现从10~150mN连续可调,测力分辨力可达0.2mN;避免了老式砝码加载因周围环境振动带来的测力误差,降低了测力变化引起的测量误差。 5、智能保护系统:

最新多功能粗糙度轮廓仪使用说明

多功能粗糙度轮廓仪 使用说明

粗糙度轮廓仪使用说明 一、功能简介 LSCD-Ⅱ型粗糙度轮廓测量仪是一种高精度的工件表面粗糙度、轮廓测量分析仪器,其主要功能分为3个方面:1、形状分析2、粗糙度分析3、曲率半径分析。我们在原始测量图形的基础上,可以选择评定长度来进行这三方面分析,同时我们通过倍率选择项可以提供九种倍率供用户选择,自动倍率、500、1000、2000、5000、10000、20000、50000、100000倍,其中,自动倍率是计算机根据测量结果自动给出的适当倍率。 1、轮廓分析 轮廓分析包括两种分析方法:

A、原始轮廓分析,是指没经过滤波处理及直线校正的实际轮廓,我们可以自己选择校正直线来调整图型,分析轮廓。具体方式见使用说明。 B、轮廓误差是指滤除了粗糙度信号,并以分析起点和分析终点连线为基准线的工件表面加工形状,包括凸度、凹度、直线度等,我们可以通过参数选项里的轮廓滤波来选定轮廓滤波的切除长度.分析图形的每一点测量值是指采用最小二乘法进行了整个测量图形倾斜校正后,在评定长度内每一点与零点的相对值。 我们可以在原始测量图形上点击工具栏的分析选择选项,通过鼠标移动来选择分析范围,在分析图形上,我们可以通过鼠标移动来看每一点的测量值,及离分析起点的距离。形状误差Pt值是指评定长度内的最高点与最低点的差值。 2、粗糙度分析

粗糙度分析是用来分析选定范围内的粗糙度值的,共有5种取样长度可供选择,即0.08mm\0.25mm\0.8mm\2.5mm\8mm\25mm,一般情况下,当粗糙度Ra ≥0.008~0.02um时,取样长度L取0.08mm,当Ra>0.02~0.1um时 ,取样长度L 取0.25mm,当Ra>0.1~2.0um时,取样长度L取0.8mm,当Ra>2.0~10.0um时,取样长度L取2.5mm,当Ra>10.0~80.0um时,取样长度L取8.0mm,一般情况下是选5段取样长度作为评定长度,我们这里可以由用户自己选定评定长度。在数据处理时,我们可以在分析参数选项里选择要分析的粗糙度参数,包括Ra、Rz、Ry、Sm等,其具体含义如下: Ra为粗糙度轮廓的算术平均偏差(如图一所示):在取样长度L内,轮廓上每一点到最小二乘中线距离绝对值的平均值。我们评定的Ra值是评定长度内多个取样长度的平均. ?Skip Record If...? 图一 Rz为微观不平度十点高度(如图二所示):在取样长度L内,5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和为微观不平度十点高度,我们评定的Rz值是评定长度内多个取样长度的平均 ?Skip Record If...? 图二

轮廓仪

仪器简介: 美国NANOVEA公司的三维非接触式光学轮廓仪 三维非接触轮廓仪(3D Profiling) 该仪器采用白光轴向色差原理(性能优于白光干涉轮廓仪与激光干涉轮廓仪)对样品表面进行快速、重复性高、高分辨率的三维测量,测量范围可从纳米级粗糙度到毫米级的表面形貌,台阶高度,给MEMS、半导体材料、太阳能电池、医疗工程、制药、生物材料,光学元件、陶瓷和先进材料的研发和生产提供了一个精确的、价格合理的计量方案 这款产品凭借其当今世界最前端的技术,迅速占领国内外市场, 产品特性: 1 采用白光轴向色像差技术,可获得纳米级的分辨率 2 测量具有非破坏性,测量速度快,精确度高 3 测量范围广,可测透明、金属材料,半透明、高漫反射,低反射率、抛光、粗糙材料(金属、玻璃、木头、合成材料、光学材料、塑料、涂层、涂料、漆、纸、皮肤、头发、牙齿…); 4 尤其适合测量高坡度高曲折度的材料表面 5 不受样品反射率的影响 6 不受环境光的影响 7 测量简单,样品无需特殊处理 8 Z方向最大测量范围为27mm 美国NANOVEA公司是一家全球公认的在微纳米尺度上的光学表面轮廓测量技术的领导者,生产的光学轮廓仪是目前国际上用在科学研究和工业领域最先进表面轮廓测量设备,该公司在光学设计、精密机械和科学软件算法方面,拥有长期不断发展的专利技术,由于这些专门技术的应用,NANOVEA为生产和质量控制的研究和发展提供精密准确的全方位解决方案。NANOVEA的表面测量系统适用于研发和生产过程控制中的定性和定量测量,其核心部件 达到纳米尺度的创新的光学设计,其强大且友好的软件控制使所需获得的数据不仅速度快,

表面粗糙度对照表

表面粗糙度对照表: 高度特征参数 轮廓算术平均偏差Ra:在取样长度(lr)内轮廓偏距绝对值的算术平均值。在实际测量中,测量点的数目越多,Ra越准确。 轮廓最大高度Rz:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。 间距特征参数 用轮廓单元的平均宽度Rsm表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c)表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。

表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。 表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。一般标注采用Ra。 取样长度 取样长度lr是评定表面粗糙度所规定一段基准线长度。取样长度应根据零件实际表面的形成情况及纹理特征,选取能反映表面粗糙度特征的那一段长度,量取取样长度时应根据实际表面轮廓的总的走向进行。规定和选择取样长度是为了限制和减弱表面波纹度和形状误差对表面粗糙度的测量结果的影响。 评定长度 评定长度ln是评定轮廓所必须的一段长度,它可包括一个或几个取样长度。由于零件表面各部分的表面粗糙度不一定很均匀,在一个取样长度上往往不能合理地反映某一表面粗糙度特征,故需在表面上取几个取样长度来评定表面粗糙度。评定长度ln一般包含5个取样长度lr。 基准线 基准线是用以评定表面粗糙度参数的轮廓中线。基准线有下列两种:

相关主题
文本预览
相关文档 最新文档