当前位置:文档之家› 混凝土主要力学性能和 氯离子扩散系数实验

混凝土主要力学性能和 氯离子扩散系数实验

混凝土主要力学性能和           氯离子扩散系数实验
混凝土主要力学性能和           氯离子扩散系数实验

混凝土主要力学性能和氯离子扩散

系数实验

实验报告

学号: 2010010131

班号:结 02

实验日期: 2011.12.14

实验者:陈伟

同组人:吴一然

建筑材料第六次实验

一、实验目的

1.掌握混凝土主要力学性的测试方法。

2.学习用混凝土中氯离子扩散系数的方法

3.评定混凝土的渗透性。

二、实验原理

1.混凝土抗压强度实验原理

1)混凝土强度等级的概念:

混凝土的强度等级应按立方体抗压强度标准值划分。混凝土强度等级采用符号C与立方体抗压强度标准值(以N/ mm2 计)表示。

混凝土立方体抗压强度标准值系指对按标准方法制作和养护的边长为150 mm的立方体试件,在28d龄期,用标准试验方法测得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5% 。

2).试验依据标准: GB/T50081-2002

3).试验要求

混凝土强度等级≥C60,试件周围应设防崩裂罩。

4.6.1钢垫板的平面尺寸应不小于试件的承压面积,厚度应不小于25mm.

4.6.2钢垫板应机械加工,承压面的平面度公差为0.04 mm;表面硬度不小于55HRC;

硬化层厚度约为5 mm.

当压力试验机上、下压板不符合4.6.2条规定时,压力试验机上、下压板与试件之间应各垫以符合4.6.2条规定的钢垫板。

4).加荷速度:

<C30 0.30---0.50MPa/S

≥C30 0.50—0.80 MPa/S

≥C60 0.80—1.0 MPa/S

5).换算系数:100×100×100 (mm) 0.95

150×150×150(mm) 1.00

200×200×200(mm) 1.05

当混凝土强度等级≥C60时,宜采用标准试件; 使用非标准试件时,尺寸换算系数应由实验确定。

单位:MPa N/ mm2

6)实验设备:

(1) 压力实验机

精度(示值的相对误差)应为±1%,试件的破坏荷载应大于压力机全量程的20%,且小于全量程的80%左右。实验机上、下压板应有足够的刚度,其中的一块压板应带有球形支座,使压板与试件接触均衡。

(2) 钢尺

量程300mm,最小刻度1mm。

7)强度检验:

强度值得确定应符合下列规定:如两个测值与中间值相差均不超过15%,则以三个试件的算术平均值作为该组试件的抗压强度值。三个测值中的最大值和最小值中如有一个与中间值得差值超过中间值的15%。则把最大及最小一并舍除,取中间值作为改组试件的抗压强度值。如两个测值与中间值相差均超过15%,则该组实验结果无效。

2.混凝土劈裂抗拉强度实验原理.

1.试件尺寸:100×100×100(mm)

2.龄期:14天

3.加载方式:见下图一

混凝土劈裂抗拉强度采用直径为150mm的钢制弧型垫条,其长度不短于试件边长.进行劈裂抗拉试验时在垫条与混凝土之间垫一厚3-4mm,宽度为10-20mm的三合板垫层.加荷速度:0.2-0.8Mpa/S(强度等级低的取0.2-0.5,高的取0.5-0.8Mpa/S)

图一

4.计算:

混凝土劈裂抗拉强度应按下式计算:

式中,f ts为混凝土劈裂抗拉强度(Mpa);F为破坏荷载(N);A为试件劈裂面面积(mm2)。劈裂抗拉强度计算精确到0.01。取立方体试件的劈裂抗拉强度为标准值。用非标准试件测得的强度值均应乘以尺寸换算系数,对100×100的试件取值为0.85。

数据处理与混凝土抗压强度相同

5.实验设备:

(1) 压力实验机

劈裂抗拉实验用的实验机应符合“混凝土抗压强度”中对设备的要求。

(2) 垫块、垫条和支架

混凝土劈裂抗拉强度实验采用半径为75mm的钢制弧形垫条,垫块的长度应与试件相同。进行劈裂抗拉实验时在垫块与试件之间垫以木质三合板垫层,宽度为

20mm,厚度为3~4mm,长度不应短于试件边长。垫层不得重复使用。支架为钢制支架。

3.混凝土与钢筋握裹强度原理

握裹力是钢筋和混凝土得以共同工作的基础,主要由化学胶结力、摩阻力和机械咬合力三部分组成。影响混凝土中握裹力的因素很多,例如混凝土的抗压强度,抗拉强度,钢筋的直径、锚固长度和肋部形状,混凝土保护层厚度,混凝土掺合料,外加剂等。影响混凝土中钢筋握裹力的因素在普通混凝土中和在玎Pc(高性能混凝土)中的行为是不同的。目前人们对HPC钢筋握裹力的了解远少于对普通混凝土钢筋握裹力的了解。

试件尺寸:100×100×200mm

龄期:14d试件六个为一组(实际为两个)

加荷速度400N/S

加载时到下面任何一种状况时停止加载

(1)钢筋达到屈服

(2)混凝土发生破裂

(3)钢筋滑动超过0.1mm

试验时采用υ16mm的光圆钢筋,拔至最大荷载时停止实验.

混凝土钢筋握裹力强度计算公式:

其中τ:钢筋握裹强度

P1:滑动变形为0.01mm时的荷载(N).

P2:滑动变形为0.05mm时的荷载(N).

P3:滑动变形为0.1mm时的荷载(N).

4.混凝土中氯离子扩散系数试验原理:

1)混凝土抗渗透性过程中使用氯离子的原因:

氯离子对混凝土的亲和力较大,可在其表面附近扩散。

另外,混凝土中钢筋锈蚀等耐久性问题与氯离子的浓度及扩散有很大的关系,

尤其是在沿海和使用除冰盐的地区,氯离子的扩散性受到特别的重视,因此常

用氯离子在混凝土中的扩散系数来评价混凝土的抗渗透性。

2)研究背景

由于现有检验混凝土渗透性的国标已不能满足现代混凝土的要求,无法正确评

价高性能混凝土的渗透性,清华大学参照国内外最新研究成果,建立了混凝土

的氯离子扩散系数测试方法(简称NEL 法),此法适用于C20—C100混凝土

渗透性评价。

3)氯离子危害

氯离子引起的钢筋腐蚀是造成海洋环境下混凝土结构性能劣化的主要原因。在

总结国内外经验教训的基础上,对钢筋腐蚀危害及对耐久性的影响要高度重视,

是十分必要和意义深远的。在混凝土设计、施工过程中必须对这一破坏过程足

够的重视。在实际混凝土建设工程中应尽量控制骨料带入的氯离子含量,加强

监理和检测力度。也应考虑外界环境可能提供的氯离子对混凝土的侵害。混凝

土发生氯离子侵蚀破坏的必要破坏条件是:具有一定浓度的自由氯离子;需要水

分和氧气的存在。充分了解由氯离子侵蚀引起破坏的机理,并有针对性的采取

不同的方法加以防范,尽量降低损失。尽可能降低混凝土中氯盐含量。对现有

结构物加强检查、评估、监控、管理维护和及时修复等工作。

4)实验原理:

基于Nernst-Einstein 方程发展起来的混凝土中氯离子扩散系数测定方法,

其实质是通过测定混凝土的饱盐电导率来计算混凝土中的氯离子扩散系数。若

把饱盐混凝土看成是固体电解质,氯离子在混凝土中的扩散系数与混凝土饱盐

电导率关系为:

222cl

cl cl cl C F Z RTt D σ=

此即著名的Nernst-Einstein 方程。

其中D c1 –氯离子扩散系数; R :气体常数,为8。314(J/mol.K )

T: 绝对温度(K )

t c1氯离子迁移数,饱盐混凝土通常取1.0

σ饱盐混凝土电导率(S/CM)

Z C1氯离子化合价,即-1;

F 常数Faraday(96 500Coul/ mol);

C C1氯离子浓度(mol/m3)

5)不同强度等级的混凝土其氯离子扩散系数如下:

