当前位置:文档之家› 优化设计方法的发展与应用情况

优化设计方法的发展与应用情况

优化设计方法的发展与应用情况
优化设计方法的发展与应用情况

优化设计方法的发展与应用情况

贾瑞芬张翔

(福建农林大学 机电工程学院, 福建 福州 350002)

摘 要:本文概要地介绍了优化设计方法在国内近年的应用和发展情况,包括传统优化方法、现代优化方法,以及优化软件的应用和发展情况。 

关键词:优化 遗传算法 神经网络 MATLAB

优化方法是20世纪60年代随着计算机的应用而迅速发展起来的,较早应用于机械工程等领域的设计。80年代以来,随着国内有关介绍优化设计方法的专著(如《机械优化设计》[1])的出版和计算机应用的普及,优化设计方法在国内的工程界得到了迅速的推广。本文按传统优化方法、现代优化方法、优化软件应用等三个方面,概要地介绍优化设计方法近年来在国内工程界的应用和发展情况。

1. 传统优化方法的应用与改进情况 

1.1传统优化方法的应用 

从近10年发表的工程优化设计的论文可以看出,罚函数法、复合形法、约束变尺度法、随机方向法、简约梯度法、可行方向法等,都有较为广泛的应用。对重庆维普信息数据库中的工程技术类刊物做检索,1993年至2003年,这6种约束优化方法应用的文献检出率的比例,依次约为12:10:3:1.5:1.5。

以机械设计为例,传统优化方法主要应用于机构和机械零部件的优化设计,主要对零件或机构的性能、形状和结构进行优化。在结构方面,如对升降天线杆的结构优化设计[2],采用内点罚函数法优化,在保证天线杆具有足够的刚度和压弯组合强度的前提下所设计出的结构尺寸比按一般的常规设计方法所计算的尺寸要小,自重更轻。在形状方面,赵新海等[3]对一典型的轴对称H型锻件的毛坯形状进行了优化设计,取得了明显的效果。在性能方面,《凸轮一连杆组合机构的优化设计》[4]一文以最大压力角为最小做为优化目标、并采用坐标轮换法和黄金分割法等优化方法对书本打包机中的推书机构(凸纶—连杆组合机构)进行优化设计,从而使得机构确保运动的平衡性的前提下具有良好的传力性能,使设计结果更加合理。《弹性连杆机构结构和噪声控制一体化设计》[37]一文,利用改进的约束变尺度法,求解基于噪声控制的弹性连杆机构结构控制同步优化问题,同步优化后机构的声辐射性能指标具有明显改善。由以上的例子可以看出,因此,传统优化方法仍然具有不可忽视的作用。 

将优化技术与可靠性理论相结合,形成了可靠性优化设计法。按照可靠性优化设计法设计的产品,既能定量地回答产品在运行中的可靠性,又能使产品的功能参数获得优化解,两种方法相辅相成,是一种非常具有工程实用价值的设计方法。如采用惩罚函数内点法求解齿轮传动的可靠性优化设计的数学模型[5],以及运用二阶矩法和约束随机方向法对钢板弹簧进行可靠性优化设计[6]。

1.2传统优化方法的一些改进 

目前,随着工程问题的日益扩大,优化要面对的问题的规模和复杂程度在逐渐增大,传统的优化方法解决这些问题时,就显露出了其局限性与缺陷。于是就出现了在分析现有算法的基础上,针对方法的不足或应用问题而作出的改进。 

1.2.1对传统优化方法应用于离散变量优化的改进

工程设计问题中,经常遇到设计变量必须符合本行业的设计规范和标谁,只能取为限定的离散值或整数值的情况。若应用连续变量优化方法.得到最优解后再作简单的圆整处理,可能造成设计上的不可行解,或得到一个非最优解。为此适用于变量取离散值的优化方法发展起来。朱浩鹏等[7]提出了改进的动态圆整法、拉格朗日松弛法。