混凝土强度等级氯离子扩散系数

C15 1×10-7 cm2/s

C30—C40 5×10-8 cm2/s

C40以上1×10-8 cm2/s

C60以上0.9×10-8-2×10-8 cm2/s

当掺入掺和料也会使结果偏小,根据以上结果是初步评定混凝土的耐久性的一项指标。

三、实验步骤

混凝土抗压强度:

a) 至试件龄期时,从养护室取出试件,应尽快完成实验,避免试件因湿度变化而引起

强度的变化,从而影响实验的结果;

b) 取出试件,检查其尺寸和形状,相对两面应平行,量出棱边长度,精确至1mm,

试件受力截面积按其与上下压面的面积平均值计算,在破型前,保持试件原有湿度,实验前擦干试件;

c) 以试件成型侧面为受压面,试件中心与压力机几何对中;

d) 按照混凝土规定加荷速度加荷,当试件接近破坏而迅速变形时,应停止调整实验机

油门,直至试件破坏,记下试件破坏极限载荷F(N)。

混凝土劈裂抗拉强度:

a)试件从养护地点取出,擦拭干净,测量尺寸,检查外观,在试件中不划出劈裂面位置线,劈裂面与试件成型时顶面垂直,尺寸测量精确至1mm;

b)试件放在球座上,几何对中,放妥垫层垫条,其方向与试件成型时顶面垂直;

c)按照规定加荷速度加载,当上压板与试件接近接触时,调整球座使接触均衡;

当试件接近破坏时,应停止调整油门,直至试件破坏,记录极限载荷。

氯离子扩散系数:

a)将养护到一定龄期的混凝土切割成厚度为50mm的试件;

b)将试件放入到抽真空(-0.08MPa)的装置内抽真空(把混凝土内部的空气抽出),四小时后,注入4M的NaCl溶液,继续抽2小时后取出;

C)将试件装入到测试装置的电极内,进入自动测试系统,取两次测试的平均值为最后结果。

四、实验数据及分析

抗压强度实验:

表一

由于使用的为100×100×100的试件,以上数据均乘以了0.95的系数,其中7天的第三个数据无效,因此取第二个数据为其抗压强度值,在这里可以看出26.41MPa比较符合7天抗压强度达到70%以上的要求。

28d的抗压强度值应该已经与混凝土的实际强度值相当接近了。我们的28d龄期试件为43.89MPa,超出了38.225MPa的设计强度比较多,由于我们在配比过程中进行了的调整,又使用了聚羧酸高效减水剂,配制出的混凝土的含水量就比较小,而且加入的粉煤灰的量较多,后期强度发展比较快,在养护湿度不足的情况下可能就会影响早期的水泥水化。但是,随着养护的进行,环境中的水分逐渐进入混凝土试件内部,对水泥的水化起到了一定的促进作用,所以后期的强度有了很大的提高。因此,我们在配制高强混凝土的时候,一定要注意到其早期的水泥水化,以防止混凝土出现原生的缺陷,从而进一步提高混凝土的质量和性能。这次强度较高也是在可控制的范围之内,总得来说我们的混凝土配合比设计在抗压强度上来

说还是成功的。

混凝土劈裂抗拉强度实验:

实验数据如表二:

表二

其中,在标准化时,已经将平均值乘以0.85,即0.85×f ts ≈3.18MPa

一般来讲,混凝土劈裂抗拉强度应该只有抗压强度的10

1~201,而且随着混凝土强度等级的提高,该比值降低。在我们组的实验数据中,劈裂抗拉强度大约为抗压强度的

101。 影响混凝土劈裂抗拉强度的因素有很多。一方面,与混凝土本身的强度很有关系,因为混凝土的强度在很大的程度上是决定于混凝土本身的配合比的,这是最为本质的因素,所以要从根本上解决劈裂抗拉强度低的问题,需要改进混凝土的配合比,同时也应该采用一些特殊的措施来提高混凝土的密实度等,减少原生的缺陷。另一方面,实验时的条件也很有关系,比如在压力机上未放到中间位置,垫层的使用不当等等,都可能对测得的混凝土劈裂抗拉强度产生影响,所以还需要严格遵循实验的规定,使得结果尽量准确。

3、混凝土与钢筋握裹强度实验

测得数据如表三:

表三

由于我们的试件在拆模的时候有两块损坏了,只剩下一块,因此这里只有一个数据,偶然误差可能会相对较大一点,代入这个数据算得:

τ=3.18MPa 。

握裹力是钢筋和混凝土得以共同工作的基础,主要由化学胶结力、摩阻力和机械咬合力三部分组成。正因为握裹力的存在,钢筋混凝土的出现才成为可能,预应力混凝土才得以发明。所以,握裹力是决定混凝土性能的一大重要因素。影响混凝土中握裹力的因素很多,例如混凝土的抗压强度、抗拉强度,钢筋的直径、锚固长度和肋部形状,混凝土保护层厚度,混凝土掺合料,外加剂等。

针对这样一些影响因素,我们可以进行相关的改进。为了提高钢筋握裹力,可以提高混凝土的抗压强度和抗拉强度,防止混凝土和钢筋之间的相对运动,提升对于应力的承受能力。同时,也应该对钢筋进行一定的处理,尽量避免用光圆的钢筋,因为光圆钢筋的握裹力比较弱。可以使用带肋钢筋,或是对使用的钢筋进行使用前的冷加工强化,从而提高钢筋握裹力。

4、混凝土中氯离子扩散系数的测定实验

测得数据如下表四:

表四

而根据经验,C30混凝土的氯离子扩散系数在5 E-8左右,因此上述数据比较符合规定。抗渗性满足设计要求。

从这里可以看出,我们的混凝土氯离子扩散系数偏大,因此我们认为需要对混凝土配合比进行一定的改进如增大水灰比,增大粉煤灰的用量,减小骨料尺寸等等。

混凝土的抗渗透性对于其耐久性是有很大的影响的。由于水的入侵,可以再混凝土中循环往复,从而使得温度收缩、干裂收缩等更加强烈,同时,水作为很多侵蚀性离子的载体,也会使得侵蚀性离子进入混凝土体内变得更加容易,从而加剧混凝土的劣化,以及对钢筋混凝土中的钢筋的腐蚀。可见,抗渗透性比较好的混凝土,其耐久性也比较强。

五、总体误差分析与总结

这次实验是和混凝土配合比设计实验配合来做的,是使用自己在配合比实验中成型的试块来测定混凝土的力学性能和氯离子扩散系数。

这次测定的数据反应着配合比设计的是否合理,而配合比设计又决定这这次实

验测得的数据。通过自己测定自己设计的混凝土,不仅能够让我们学到测定这些指标的方法,而且还能够让我们发现自己在配合比设计中存在的问题。这样能够启发我们自己去思考,为什么我设计的混凝土的这一项性能不能达到要求,并启发我们去想办法修正我们的配合比设计,使按照配合比设计出来的混凝土能够达到设计要求。

但是,由于操作等原因,例如钢筋握裹强度实验中,我们组只有一个数据可用,这必然会加大偶然误差,而且在抗压的实验中,最小值的数据与中间值相差

超过了15%,因而被舍去了,这也反映出我们的操作过程或者由于偶然误差,数

据的偏差会比较大。

六、思考题

1、针对实验四混凝土配合比的试验结果从混凝土拌合物性能和抗压强度等方面你如

何再提高其性能。

下列因素对混凝土拌合物性能的影响如下(参考张君老师编著的建筑材料):

1)

用水量和水泥用量:工作度对用水量很敏感,用水量增加可以增加坍落度,但同

时可能减小拌合物的粘聚性;水泥用量大可以增加拌合物的粘聚性但坍落度可能

较小;一般固定用水量(浆体量),通过掺加外加剂调整流动性。

骨料品种与品质: 卵石配制的混凝土流动性高于用碎石配制的混凝土;级配好、

针片状颗粒含量少的骨料流动性好;砂的细度模数小,流动性低;细度模数较大、

砂率稍高、水泥浆体量较多的拌合物,工作性综合指标良好。

砂率:砂率低,砂含量少,不足以填充粗骨料间的间隙,需水泥浆填充,减薄了

骨料颗粒表面的浆体层。砂率高,骨料的表面积增大,需更多水泥浆包裹,减薄

了骨料颗粒表面的浆体层。存在最佳砂率,使工作性最佳,同时胶凝材料用量较

少。

外加剂与矿物掺合料:外加剂对混凝土具有良好的改性作用,掺用外加剂是制备

高性能混凝土的关键技术之一。在混凝土中合理掺加具有减水率高、坍落度损失

小、适量引气,质量稳定的外加剂产品能明显改善或提高混凝土耐久性能。混凝

土中掺入少量引气剂后,就等于是每方混凝土中引入数千亿个微小气泡,使混凝

土的抗冻融性能大大提高。掺入一定量的矿物掺和料,可以有效改善和提高混凝土工作性和耐久性。一般分为活性和非活性两种。活性的有粒化高炉矿渣、火山灰混合材料、粉煤灰、硅灰等;非活性混合料仅起填充作用,不能改善水泥性质,如石英砂、石灰石、砂岩、粘土等,我们一般常用粉煤灰及粒化高炉矿渣比较多。