惩罚函数优化方法是一种常用的求解约束非线性问题的方法,但它仅限于求解连续变量的优化问题。

文章《改进的惩罚函数优化法》[8],对含离散变量的工程问题,构造了一个离散性惩罚项,得到的优化结果是离散值,不需要圆整便可直接应用于工程设计中。何燕将改进的惩罚函数优化法应用于机械的优化设计中[9],将整个优化过程分为连续变量惩罚函数法的初始优化、带离散变量的惩罚函数法优化和网格法检验三步

进行,消除了优化变量初始值对优化结果的影响,使优化结果更为准确、合理。

1.2.2对传统优化方法在求解非线性约束问题时的改进

针对多维非线性有约束问题,《进退法在多维非线性有约束优化问题中的应用》[10]一文,考虑了搜索方向和约束条件,提出了改进的进退法来确定搜索区间。由于本方法不需要对目标函数进行求导,因而它更加适合于多约束维非线性优化问题。在《内点罚函数法调用PoweII法求优时的1个注》[11]一文中,分析了内点罚函数法调用Powell法求优时,涉及到一个X3=2X n-X0的计算。因无法确保X3落在可行域内,而一旦X3落在可行域之外,将影响搜索速度或计算的收敛,甚至会引起算法错误导致计算半途终止。文中依据Powell 法的判据原理,对其应用于内点罚函数法求优时进行了改进,对所进行的比较算例进行统计,用改进后的方法计算,调用目标函数次数下降了32.3%,罚函数构造轮次(罚因子r的递减次数)减少了18.2%。

针对约束坐标轮换法收敛速度较慢,可靠性差的缺点,《对求解约束优化问题中的变量轮换法的改进》[12]在利用约束变量轮换法优点的基础上,建立了一个新的搜索方向,迭代过程类似于约束变量轮换法,并使约束变量轮换法的效能得到加强。

《对优化设计复合形法的改进》[13]一文中,针对一些文献介绍的现行复合形法在快速构造初始复合形,有效进行一维搜索,合理构造新复合形等方面存在不足之处,进行了改进,使计算机程序比较简短,使用操作方便,计算效率比现行复合形法有所提高,适用于求解中、小型约束优化设计问题。同样,在《对优化设计随机方向法的改进》[14]中,对约束随机方向法也进行了改进,提高了计算效率。

2.现代优化方法的发展及应用

随着优化要面对的问题规模和复杂程度的逐渐增大,以及传统优化方法易出现局部最优解等的局限性,设计工作者吸取其他学科的知识,产生了新的思路,提出了新的算法,如神经网络算法,遗传算法等。2.1模糊优化的发展 

近十年来,模糊优化设计在模糊数学基础上发展起来,并具有较广的前景。

由于事物差异之间的中介过渡过程所带来的事物普遍存在的模糊性;由于定量的研究从物理领域进入到事理领域必然要遇到大量的模糊概念;由于研究对象的复杂化必然要涉及种种模糊因素;由于信息技术、人工智能的研究必然要考虑对模糊信息的识别和处理等。这些都必然使优化设计问题涉及种种模糊因素。过去,由于缺乏处理模糊概念的方法和手段,把许多模糊因素人为地当成是确定性的或随机性的进行处理,这样往往漏掉了真正的优化方案,甚至带来一些矛盾的结果。

求解模糊优化问题的一个基本途径,是把模糊优化问题转化为非模糊优化问题,再用普通优化方法求解。目前实现这种转化的基本方法有两个:一是最优水平截集法,二是近似模糊集合法。据所查资料显示,最优水平截集法应用较为广泛。最优水平截集法,是王光远等于1984年提出来的。其基本思想是:从既安全可靠又经济实用的要求出发,寻求一最优水平截集,也即在标志模糊性的中介过渡过程中,截取一最优的非模糊状态,把原来的模糊优化问题转化为相应的普通优化问题。于是,该普通优化问题的最优解,就是原模糊优化问题的优化方案。如《基于模糊分析的环形起重机偏轨箱形主梁的优化设计》[15]一文,以应力、稳定性等的模糊性,建立了模糊约束条件,以偏轨箱形主梁的总质量最小的优化目标,建立了该问题的模糊优化设计数学模型,采用二级模糊综合评判确定最优水平截集,用内点惩罚函数法来寻求最优解。进行模糊优化设计后,得到性能好、重量轻(一般能减轻重量15%左右)、断面尺寸合理的主梁,缩短了设计周期,提高了设计质量和经济效益。

可见在设计过程中充分考虑了各设计变量和约束条件的模糊性,将模糊分析和优化设计结合起来,可为设计提供理想的结果。使设计更加合理。

2.2神经网络的发展与应用 

对复杂系统进行动态优化设计,其目标函数很难建立,因而用传统优化方法就难以解决,人工神经网络

模型是由大量神经元互连而成的网络,具有极强的非线性映射功能,是一种描述和处理非线性关系的有力数学工具。因此,可以通过神经网络实现系统设计变量与其动态特性参数之间的映射,并利用该神经网络模型建立目标函数,从而使一个复杂的动态优化问题转化为一个相当简单的优化问题,这样就可以利用数学规划法自动实现动态优化设计。

人工神经网络用于优化设计多为BP神经网络和Hopfield网络,其中应用最为广泛的是BP神经网络。《Hopfield网络在优化计算中的应用》[19]一文,总结了Hopfield网络应用于优化计算的一般步骤和方法、并通过两个应用实例:TSP问题(旅行商问题)和系统参效辨识问题,对应用Hopfield网络求解优化问题的关键步骤及应用方法进行了详细分析和说明。吴俊飞等利用BP神经网络的高度非线性映射能力,建立了变厚齿轮R V减速器设计变量与其动态参数之间的映射关系,解决了动态优化设计中目标函数难以建立的难题,使复杂的动态优化问题转化为一个简单的普通优化问题,为在系统设计阶段就能够得到具有良好动态特性的结构方案提供了一种新途径[16]。

为提高BP神经网络的收敛速度,曾喆昭等在基于BP神经网络的基础上,针对BP算法收敛速度慢,提出了正弦基函数神经网络算法[17],用于希尔伯特变换器的优化设计,证明了该神经网络算法的收敛性。许琦提出了利用传统的优化设计方法—梯度法,为BP神经网络的学习提供足够样本集,通过正向传播和误差反向传播建立BP神经网络的拓扑结构,实现了将BP神经网络应用于机械优化设计中,提高了优化的收敛速度[18]。何德林等提出了复合神经网络[20],能综合利用数学知识和规则知识解决设计问题。

2.3遗传算法的发展与应用 

遗传算法(Genetic Algorithm 简称GA)是新近发展起来的一种模拟生命进化机制的搜索和优化方法,是把自然遗传学和计算机科学结合起来的优化方法。它是根据生物界中基因的遗传变异及达尔文的自然选择和适者生存原理对问题进行随机的进化操作,逐步迭代寻求问题最优解的方法。1975年,HoIland提出了GA的概念和方法。因为GA有很强的解决问题的能力和广泛的适应性,因而近年来渗透到研究与工程的各个领域,取得良好的效果。

与传统搜索方向不同的是GA不是对具体参数的搜索空间的一个解进行评估,而是对整个搜索空间的大量可行解同时并行搜索,这样就克服了传统方法(如反向传播算法)可能陷入收敛于局部最优的困境。GA采用对一组可行解的搜索从某种意义上来说可以理解成对多维参数空间的并行搜索。问题解可编制成一种编码串,大量的串群组成一代种群,该种群覆盖了整个解空间,初代的赋值是随机的,在进化过程中,由于采用的策略是适者生存的方针,因此,下一代比上一代总是更接近最优解。