拌合条件:不同搅拌机械拌合出的混凝土,即使原材料条件相同,工作度仍可能出现明显的差别。

2)

至于混凝土抗压强度方面,各影响因素如下:

水灰比:W/C决定了水泥硬化浆体的孔隙率,W/C越大,孔隙率越大,浆体强度

越低。但没有考虑过渡区的作用;

骨料:骨料的最大粒径Dmax越大,强度越低;卵石混凝土强度比碎石低;当混凝土的强度较高时,骨料的强度也会影响混凝土的强度;

外加剂:减水剂因为可以有效的降低混凝土的水灰比,因此可以提高混凝土各个龄期的强度,调凝剂也可以影响强度的发展;

矿物掺合料:有些矿物掺合料可以有效地降低基体和过渡区的空隙率,减少微裂纹,从而改善混凝土的各种性能和强度。

2、谈谈你对高性能混凝土如何理解。

高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。高性能混凝土是针对工程需求来的,不同的人有不同的定义。美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期

阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度

和耐久性。加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。

七、相关知识

1影响混凝土强度的因素

普通混凝土受力破坏一般出现在骨料和水泥石的分界面上,是常见的粘结面破坏的形式。在普通混凝土中,骨料最先破坏的可能性小,因为骨料强度通常大大超过水泥石和粘结面的强度。所以混凝土的强度主要决定于水泥石强度及其与骨料表面的粘结强度。而水泥石强度及其与骨料的粘结强度又与水泥标号、水灰比、及骨料的性质有密切关系。当水泥石强度较底时,水泥石本身容易受到破坏。此外混凝土的强度还受施工质量、养护条件及龄期的影响。

(1)水灰比和水泥标号是决定混凝土强度的主要因素

水泥是混凝土中的活性成分,其强度的大小直接影响着混凝土强度的高低。从混凝土强度表达式:f cu,0=Af ce(C/W-B)可以看出,在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度越高。当水泥相同时,混凝土的强度取决于水灰比。当水泥水化时所需的结合水,一般只占水泥重量的23%左右。如果结合水较大(约占水泥重量的40~70%),混凝土硬化后,多余的水分残留在混凝土中形成气泡或蒸发后形成气孔,大大地减少了混凝土抵抗荷载的实际有效断面,可能在空隙周围产生应力集中。因此,在水泥标号相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土的强度就愈高。如果加水太少,拌和物过于干硬,在一定的捣实成型条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝孔洞,混凝土强度也将下降。

(2)粗骨料的影响

粗骨料对混凝土强度也有一定的影响。当石质强度相等时,决定于骨料的表面粗糙度。如:碎石表面比卵石表面粗糙,它与水泥砂浆的粘结力比卵石大;当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石强。一般混凝土的粗骨料控制在3.2cm左右。对于砂的质量对混凝土的强度也有一定的影响。如果砂的含泥量大,含有一定量的有害杂质,也会降低混凝土强度。因此,通常在施工中使用清水砂。

(3)温度和湿度的影响

混凝土的硬化在于水泥的水化作用。周围环境温度对水泥水化的速度有显著的影响:温

度升高,水泥水化速度加快,混凝土强度增长加快。反之,温度降低,水泥水化速度降低,混凝土强度增长缓慢。当温度降至冰点以下时,则由于混凝土中的水分大部分已结冰,水泥颗粒不能与冰发生化学反应,混凝土的强度停止发展,而且孔隙内水分结冰会引起膨胀(水结冰体积可膨胀约9%),作用在孔隙毛细管内壁,使混凝土内部结构遭到破坏,已经获得的强度(如果在结冰前,混凝土已经不同程度地硬化的话)受到损失。当气温忽高忽底反复冻融,混凝土内部的微裂逐渐增长、扩大,使混凝土强度逐渐降低,表面出现剥落,甚至混凝土完全崩溃。

周围环境的湿度对水泥的水化作用也有显著影响:湿度适当,水泥水化进行顺利,混凝土强度增长较快。如果湿度不够,混凝土因缺水而影响水泥水化作用的正常进行,甚至停止水化。使混凝土结构疏松,渗水性增大或形成干缩裂缝,影响耐久性。

为了使混凝土正常硬化,必须在成型后一定时间内维护周围环境,保证一定温度和湿度。当混凝土凝结以后,表面应覆盖草袋等物并不断浇水,防止其发生不正常的收缩。在夏季应注意浇水,保持必要的湿度;在冬季注意保温,保持必要的温度。一般采取综合蓄热法及蒸养法。

(4)龄期的影响

凝土在正常养护条件下,其强度将随着龄期的增加而提高,最初7~14d内强度增长较快,28d以后增长缓慢。

2提高混凝土强度的措施

根据影响混凝土强度的因素分析,提高混凝土强度可以从以下几个方面采取措施:

(1)采用高标号水泥

如:采用早强水泥,或在混凝土中掺入早强剂,均可提高混凝土早期强变。

(2)尽可能降低水灰比

为使混凝土拌和物中的游离水分减少,采用较小的水灰比,用水量小的干硬性混凝土,或在混凝土中掺入减水剂。

(3)采用湿热处理

①蒸汽养护

将混凝土放在温度低于100℃的常压蒸汽中进行养护。一般混凝土经过16~20d的蒸汽养护后,其强度即可达到正常条件下养护28d强度的70~80%。蒸汽养护的最适宜温度随水泥品种而不同。用普通水泥时,最适宜的养护温度为80℃左右,用矿渣水泥及火山灰水泥

时,则为90℃左右。

②蒸压养护

将混凝土构件放在175℃的温度及8个大气压的压蒸锅内进行养护。在高温的条件下,水泥水化时析出的氢氧化钙,不仅能与活性的氧化硅结合,而且亦能与结晶状态的氧化硅相结合,生成含水硅酸盐结晶,使水泥的水化加速,硬化加快,而且混凝土的强度也大大提高。对掺有活性混合材料的水泥更为有效。

(4)采用机械搅拌和振捣

机械搅拌比人工拌和能使混凝土拌和物更均匀,特别在拌和低流动性混凝土拌和物时效果更显著。搅拌时间越长,混凝土强度越高。但考虑到能耗、施工进度等,一般要求控制在2~3min之间。利用振捣器捣实时,能提高混凝土拌和物的流动性,使混凝土拌和物能很好的充满模型,排除混凝土中气泡,内部空隙大大减少,提高了混凝土的密实度,从而大大提高了混凝土强度。

3抗渗性

钢指混凝土材料抵抗压力水渗透的能力,它是决定混凝土耐久性最基本的因素。筋锈蚀、冻融循环、硫酸盐侵蚀和碱骨料反应这些会导致混凝土品质劣化的原因中水能够渗透到混凝土内部都是破坏的前提,也就是说水或者直接导致膨胀和开裂,或者作为侵蚀介质扩散进去混凝土内部的载体。所以,混凝土的抗渗性对于混凝土的耐久性具有重大的意义。

4 提高抗渗性的措施

影响混凝土抗渗性的根本因素是孔隙率和孔隙特征。混凝土的孔隙率越低,连通孔越少,抗渗性越好。混凝土中的渗水通道主要是来自水泥浆中多余的水分蒸发而留下的气孔水泥浆泌水所产生的毛细管孔道、内部的微裂以及施工振捣不密实产生的蜂窝、孔洞,这些都会导致混凝土渗水。当混凝土受压力水作用时,水从其中的孔隙或组成材料本身中通过, 若水流孔隙是连续的, 则造成混凝土的渗漏。为了最大程度的降低混凝土的孔隙率,提高混凝土的抗渗性,主要的措施是降低水灰比,旋转好的骨料级配,充分振捣和养护,掺用引气剂和优质粉煤灰掺和料等方法来实现。