遗传算法的优点随着计算机技术的高速发展,其应用前景更加广阔。目前主要的应用领域有复杂函数的优化求解、结构优化设计,系统控制,自适应控制,供气、供电系统的优化设计等。

遗传算法用于复杂函数的优化求解,如《可调节型函数生成机构的优化综合》[22],对高非线性的多峰函数、不可微的函数,用许多需初始值的优化综合法所得到的函数生成机构仅仅为局部最优,用遗传算法就可以获得全局最优解。遗传算法用于结构优化设计,如《遗传算法在离散变量结构优化设计中的应用》[23],研究了适于离散变量结构优化设计的遗传算法,探讨了离散变量结构优化问题的基因表达模式,提出了一种减小基因搜索范围的子空间构造方法,该算法可处理受应力、位移约束的结构优化问题。郭孔辉等将遗传算法用于人—车—路闭环系统综合评价[24],针对人一车一路闭环系统综合评价方程的复杂性,提出一种快速的优化算法即组合遗传算法,该方法结合了遗传算法、进化策略和模拟退火算法的优点,利用该思想编制的程序能够很快地得到满意的结果,并又为高自由度的人一车一路闭环系统模型的综合评价提供了方法。

遗传算法随着应用而发展,出现了许多改进的算法以及混合算法。不少设计者根据所研究的问题,对遗传算法作了一些改进,或与其他算法相结合,提出混合遗传算法,提高了执行效率,使计算更有效。例如熊雪峰等用惩罚函数、实值编码策略和联赛选择机制对标准遗传算法进行了改进[25],使得改进后的遗传算法在机械优化设计中有了一定的实用价值。杨建国等将生物免疫算法与遗传算法相结合,提出了一种基于免疫遗传机理的优化计算模型,避免了遗传算法易出现早熟、搜索效率低及不能很好保持个体多样性等问题[26]。

现代优化方法目前应用的十分活跃,应用领域广泛,所检索的资料显示,其具有很大的优越性和良好的应用前景。

3.MATLAB的应用及国内优化软件情况 

现代计算机技术的快速发展和普及,促进了数值计算寻优方法的发展和广泛应用,目前大多数优化设计工作者,是应用自行编制的优化方法的计算机高级语言程序,进行求解计算的。这种方法较为繁杂、费时,显得不够方便、简捷。另外,若没有对程序进行较全面的测试,程序的质量、可靠性也难以保证,而且对不同的优化问题要运用不同的程序才有可能获取最优解,有时还可能要经过不同方法的对比计算才能得到最优解。因此,自编制进行优化设计对设计人员的要求较高,这也从一个方面限制了优化设计的推广。基于此,就出现了优化设计的软件的研制。

3.1 MATLAB的应用情况 

MATLAB(MATrix LABoratory)[34,35]是功能十分强大的工程计算及数值分析软件。80年代中期,Mathworks 公司将MATLAB投向市场。90年代又逐步拓展其数值计算、符号解析运算、文字处理、图形功能等等,并采用面向对象的超高级语言作为用户界面,使MATLAB成为一个多领域、多学科、多功能的优秀科技应用软件,占居了数值型软件市场的主导地位。

利用MATLAB的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。为工程优化设计,提供了更方便、快捷的途径。运用此工具箱进行优化求解时,要先对优化问题进行分析,建立优化数学模型,定义目标函数,对于约束优化问题,要同时定义出其约束条件,列出约束函数。然后利用文件编辑器编写一个能返回函数值的M文件,即把函数表达式写入MATLAB系统中,再在命令窗口调用优化程序,就能得到优化解。陈满意等用MATLAB优化工具箱解决齿轮减速器的参数优化问题[31],并与外点罚函数法并调用Powell 优化求解的结果比较,结果接近。但也有不少学者指出(如文献[38]) “只要目标函数和约束条件稍微复杂一点,这些数值软件(指MATLAB和LINGO)都求不出最优解”。因此,在求解工程复杂优化问题或大型优化问题时,通用型数值软件,尚有一定的局限性。

3.2 国内优化软件情况

3.2.1专用软件

目前国内的优化软件虽然不少,但大多为某一领域的设计者针对设计对象而开发的,为某领域或某设备专用的软件。它们往往根据设计者的经验而作出来的。如干式变压器电磁优化设计软件[27];航空发动机转子动力优化设计软件[28],采用模糊数学中的正态分布约隶属函数的加权之和,对多阶临界转速相对于多个常用工作转速的分布状态进行了描述,并由此构造了目标函数,按照设计规范的要求选定性能约束,从而成功地建立了航空发动机转子动力学优化数学模型,在W indows98/NT平台上开发了航空发动机转子动力学优化设计软件工具。该工具可以实现多转子系统的转子动力学优化设计和整体转子的有限元变形与应力分析。以航空发动机转子为实例,验证了转子动力学优化设计软件工具在航空发动机优化设计中的;《通用结构优化设计系统的研究与实现》[29]是专用于结构优化的,实现了杆、板、壳、梁单元的组合结构的优化设计。计算机辅助材料的优化设计软件[30]应用于材料的研究与开发,基于模式识别判别分析、人工神经网络、分类图和遗传算法,适用于材料研究的多元非线性建模和优化。这样专用的软件对所研究的领域是很有效的,并且随着优化的发展而越来越多。

3.2.2 在线优化软件

随着优化算法的发展,近几年一些算法开始被应用于工业过程的在线优化。但这些通用算法成功应用的前题,在于要有一个良好的描述过程系统的模型。对于某些复杂的过程系统而言,由于包括的设备多、工艺流程复杂、工作物料品种多、描述系统的参变量多、再加上对象机理不甚清楚,或者物性参数难以获得,给建立系统的机理模型带来了很大的困难。在这种情况下,唯一切实可行的就是利用实际生产过程的输入输出数据,用合适的算法建立过程的辨识模型。神经网络强有力的学习能力和非线性特性,使之非常适合应用于工业过程,它可以有效地对过程系统的输入输出数据进行辨识,建立起符合实际生产状况的辨识模型。张帆等将神经网络运用于在线优化软件,成功开发了NEUMAX在线优化软件包[32]。陈霁威等将神经网络和遗传算法的运用于在线优化,设计并实现了基于神经网络和遗传算法的在线优化软件包,并将该软件成功应用于甲醇合成的在线操作优化中[33]。

参考文献

1..陈立周等机械优化设计上海科学技术出版社,1982

1.王为,魏兵,王劲青,魏春梅升降天线杆的结构优化设计湖北工学院学报 2002年6月

2.赵新海,赵国群,王广春,王同海锻造毛坯形状优化设计的研究锻压技术 2002年第2期

3.朱江凸轮一连杆组合机构的优化设计机械 2002年第2 期

4.孙淑霞,田芳,顾宏民齿轮传动的可靠性优化设计机械设计与制造 2001年第5期

5.张义民,贺向东,闻邦椿车辆用钢板弹簧的可靠性优化设计工程设计 2002 年3月

6.朱浩鹏,李为吉,唐继武结构设计中离散优化方法的改进及应用机械科学与技术 1998年11月

7.何燕,翟甲昌,陶元方改进的惩罚函数优化法机械 2001年第3期

8.何燕利用改进的离散变量惩罚函数法实现机械优化设计青岛化工学院学报 2000年6月

10.史清录等,进退法在多维非线性有约束优化问题中的应用太原重型机械学院学报 2001年9月

11.张翔,陈建能内点罚函数法调用PoweII法求优时的1个注福建农业大学学报 2000年第29卷

12. 谢桂兰对求解约束优化问题中的变量轮换法的改进 机械 2001年第1期 

13. 欧阳克诚对优化设计复合形法的改进武汉冶金科技大学学报 1997年12月

14.欧阳克诚对优化设计随机方向法的改进机械设计 1998年第2期

15.曾庆生等,基于模糊分析的环形起重机偏轨箱形主梁的优化设计机械设计与制造 2002年第1期

16.吴俊飞等,基于神经网络的变厚齿轮RV减速器动态优化设计中国机械工程第12卷第9期2001年9月17.曾喆昭,李仁发希尔伯特变换器优化设计研究系统工程学报第l 7卷第3期