参考文献

1 吴中伟,廉慧珍.高性能混凝土.中国铁道出版社,1990年;

2 中华人民共和国水利电力部.水工混凝土试验规程(5o5一so);

3 周士琼,尹键,谢友均等.超细粉煤灰高能性混凝土的性能.山东建材学院学报1998年6月;

4 VedatA.YerliciandTuranOzturan.FactorAfectingAnchorage Bond stIerlgtII in Vagh—Pedormance Concrete.ACI Structural Journal,May—

June 2O0O

喷射混凝土检测取样方法

喷射混凝土质量检测方法 (一)抗压强度试验 1.检查试块的制作方法 (1)喷大板切割法 在施工的同时,将混凝土喷射在45cmx35cmxl2cm(可制成6块)或45cmx20cmx12cm(可制成3块)的模型内,在混凝土达到一定强度后,加工成10cmx10cmx10cm的立方体试块,在标准条件下养护至28d进行试验(精确到0.1MPa) (2)凿方切割淡 在具有一定强度的支护上,用凿岩机打密徘钻孔,,取出长约35cm、宽约15cm 的混凝上块,加工成10cmxl0cmxl0cm的立方体试块,在标准条件下养护至28d,进行试验(精确到0.1MPa)。 2.检查试块的数量 隧道(两车道隧道)每10延米,至少在拱部和边墙各取、组试样“,材料或配合比变更时另取一组,每组至少取3个试块进行抗压强度试验。 3.满足以下条件者为合格,否则为不合格。 (1)同批(指同一配合比)试块的抗压强度平均值,不低于设计强度或C20。(2)任意一组试块抗压强度平均值不得低于设计强度的80%。 (3)同批试块为3~5组时,低于设计强度的试块组数不得多于1组;试块为(一16组时,不得多于两组;17组以上,不得多于总组数的15%。 (二)喷射混凝土厚度的检测 1.喷层厚度可用凿孔或激光断面仪、光带摄影等方法检查。 (2)检查断面数量。每口延米至少检查一个断面)再从拱顶中线起每隔2m凿孔检查一个点。 (3)每个断面拱、墙分别统计,全部检查孔处喷层厚度应有60%以上不小于设计厚度,平均厚度不得小于设计厚度,最小厚度不应小于设计厚度的1/2。在软弱破碎围岩地段,喷层厚度不应小于设计规定的最小厚度,钢筋网喷射混凝土的厚度不应小于6cm。 (三)喷射混凝土与园岩粘结强度试验 1.检查试块的制作方法 (1)成型试验法 在模型内放置面积为10cmX10cmx厚5cm且表面粗糙度近似于实际情况的岩块,用喷射混凝土掩埋。在混凝土达到一定强度后,加工成10cmxl0cmX10cm的立方体试块,在标准条件下养护至28d,用劈裂法进行试验。 (2)直接拉拔法 在围岩表面预先设置带有丝扣和加力板的拉杆,用喷射混凝土将加力板埋人,喷层厚度约10cm,试件面积约30cmX30cm(周围多余的部分应予清除)。经28d 养护,进行拉拔试验。 (四)喷射混凝上粉尘、回弹检查 按《公路隧道施工技术规范>>(JTJ042—94)规定。 (五)其它试验 当有特殊要求时,对喷射混凝土的抗拉强度、弹性模量等项目应进行试验。 喷射混凝土施工质量评判

普通混凝土力学性能试验方法标准的考试

混凝土力学试验考试(8月3日) 姓名:何延庆职位:得分: 一、填空题(15分) 1、《混凝土规范》规定以强度作为混凝土强度等级指标。(1分) 2、测定混凝土立方强度标准试块的尺寸是。(1分) 3、试件破坏荷载应大于压力机全量程的,且小于压力机 全量程的。(2分) 4、应定期对试模进行自检,自检周期宜为。(2分) 5、在搅拌站拌制的混凝土时,其材料用量应以质量计,称量的精度:水泥、掺合料、水和外加剂为,骨料为。(2分) 6、混凝土拌合物的稠度确定混凝土成型方法,塌落度的混凝土用振动振实,塌落度的混凝土用捣棒人工捣实。 (2分) 7、混凝土成型每层插捣次数。(2分) 8、进行混凝土抗压强度实验时,在试验过程中应连续均匀的加载,混凝土强度等级<C30时,加荷速度取每秒钟;混凝土强度等级≥C30且<C60时,取每秒钟;混凝土强度等级≥C60时,取每秒钟。(3分) 二、判断题(12分) 1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。()

2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。() 3、采用边长为100mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.90。() 4、采用边长为200mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为1.10。() 5、普通混凝土力学性能试件应从不同车混凝土取样制件。() 6、混凝土试件在特殊情况下可以用Φ150*150的圆柱体标准试件。() 三、单项选择题(6分) 1、混凝土极限压应变值随混凝土强度等级的提高而()。 A增大 B减小 C不变 D视钢筋级别而定 2、混凝土延性随混凝土强度等级的提高而()。 A增大 B减小 C不变 D视钢筋级别而定 3、同强度等级的混凝土延性随加荷速度的提高而()。 A增大 B减小 C不变 D视钢筋级别而定 4、地上放置一块钢筋混凝土板,在养护过程中表面出现微细裂缝,其原因是()。 A混凝土徐变变形的结果 B混凝土收缩变形的结果 C混凝土与钢筋产生热胀冷缩差异变形的结果 D是收缩与徐变共同作用的结果 5、以下关于混凝土收缩的论述()不正确? A混凝土水泥用量越多,水灰比越大,收缩越大 B骨料所占体

喷射砼原材料-要求

喷射混凝土原材料要求 6.2.1水泥:应符合第4.4.7条规定的要求。 6.2.2骨料应符合下列要求: 1粗骨料应选用坚硬耐久的卵石或碎石,粒径不宜大于15mm;当使用碱性速凝剂时,不得使用含有活性二氧化硅的石料。 2细骨料应选用坚硬耐久的中砂或粗砂,细度模数不宜大于2.5。干拌法喷射时,骨料的含水率应保持恒定并不小于6%。 3喷射混凝土骨料级配宜控制在表6.2.2数据范围内。 表6.2.2 喷射混凝土骨料通过各筛经的累计质量百分率(%) 6.2.3拌合水应符合第4.4.8条规定的要求。 6.2.4喷射混凝土速凝剂应符合下列要求: 1掺加正常用量速凝剂的水泥净浆初凝不应大于3min,终凝不应大于12min; 2加速凝剂的喷射混凝土试件,28d强度应不低于不加速凝剂强度的90%; 3宜用无碱或低碱型速凝剂。 6.2.5喷射混凝土中的矿物掺合料,应符合以下规定: 1粉煤灰的品质应符合现行国家标准《用于水泥和混凝土中的粉煤灰》GB1596的有关规定。粉煤灰的级别不应低于Ⅱ级,烧失量不应大于5%。 2硅粉的品质应符合表6.2.5的要求。 表6.2.5 硅粉质量控制指标要求

3粒化高炉矿渣粉的品质应符合现行国家标准《用于水泥和混凝土中粒化高炉矿渣粉》GB/T18046的有关规定。 6.2.6纤维:喷射混凝土用钢纤维及合成纤维应符合以下规定: 1钢纤维 钢纤维的抗拉强度应不低于1000N/mm2,直径宜为0.40~0.80mm,长度 宜为25~35mm,并不得大于混合料输送管内径的0.7倍,长径比为35~80。 2合成纤维 合成纤维的抗拉强度不应低于280N/mm2,直径宜为10~100μm,长度宜 为4~25mm。 6.2.7喷射混凝土中各类材料的总碱量(Na2O当量)不得大于3 kg / m3;氯离 子含量不应超过胶凝材料总量的0.1%。 摘自:GB50086-2011《岩土锚固与喷射混凝土支护工程技术规范》 SL377-2007《水利水电工程锚喷支护技术规范》