18.许琦,李永生,戴学成梯度法与BP神经网络的结合在机械优化设计中的应用机械设计与制造工程 2002年3月第31卷第2期

19.郭鹏,韩璞 Hopfield网络在优化计算中的应用计算机仿真 2002年5月

20.何德林,王耕耘,李志刚复合神经网络及其在设计中的应用中国机械工程2002年6月

21.云夏庆等遗传算法和遗传规划北京:冶金工业出版社 1997年4月

22.邹慧君等,可调节型函数生成机构的优化综合中国机械工程第13卷第11期2002年6月上半月

23.陈新度等,遗传算法在离散变量结构优化设计中的应用华中理工大学学报 1997年8月

24.郭孔辉陈明岚宗长富组合遗传算法在人一车一路闭环系统综合评价优化设计上的应用中国机械工程第12卷第7期2001年7月

25.熊雪峰张平李春明孙骊改进遗传算法在机械优化设计中的应用研究机械设计与制造 2001年6月26.杨建国,李蓓智,俞蕾基于免疫遗传算法的优化设计机械设计2002年9月

27.陈秀菊,王小恩,陈世省干式变压器电磁优化设计软件变压器 2002年4月

28.马枚等,航空发动机转子动力优化设计软件工具研究北京航空航天大学学报 2002年4月

29.杜群贵,迟永滨通用结构优化设计系统的研究与实现机械 2001年28卷第6期

30.苏航,董生智,李卫计算机辅助材料的优化设计软件MARs 磁性材料及器件 2001年6 月

31.陈满意, 陈定方基于Matlab的齿轮减速器的可靠性优化设计机械传动第26卷第3期

32.张帆等,基于神经网络的在线优化软件的设计与实现机电工程第17卷第2期,2000年

33.陈霁威等,基于神经网络和遗传算法的在线优化软件设计与实现华东理工大学学报 2002年8月

34.苏金明,阮沈勇 MATLAB6.1实用指南北京:电子工业出版社 2002年

35.Stephen J. Chapman MATLAB Programming for Engineers (2nd Edition) Brooks November 2001

36.张翔优化设计方法及编程北京:中国农业大学出版社 2001年7月

37. 卢剑伟等弹性连杆机构结构和噪声控制一体化设计北京:机械工程学报第39卷第3期 2003年3月

38 栗塔山最优化计算原理与算法程序设计国防科技出版社 2000年

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

优化设计方法的发展与应用情况

优化设计方法的发展与应用情况 贾瑞芬张翔 (福建农林大学 机电工程学院, 福建 福州 350002) 摘 要:本文概要地介绍了优化设计方法在国内近年的应用和发展情况,包括传统优化方法、现代优化方法,以及优化软件的应用和发展情况。  关键词:优化 遗传算法 神经网络 MATLAB 优化方法是20世纪60年代随着计算机的应用而迅速发展起来的,较早应用于机械工程等领域的设计。80年代以来,随着国内有关介绍优化设计方法的专著(如《机械优化设计》[1])的出版和计算机应用的普及,优化设计方法在国内的工程界得到了迅速的推广。本文按传统优化方法、现代优化方法、优化软件应用等三个方面,概要地介绍优化设计方法近年来在国内工程界的应用和发展情况。 1. 传统优化方法的应用与改进情况  1.1传统优化方法的应用  从近10年发表的工程优化设计的论文可以看出,罚函数法、复合形法、约束变尺度法、随机方向法、简约梯度法、可行方向法等,都有较为广泛的应用。对重庆维普信息数据库中的工程技术类刊物做检索,1993年至2003年,这6种约束优化方法应用的文献检出率的比例,依次约为12:10:3:1.5:1.5。 以机械设计为例,传统优化方法主要应用于机构和机械零部件的优化设计,主要对零件或机构的性能、形状和结构进行优化。在结构方面,如对升降天线杆的结构优化设计[2],采用内点罚函数法优化,在保证天线杆具有足够的刚度和压弯组合强度的前提下所设计出的结构尺寸比按一般的常规设计方法所计算的尺寸要小,自重更轻。在形状方面,赵新海等[3]对一典型的轴对称H型锻件的毛坯形状进行了优化设计,取得了明显的效果。在性能方面,《凸轮一连杆组合机构的优化设计》[4]一文以最大压力角为最小做为优化目标、并采用坐标轮换法和黄金分割法等优化方法对书本打包机中的推书机构(凸纶—连杆组合机构)进行优化设计,从而使得机构确保运动的平衡性的前提下具有良好的传力性能,使设计结果更加合理。《弹性连杆机构结构和噪声控制一体化设计》[37]一文,利用改进的约束变尺度法,求解基于噪声控制的弹性连杆机构结构控制同步优化问题,同步优化后机构的声辐射性能指标具有明显改善。由以上的例子可以看出,因此,传统优化方法仍然具有不可忽视的作用。  将优化技术与可靠性理论相结合,形成了可靠性优化设计法。按照可靠性优化设计法设计的产品,既能定量地回答产品在运行中的可靠性,又能使产品的功能参数获得优化解,两种方法相辅相成,是一种非常具有工程实用价值的设计方法。如采用惩罚函数内点法求解齿轮传动的可靠性优化设计的数学模型[5],以及运用二阶矩法和约束随机方向法对钢板弹簧进行可靠性优化设计[6]。 1.2传统优化方法的一些改进  目前,随着工程问题的日益扩大,优化要面对的问题的规模和复杂程度在逐渐增大,传统的优化方法解决这些问题时,就显露出了其局限性与缺陷。于是就出现了在分析现有算法的基础上,针对方法的不足或应用问题而作出的改进。  1.2.1对传统优化方法应用于离散变量优化的改进 工程设计问题中,经常遇到设计变量必须符合本行业的设计规范和标谁,只能取为限定的离散值或整数值的情况。若应用连续变量优化方法.得到最优解后再作简单的圆整处理,可能造成设计上的不可行解,或得到一个非最优解。为此适用于变量取离散值的优化方法发展起来。朱浩鹏等[7]提出了改进的动态圆整法、拉格朗日松弛法。 惩罚函数优化方法是一种常用的求解约束非线性问题的方法,但它仅限于求解连续变量的优化问题。

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

机械优化设计——复合形方法及源程序

机械优化设计——复合形方法及源程序 (一) 题目:用复合形法求约束优化问题 ()()()2221645min -+-=x x x f ;0642 2211≤--=x x g ;01013≤-=x g 的最优解。 基本思路:在可行域中构造一个具有K 个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。 (二) 复合形法的计算步骤 1)选择复合形的顶点数k ,一般取n k n 21≤≤+,在可行域内构成具有k 个顶点的初始复合形。 2)计算复合形个顶点的目标函数值,比较其大小,找出最好点x L 、最坏点x H 、及此坏点x G .. 3)计算除去最坏点x H 以外的(k-1)个顶点的中心x C 。判别x C 是否可行,若x C 为可行点,则转步骤4);若x C 为非可行点,则重新确定设计变量的下限和上限值,即令C L x b x a ==,,然后转步骤1),重新构造初始复合形。 4)按式()H C C R x x x x -+=α计算反射点x R,必要时改变反射系数α的值,直至反射成功,即满足式()()()()H R R j x f x f m j x g