2016继续教育-混凝土力学性能检测

千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注: 第4题 结果计算精确至()MPa。 A.0.1 B.1 C.10 D.100

您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答案:B,C,D 您的答案:B,C,D 题目分数:13 此题得分:13.0 批注: 第7题 对中状态下,读数应和它们的平均值相差在20%以内,否则应重新对中试件后重复6.6中的步骤。如果无法使差值降到20%以内,则此次试验无效。 答案:正确 您的答案:正确

高性能混凝土的力学性能及耐久性试验研究 何达明

高性能混凝土的力学性能及耐久性试验研究何达明 发表时间:2018-03-21T17:10:56.310Z 来源:《基层建设》2017年第34期作者:何达明 [导读] 摘要:高性能混凝土是当前应用最为广泛的建筑材料,其力学性能及耐久性直接关系到建筑物的安全性能及质量。 广东建准检测技术有限公司广东广州 510000 摘要:高性能混凝土是当前应用最为广泛的建筑材料,其力学性能及耐久性直接关系到建筑物的安全性能及质量。本文结合C80机制砂高性能混凝土,对其力学性能及耐久性试验结果进行了分析,结果表明该C80机制砂混凝土具有良好的整体性能。 关键词:高性能混凝土;力学性能;耐久性 0 前言 随着我国经济的快速发展以及城市建设的不断进步,建筑行业取得了迅猛的发展,而混凝土作为建筑施工的重要材料之一,其性能越来越受重视。在这背景下,高性能混凝土在大型建筑结构中得到广泛的应用,但是其应用中存在着许多问题,如由于原材料应用及配合比设计不当等问题。因此,对高性能混凝土力学性能及耐久性试验进行深入研究十分必要。 1 原材料 (1)水:城市自来水。 (2)水泥:某地P?O52.5级水泥,安定性合格,3d和28d抗折、抗压强度分别为5.8MPa、8.6MPa、27.4MPa、57.3MPa。 (3)掺合料: ①粉煤灰:某市产F类Ⅱ级,性能指标符合GB/T1596—2005《用于水泥和混凝土中的粉煤灰》要求。 ②矿渣粉:某建材有限公司产,S95级,性能满足GB/T18046—2008《用于水泥和混凝土中的粒化高炉矿渣粉》要求。 ③硅粉:某硅粉,SiO2含量91.8%,比表面积18000m2/kg(BET法)。 (4)河砂:某地产,细度模数为2.9,Ⅱ区;某地产,细度模数为1.8,Ⅲ区;试验中的河砂均按90%:10%(质量比)掺配成细度模数2.7的中砂,Ⅱ区。 (5)机制砂:某地产,亚甲蓝值为0.8,细度模数为3.0,Ⅰ区,石粉含量7%(试验中机制砂不同石粉含量是将原机制砂中的石粉筛除配制而成)。 (6)碎石:某地产玄武岩,连续粒级5~20mm,含泥量为0.4%,泥块含量为0,母岩抗压强度为138MPa。 (7)外加剂:聚羧酸高性能减水剂,性能符合JG/T223—2007《聚羧酸高性能减水剂》相应指标要求。以上原材料均符合JGJ/T281—2012《高强混凝土应用技术规程》中相应技术指标要求。 2 C80机制砂混凝土的技术路线 根据C80河砂混凝土的经验选用基准配合比,利用正交技术对比选择最优配合比,并与同条件的河砂混凝土对比。考察机制砂和河砂在工作性、抗压强度、抗折强度、劈裂强度、干缩、早强抗裂性、电通量、氯离子渗透性及抗碳化方面的性能。 3 试验结果与分析 3.1 最优配合比选择 GB/T14684—2011《建设用砂》中规定:MB≤1.4或快速法试验合格,机制砂石粉含量≤10%;JGJ/T241—2011《人工砂混凝土应用技术规程》中规定,MB<1.4且≥C60的混凝土,机制砂石粉含量≤5%,实际生产出来的机制砂石粉含量在7%~10%左右,为充分利用资源,减少占地,保证机制砂良好的级配,本次正交试验选择5%、3%、1%为石粉含量的三水平,其它正交因素及相应水平见表1,用水量为150kg/m3,细骨料为771kg/m3,粗骨料为1023kg/m3,硅粉掺量为胶凝材料量的4%。 表1 C80正交试验表L9(34) 运用极差分析法,对表1正交试验的坍落度、扩展度、3d、28d抗压强度四项指标进行分析,由表2极差结果可知,对于坍落度,其影响因素的主次顺序及相应的水平为C3>(B2、B3)>D3>A1,对扩展度为D2>B2>C1>A2,即水胶比对坍落度的影响较大,掺合料的掺量和组合对扩展度的影响较大,综合考虑,影响混凝土和易性的因素及相应的水平为(A1、A2)B2(C1、C3)(D2、D3)。对早期(3d)强度和后期(28d)强度的影响顺序因素和水平不一样,早期(3d)强度的因素及相应水平为C1>A1>B3>D1,后期(28d)强度为C1>D1>A1>B2,则影响强度的因素、水平为A1(B2、B3)C1D1。综合考虑四因素三水平的正交试验对工作性、强度及和易性的影响结果,该组C80机制砂混凝土的最优配合比为A1B2C1D1,即5%石粉含量、41%砂率、0.26水胶比和5%FA+25%矿渣粉。 表2 C80正交试验L9(34)极差法分析结果 3.2 C80高掺量石粉含量机制砂混凝土力学性能 最优配合比中石粉含量为5%,达到JGJ/T241—2011、JGJ/T281—2012和JGJ52—2006《普通混凝土用砂、石质量检验方法标准》

钢筋混凝土材料的力学性能 复习题

第一章 钢筋混凝土的材料力学性能 一、填空题: 1、《混凝土规范》规定以 强度作为混凝土强度等级指标。 2、测定混凝土立方强度标准试块的尺寸是 。 3、混凝土的强度等级是按 划分的,共分为 级。 4、钢筋混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点 的钢筋,通常称它们为 和 。 5、钢筋按其外形可分为 、 两大类。 6、HPB300、 HRB335、 HRB400、 RRB400表示符号分别为 。 7、对无明显屈服点的钢筋,通常取相当于于残余应变为 时的应力作为名 义屈服点,称为 。 8、对于有明显屈服点的钢筋,需要检验的指标有 、 、 、 等四项。 9、对于无明显屈服点的钢筋,需要检验的指标有 、 、 等三项。 10、钢筋和混凝土是两种不同的材料,它们之间能够很好地共同工作是因 为 、 、 。 11、钢筋与混凝土之间的粘结力是由 、 、 组成的。其 中 最大。 12、混凝土的极限压应变cu ε包括 和 两部分, 部分越 大,表明变形能力越 , 越好。 13、钢筋的冷加工包括 和 ,其中 既提高抗拉又提高抗 压强度。 14、有明显屈服点的钢筋采用 强度作为钢筋强度的标准值。 15、钢筋的屈强比是指 ,反映 。 二、判断题: 1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。( ) 2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。( ) 3、采用边长为100mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 0.95。( ) 4、采用边长为200mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 1.05。( ) 5、对无明显屈服点的钢筋,设计时其强度标准值取值的依据是条件屈服强度。( ) 6、对任何类型钢筋,其抗压强度设计值y y f f '=。( )

喷射混凝土设计

喷射混凝土设计 喷射混凝土的配比与强度 喷射混凝土的常用配比 在锚喷支护巷道中,喷射混凝土的主要目的是封闭围岩,防止围岩风化和裂隙的演化。为确保质量,必须使喷层密实、均匀,达到设计强度。煤矿中常用喷射混凝土的强度为25~33MPa,常用的配比为水泥:砂:石子=1:2:2,优选配比为水泥:砂:石子=1:1.8:2.2,或1:2.25:2.75,或1:2.3:2.7。 影响喷射混凝土强度质量的因素很多,除了水泥、石子、砂的配比外,还有水泥种类与标号、品质,砂与石子的粒度、品质和级配,养护条件、温度与喷射厚度,速凝剂质量与掺量等。要得到具体的水泥、砂、石子和速凝剂条件下强度指标,需要经过大量的试验才能取得,并且试验结果具有较大的离散性。 喷射混凝土配比与强度指标 影响喷射混凝土强度的因素分析 (1)水泥 喷射混凝土常用的是普通硅酸盐水泥,这种水泥来源广,又能满足普通喷射混凝土的大部分要求,而且同速凝剂有较好的相容性。水

泥标号不低于325号。当岩石、地下水或配制用水含有可溶性硫酸盐时,应使用抗硫酸盐水泥。当要求喷射混凝土具有较高早期强度时,可以使用硫铝酸盐水泥或其他早强水泥。 (2)水灰比 水灰比是影响喷射混凝土强度的主要因素。在混凝土中,水的作用主要是与水泥发生化学反应,使混凝土产生强度。但这种起作用的水仅占水泥重量约15~25%,而多余的水份只是在混凝土内起润滑作用,使所喷的混凝土在喷射过程中具有足够的和易性,不满足施工要求。 喷射混凝土喷射到岩石后,在硬化过程中,多余的水份逐渐蒸发,使混凝土产生微细的孔隙,造成喷射混凝土的密实性和强度降低。因此,在满足施工条件的情况下.应将水灰比控制在较低范围。煤矿井下喷射混凝土的水灰比应控制在0.4~0.45范围内。如水泥用量过多,将导致喷射混凝土产生收缩裂缝的可能性加大。增大水灰比则又降低了混凝土的强度。另外,喷射混凝土施工时,水灰比的控制完全是由喷射手的感觉和经验来判断的。因此,提高喷射手的喷射理论水平和施工操作技术是保证喷射强度稳定的重要环节。 (3)速凝剂掺量 速凝剂掺量直接影响喷射混凝土早期及后期强度。速凝剂能加快喷射混凝土早期强度的增长,但后期强度也相应的有所损失。一般来说,混凝土早期强度增长愈快,其后期强度损失也愈大。因此,速凝剂的掺量要严格控制在正确范围,速凝剂掺量应以水泥初凝时间为3~5min.,终凝10min.以内。一般速凝剂掺入量为水泥的2.5%~4%。 (4)砂、石质量及级配 砂、石质量的好坏,对喷射混凝土强度有着很大的影响。 ①砂:砂子级配不良或砂子太细,都要增加水泥用量或加大水灰比。喷射混凝土应用质地坚硬、洁净,级配良好的中砂,细度模量应大于2.5。其中,直径小于0.075mm的颗粒应少于20%。为取得最大

钢筋和混凝土的力学性能.

《混凝土结构设计原理》习题集 第1章 钢筋和混凝土的力学性能 一、判断题 1~5错;对;对;错;对; 6~13错;对;对;错;对;对;对;对; 二、单选题 1~5 DABCC 6~10 BDA AC 11~14 BCAA 三 、填空题 1、答案:长期 时间 2、答案:摩擦力 机械咬合作用 3、答案:横向变形的约束条件 加荷速度 4、答案:越低 较差 5、答案:抗压 变形 四、简答题 1.答: 有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度y f 作为钢筋的强度极限。另一个强度指标是钢筋极限强度u f ,一般用作钢筋的实际破坏强度。 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。

设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb ,其中σb 为无明显流幅钢筋的极限抗拉强度。 图2-2硬钢拉伸试验的应力应变曲线 2.答: 目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3.答: 钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 4.答: 混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm 的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm 2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度f ck ,单位N/mm 2。 A F f ck f ck ——混凝土立方体试件抗压强度; F ——试件破坏荷载; A ——试件承压面积。 5. 答: 我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm 棱

混凝土主要力学性能和 氯离子扩散系数实验

混凝土主要力学性能和氯离子扩散 系数实验 实验报告 学号: 2010010131 班号:结 02 实验日期: 2011.12.14 实验者:陈伟 同组人:吴一然 建筑材料第六次实验

一、实验目的 1.掌握混凝土主要力学性的测试方法。 2.学习用混凝土中氯离子扩散系数的方法 3.评定混凝土的渗透性。 二、实验原理 1.混凝土抗压强度实验原理 1)混凝土强度等级的概念: 混凝土的强度等级应按立方体抗压强度标准值划分。混凝土强度等级采用符号C与立方体抗压强度标准值(以N/ mm2 计)表示。 混凝土立方体抗压强度标准值系指对按标准方法制作和养护的边长为150 mm的立方体试件,在28d龄期,用标准试验方法测得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5% 。 2).试验依据标准: GB/T50081-2002 3).试验要求 混凝土强度等级≥C60,试件周围应设防崩裂罩。 4.6.1钢垫板的平面尺寸应不小于试件的承压面积,厚度应不小于25mm. 4.6.2钢垫板应机械加工,承压面的平面度公差为0.04 mm;表面硬度不小于55HRC; 硬化层厚度约为5 mm. 当压力试验机上、下压板不符合4.6.2条规定时,压力试验机上、下压板与试件之间应各垫以符合4.6.2条规定的钢垫板。 4).加荷速度: <C30 0.30---0.50MPa/S ≥C30 0.50—0.80 MPa/S ≥C60 0.80—1.0 MPa/S

5).换算系数:100×100×100 (mm) 0.95 150×150×150(mm) 1.00 200×200×200(mm) 1.05 当混凝土强度等级≥C60时,宜采用标准试件; 使用非标准试件时,尺寸换算系数应由实验确定。 单位:MPa N/ mm2 6)实验设备: (1) 压力实验机 精度(示值的相对误差)应为±1%,试件的破坏荷载应大于压力机全量程的20%,且小于全量程的80%左右。实验机上、下压板应有足够的刚度,其中的一块压板应带有球形支座,使压板与试件接触均衡。 (2) 钢尺 量程300mm,最小刻度1mm。 7)强度检验: 强度值得确定应符合下列规定:如两个测值与中间值相差均不超过15%,则以三个试件的算术平均值作为该组试件的抗压强度值。三个测值中的最大值和最小值中如有一个与中间值得差值超过中间值的15%。则把最大及最小一并舍除,取中间值作为改组试件的抗压强度值。如两个测值与中间值相差均超过15%,则该组实验结果无效。 2.混凝土劈裂抗拉强度实验原理. 1.试件尺寸:100×100×100(mm) 2.龄期:14天 3.加载方式:见下图一 混凝土劈裂抗拉强度采用直径为150mm的钢制弧型垫条,其长度不短于试件边长.进行劈裂抗拉试验时在垫条与混凝土之间垫一厚3-4mm,宽度为10-20mm的三合板垫层.加荷速度:0.2-0.8Mpa/S(强度等级低的取0.2-0.5,高的取0.5-0.8Mpa/S)

普通混凝土力学性能试验方法

普通混凝土力学性能试验方法 1 、试件的制作和养护方法 1.1成型前,应检查试模尺寸并符合有关规定要求;试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 1.2取样或试验室拌制的混凝土应在拌制后尽短的时间内成型,一般不宜超过15min。 1.3根据混凝土拌合物的稠度确定混凝土成型方法,坍落度不大于70mm的混凝土用振动振实;大于70mm的用捣棒人工捣实; 1.4取样或拌制好的混凝土拌合物应至少用铁锨再来回拌合三次; 1.4.1用振动台振实制作试件应按下述方法进行: a) 将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口; b) 试模应附着或固定在振动台上,振动时试模不得有任何跳动,振动应持续到表面出浆为止;不得过振; 1.4.2 用人工插捣制作试件应按下述方法进行: a) 混凝土拌合物应分两层装入模内,每层的装料厚度大致相等; b) 插捣应按螺旋方向从边缘向中心均匀进行。在插捣底层混凝土时,捣棒应达到试模底部;插捣上层时,捣棒应贯穿上层后插入下层20~30mm;插捣时捣棒应保持垂直,不得倾斜。然后应用抹刀沿试模内壁插拔数次; c) 每层插捣次数100mm试模不得少于12次,150mm试模不得少于25次; d) 插捣后应用橡皮锤轻轻敲击试模四周,直至插捣棒留下的空洞消失为止。 1.5试件成型后应立即用不透水的薄膜覆盖表面。 1.6 采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护。标准养护室内的试件应放在支架上,彼此间隔10~20mm,试件表面应保持潮湿,并不得被水直接冲淋。 2 、立方体抗压强度试验 2.1 试件从养护地点取出后,将试件擦试干净,测量尺寸,并检查外观。试件尺寸测量精确至1mm,并据此计算试件的承压面积。 2.2 将试件安放在试验机的下压板上,试件的承压面与成型时的顶面

RCM-DEH型混凝土氯离子扩散系数快速测定仪

SONA 混凝土结构耐久性检测RCM-DEH型 混凝土氯离子扩散系数快速测定仪 操 作 指 南 北京首瑞测控技术有限公司 Beijing SONA MC Tech.Co.,Ltd

重要安全信息 本信息可以帮助您安全使用本公司公司产品,请遵循并保留本公司产品随附所有资料。 客户的安全对于本公司公司很重要,我们开发的产品安全、有效。本产品为机电一体化产品。电源线、测试线以及其它功能部件在使用不当的情况下仍会引起潜在的安全危险,可能会导致人身伤害或财产损失。要减少这些危险,请按照产品的说明操作,遵循产品所有操作说明中的警告信息并仔细阅读本文。仔细按照本文中包含的和随产品提供的资料进行操作,有助于您免受危险并拥有一个安全的工作环境。 需要立即采取操作的情况 产品可能由于使用不当或疏忽而损坏。某些产品损坏程度严重的,经过本公司公司专业人员检查及修理后才可以继续使用。 请经常检查设备情况,如果您发现经下列出的任何情况(虽然很少发生)或者对产品有任何安全方面的考虑,请停止使用该产品并断开电源,直到您可以与本公司取得联系以得到进一步的指导为止。 ●电源线、插头、测试线破裂或损坏。 ●有冒烟或从主机中发出异味。 ●产品机箱内部进水。 ●测量时测试线正负极对接。 ●产品以任何方式的跌落或受到损坏。 ●当按照操作说明操作时产品不正常动作。 注:如果对于本公司提供的产品发现这些情况,请停止使用该产品,直到您联系产品生产商并获取进一步说明或得到合适的替换件为止。

一般安全准则 请始终遵守以下预防措施以降低人身伤害和财产损失的风险。 维修 请勿试图自己维修,除非本技术中心提示您这样操作。 电源线 请勿将电源线缠绕在其他物品上,这样做会绷紧电源线,从而可能导 制电源破损裂、或弯曲。这样会出现安全隐患。 避免电源线接触到液体(试验中会接触有腐蚀性液体)液体有时会导 致短路。 流体也可能导制电源线终端的连接器接头逐渐腐蚀,这样最终会导制 过热。 插头的插座 设备使用三线插头,请选择三线的电源插座使用。 若设备使用的电源插座有损坏或腐蚀迹象,请勿使用该插座。 测试线 本仪器测量时,测试主机将输出0~60V直流电压,因此测试线两端在开机状态下会带有60V电压。出于安全考虑,请用户在使用时,不要将双手触

快速氯离子迁移系数法(RCM法)

快速氯离子迁移系数法(RCM法) 一、试验原理 利用外加电场的作用使试件外部的的氯离子向试件内部迁移。经过一段时间后,将该试件沿轴向劈裂,在新劈开的断面上喷洒硝酸银溶液,根据生成的白色氯化银沉淀测量氯离子渗透的深度,以此计算出混凝土氯离子扩散系数。 二、取样 取样应在施工现场进行,应随机从同一车(盘)中取样,并不宜在首车(盘)混凝土中取样。从车中取样时,应将混凝土搅拌均匀,应在卸料量1/4~3/4之间取样。 三、试件制作 标准试件的尺寸是一致的,都是直径100±1mm,高度50±2mm的圆柱体试件。但是制件方法有区别。RCM法规定了两种种制作方法。但是都是使用圆柱试模宜使用Φ100mm ×100mm或Φ100mm×200mm试模。试件制作应在现场取样后30min内进行。 四、试件养护 试件成型后应立即用塑料薄膜覆盖并移至标准养护室。试件应在24±2h内拆模,然后应浸没于标准养护室的水池中 五、试件安装 试件安装在RCM装置前应采用电吹风冷风档吹干,表面应干净、无油污、灰沙和水珠。 六、溶液配制 溶液(NaOH溶液、NaCL溶液)应至少提前24h配制,并应密封保存在温度为(20~25)℃的环境中。 阴极溶液要求,质量浓度10%NaCL溶液。 阳极溶液要求,摩尔浓度0.3mol/L NaOH溶液。 显色指示剂要求,摩尔浓度0.1mol/L AgNO3溶液。 七、温度要求 试验室温度为(20~25)℃,溶液温度(20~25)℃,初始温度、最终温度测量的是阳极溶液,即NaOH溶液,要求温度计或热电偶的精确为0.2 ℃。 八、电迁移试验 开启电源,调节电压到30±0.2V,记录每个通道的初始电流,根据初始电流,确定试验电压和通电时间。 九、氯离子渗透深度测定 1.等分试件直径断面10等分。标准中要求喷涂显色剂后再等分,因为显色剂属强氧化剂,操作起来不是很方便,建议在破型之前用蜡笔标出。 2.喷涂完显色剂后,15min后观察颜色,测量渗透深度,精确到0.1mm。 3.当某一测点被骨料阻挡,可将此点位置移到最近未被骨料阻挡的位置进行测量。 4.当某测点数据不能得到,只要总测点数多于5个,可忽略此测点。 5.当某测点位置有有一个明显的缺陷,使该点测量值远大于其他各测点的平均值,可忽略此测点数据,但应这种情况在试验记录和报告中注明。 十、经验公式 ?DRCM=0.0239(273+T)L/(U-2)t*(Xd-0.0238((273+T)LXd/(U-2))0.5 其中: ?DRCM——混凝土的非稳态氯离子迁移系数,精确到0.1×10-12m2/s ?U ——所用电压的绝对值(V) ?T ——阳极溶液的初始温度和最终温度的平均值(℃)

混凝土氯离子扩散系数快速测定方法RCM法

非稳态氯离子扩散系数试验仪 使 用 说 明 书 中交武汉港湾工程设计研究院有限公司

混凝土氯离子扩散系数快速测定方法(RCM 法) 参照DuraCrete 非稳态电迁移试验原理 ( Rapid Chloride Migration Method of Concrete, Compliance Testing for Probabilistic Design Purposes, The European Union-Brite EuRam III, March 1999 ) 制定。 1 试验目的 定量评价混凝土抵抗氯离子扩散的能力,为氯离子侵蚀环境中的混凝土结构耐久性设计以及使用寿命的评估与预测提供基本参数。 2 适用范围 本试验方法适用于骨料最大粒径不大于25 mm (一般不宜大于20 mm )的试验室制作的或者从实体结构取芯获得的混凝土试件,试验数据可以用于氯离子侵蚀环境耐久混凝土的配合比设计和作为混凝土结构质量检验评定的依据。 3 试验设备和化学试剂 3.1 唐氏RCM 测定仪,原理图见图F.3.1。 (内径100,外径114~KOH KOH+Cl 橡胶筒 120,高150~170) (高15~20) - 3.2 含5% NaCl 的 0.2 mol/L KOH 溶液;0.2 mol/L KOH 溶液。 3.3 显色指示剂;0.1 mol/L AgNO 3溶液。 3.4 水砂纸(200~600#);细锉刀;游标长尺(精度0.1 mm )。 3.5 超声浴箱;电吹风(2000W );万用表;温度计(精度0.2℃)。 3.6 扭矩板手(20~100 N·m ,测量误差±5%)。 4 试件准备 4.1 标准试件尺寸为ф100±1 mm ,h =50±2 mm 。 4.2 试件在试验室制作时,一般可使用ф100 mm ×300 mm 或150 mm ×150 mm ×150 mm 试模。试件制作后立即用塑料薄膜覆盖并移至标准养护室,24h 后拆模并浸没于标准养护室的水池中。试验前7d 加工成标准试件尺寸的试件,并用水砂纸(200~600#)、细锉刀打磨光滑,然后继续浸没于水中养护至试验龄期。 4.3 试件在实体混凝土结构中钻取时,应先切割成标准试件尺寸,再在标准养护室水池中浸

氯离子扩散系数测定方法492法

混凝土氯离子扩散系数快速测定方法 北欧试验方法 NT BUILD 492 中交武汉港湾工程设计研究院有限公司

氯离子扩散实验—北欧实验方法 NT BUILD 492 1.范围 本过程可以从非稳态迁移实验确定混凝土、砂浆或者水泥基修补的材料中氯化物的迁移系数. 2.适用领域 本实验方法适用于在实验室中成型或者从建筑物上钻取的试样.氯离子迁移系数的方法是测量被测材料对氯离子渗透的电阻.这种非稳态下的迁移系数不能直接与从其他实验方法获得的氯化物的扩散系数相比较,例如非稳态下的浸渍实验或者稳态下的迁移实验. 3.参考文献 ① NT BUILD 201,“Concrete:Making and curing of moulded test specimens for strength tests”,2nd ed.,Approved 1984-05. ②NT BUILD 202,“Concrete,hardened:Sampling and treatment of cores for strength tests”,2nd ed.,Approved 1984-05. ③NT BUILD 208,“Concrete,hardened:Chloride content”,2nd ed.,Approved 1984-05. ④Tang,L and Soensen,H.E.,“Evaluation of the Rapid Test Methods for Chloride Difficient of Concrete,NORDTEST Project No.1388-98”,SP Report 1998:42,SP Swedish National Testing and Research Institute,Boras,Sweden,1998. 4.定义 迁移:离子在外加电场作用下的运动. 扩散:分子或离子在浓度梯度的作用下的一种运动,确切的说是化学电势,即从一个高的浓度区到一个底的浓度区. 5.取样 该实验方法需要直径为100mm、厚度为50mm的圆柱形试样,该试样可以从成型的圆柱试件上或至少为100mm的芯样上切割得到.该圆柱形或芯样应该各自满足在NT BUILD 201和NT BUILD 202中所描述的条件.在实验中需要三个试件. 6.实验方法 6.1原理 在试件的轴向上利用外部的电势能迫使试件外部的氯离子向试件内部迁移。经过一段时间后,将该试件沿轴向方向劈裂,在新劈开的断面上喷射硝酸银溶液,从生成的可见的白

混凝土力学性能检测

混凝土力学性能检测 单项选择题(共4 题) 1、千分表的精度不低于()mm (B) ?A,0.01 ?B,0.001 ?C,0.0001 ?D,0.1 答题结果: 正确答案:B 2、加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后 的()s内记录两侧变形量测仪的读数ε左0,ε右0。 (B) ?A,20 ?B,30 ?C,40 ?D,60 答题结果: 正确答案:B 3、由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约 30s (A) ?A,0.15~0.25 ?B,0.15~0.30 ?C,0.15~0.35 ?D,0.25~0.35 答题结果: 正确答案:A

4、结果计算精确至()MPa。 (D) ?A,0.1 ?B,1 ?C,10 ?D,100 答题结果: 正确答案:D 多项选择题(共2 题) 1、下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 (BCD) ?A,试验应在23℃±2℃条件下进行 ?B,每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 ?C,在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 ?D,结果计算精确至100MPa。 ?E,将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答题结果: 正确答案:BCD 2、下面关于抗压弹性模量试验说法正确的是哪几个选项 (BC) ?A,试验应在23℃±2℃条件下进行 ?B,水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 ?C,在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 ?D,结果计算精确至100MPa。

混凝土氯离子扩散系数和电通量测定仪操作规程

设备编号: TE-84-DL 页 数:2 (一)使用前准备工作 1、 在使用前必须认真阅读使用说明书,在熟练掌握操作方法后方可进 行操作。使用前应检查电源线、电源电压是否稳定牢固,如发现故 障应立即停止使用,通知维修人员并做好检修记录。开机前检查有 机硅橡胶套和有机玻璃槽内注入的溶液以及导线与主机连线是否正 确,正极与正极连接,负极与负极连接。非试验室检验人员禁止操 作。试验时,试件周围的环境温度应保持在20~25℃内进行。 (二)操作方法: 1、 试件的准备。 2、 取出经过预处理的混凝土试件,装入有机硅橡胶套内,并灌入蒸馏 水或去离子水检验是否密封完好,然后倒掉,在阳极有机硅橡胶套 内注入0.3mol/L 的NaOH 溶液300ml ,阴极有机玻璃槽内注入10% 的NaCl 溶液10L (电通量试验时注入3%的NaCl 溶液)。 3、 分别连接各通道导线、温度传感器等,连接主机与电脑后开机即可 进行试验。 4、 如采用“连接电脑和软件”的方法进行试验。试验前,用户可设定 组数、各组(每组3块)试件编号及试件直径。试件开始后,软件 自动显示,存储、分析计算和打印报告。 5、 试验结束后,关闭所有开关,将有机硅橡胶套内的试件取出后沿轴 向劈成两半,在新劈裂面上喷0.1M 的硝酸银溶液,测量每个不同测 点的渗透深度值。输入电脑计算氯离子扩散系数。 (三)保养程序 1. 仪器使用时,应保持环境温度在20℃±5℃,相对湿度小于80%条件 下,仪器存放温度保持在0~40℃,相对湿度小于60% 2. 仪器存放在防尘、防潮、防晒、防淋的环境中。。 (四)安全程序 1. 劳动保护用品应穿戴齐全。穿绝缘鞋戴绝缘手套。 2. 在通电的情况下,连接线的正负极严禁直接接触。 CABR-RCMP6混凝土氯离子扩散系数和电通量测定仪操作规程

公路水运试验检测继续教育--混凝土力学性能检测-自测-答案资料

第1题 千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s 并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注:

第4题 结果计算精确至()MPa。 A.0.1 B.1 C.10 D.100 答案:D 您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压

高性能混凝土

研究生课程论文 学院土木工程专业建筑与土木工程课程名称高性能混凝土 研究生姓名 ****** 学号 ************ 开课时 ****** 至 ** 学年第 ** 学期

说明 一、研究生课程论文必须与本封面一起装订。阅卷教师务必用红笔批阅,并在本封面规定位置打分、写完评语后连同成绩登记表(一式两份)交学院研究生秘书,各学院研究生秘书在第二学期开学后两周内将成绩登记表交研究生学院。论文由开课学院研究生办公室保管。 二、该封面请用A4纸双面打印,将此说明打印于封面背面。

高性能混凝土的发展及其应用 ***(*******) 湖南科技大学土木工程学院,***** 摘要:本文阐述了高性能混凝土的发展现状及最新研究成果,讨论了高性能混凝土的定义,对其优异特性进行了较为详尽的分析"在总结了高性能混凝土成分设计的基础上,提出了一些需要关注的意见和建议。最后,列举了近三十年来高性能混凝土在国内外路桥建设中的应用实例!从中可知高性能混凝土已经成为路桥工程建设中最为重要的结构材料之一。 关键字:高性能混凝土;性能;成分设计;路桥建设 1高性能混凝土的定义 关于高性能混凝土的研究最早是由挪威学者在1986年提出的:掺入挪威盛产的硅灰,能大大提高混凝土的强度"抗渗性、抗氯离子扩散性、从而提高混凝土的耐久性。而高性能混凝这个概念则是在1990年5月由美国混凝土协会( (ACI)正式提出。高性能混凝土指的是具有高耐久性、高强度性、优良工作性、高体积稳定性的混凝土材料。各国学者对高性能混凝土的研究有着自己的侧重点。美国学者更强调耐久性和尺寸稳定性,而日本学者偏重高工作性。我国大多数研究者比较赞同冯乃谦、吴中伟等提出的观点: 高性能混凝土应具备高耐久性,要在高强度基础上与使用环境结合考虑;此外,良好流动性也必不可少。当然,在实际研究与应用中,需要综合考量各方面因素,对高性能混凝土中的某些性能酌情偏重。 2高性能混凝土的特性 Neville等认为高性能混凝土在成分上与一般混凝土有较大的区别(首先,高性能混凝土通常含有硅灰+粉煤灰或磨细高炉矿渣等活性矿物掺合料;其次,骨料的粒径要小于普通混凝土,再者,必须使用新型高效减水剂"在合理控制配合参数和施工工艺后,高性能混凝土能表现出以下一些特性。 2.1工作性 高性能混凝土具有优良的工作性能,包括高流动性、高聚性、可浇注性等、塑性

相关主题
文本预览
相关文档 最新文档