优化设计在材料中的应用

复合材料结构稳定性约束优化设计 纤维增强复合材料结构, 以高的比强度和比刚度, 在航空航天领 域得到了广泛的应用。许多空天结构的设计, 均利用复合材料结构特殊的屈曲特性, 以达到提高稳定性和降低结构重量的目的, 如机身、航天器的承力筒、直升机地板等。复合材料具有较强的可设计性, 可通过优化铺层参数, 如层数和纤维铺设角, 提高结构的临界屈曲载荷, 在满足稳定性要求的前提下减轻结构重量。有关复合材料结构稳定性优化以及稳定性约束优化的研究不断发展, 如文献[ 1] 研究了层合板临界屈曲载荷的优化方法及灵敏度分析方法, 文献[ 2] 通过引入层合板刚度矩阵求解过程的中间变量,对屈曲载荷进行了优化; 近年来遗传算法也逐渐被应用于该问题, 扩大了研究对象的结构形式范围,提高了优化设计的效率。但是, 多数复合材料稳定性方面的优化工作采用的是确定性的优化设计方法, 即不考虑材料及载荷的不确定性, 得到的优化结果濒临失效边界, 难以满足结构的可靠性要求。纤维增强复合材料, 材料性能离散度大, 工作环境复杂, 各向异性的特点使其对载荷相当敏感。20 世纪90 年代, 设计者们逐渐意识到不确定性因素给复合材料结构带来的影响[ 3], 因此复合材料结构的可靠性优化设计越来越多地受到工程界的重视, 并开展了相关研究。文献[ 4, 5] 基于层合板临界屈曲载荷的解析表达式, 构建极限状态方程, 计算结构的失效概率。但是, 工程实际中的结构通常需要使用有限元等方法进行结构分析, 缺少显式的极限状态函数, 造成可靠度计算困难。对此, 一些学者提出了结构可靠性分析的响应面 法, 使 可靠度计算得以简化,并且一般能够满足工程精度

优化设计技术

机械优化设计 摘要 机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案。作为一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题。优化设计为工程设计提供了一种重要的科学设计方法。因而采用这种设计方法能大大提高设计效率和设计质量。本文论述了优化设计方法的发展背景、流程,并对无约束优化及约束优化不同优化设计方法的发展情况、原理、具体方法、特点及应用范围进行了叙述。另外,选择合适的优化设计方法是解决某个具体优化设计问题的前提,而对优化设计方法进行分析、比较和评判是其关键,本文分析了优化方法的选取原则。之后对并对近年来出现的随机方向法、遗传算法、蚁群算法和模拟退火算法等新兴优化方法分别进行了介绍。本文以交通领域中建立最优交通网路为例说明了优化设计方法的应用特点。 关键词:机械优化设计;约束;特点;选取原则

目录 第一章引言 (1) 1.1优化设计的背景 (1) 1.2机械优化设计的特点 (2) 1.3优化设计的模型 (3) 1.4优化设计的流程 (4) 第二章优化设计方法的分类 (6) 2.1无约束优化设计方法 (7) 2.1.1梯度法 (7) 2.1.2牛顿型方法 (7) 2.1.3共轭梯度法 (8) 2.1.4变尺度法 (8) 2.2约束优化设计方法 (9) 2.2.1直接解法 (9) 2.2.2间接解法 (11) 2.3多目标优化方法 (13) 2.3.1主要目标法 (14) 2.3.2加权和法 (14) 第三章各类优化设计方法的特点 (15) 3.1无约束优化设计方法 (15) 3.2约束优化设计方法 (16) 3.3基因遗传算法(Genetic Algorithem,简称GA) (16) 3.4模糊优化设计方案 (17) 第四章优化方法的选择 (18) 4.1优化设计方法的评判指标 (18) 4.2优化方法的选取原则 (19) 第五章机械优化设计发展趋势 (21) 第六章 UG/PRO-E建模 (23) 参考文献 (27)

优化设计在EPC项目中的应用

优化设计在EPC项目中的应用 EPC即通常所说的工程总承包,它的优势在于打破了传统模式下设计与施工分离的局面,使设计与施工阶段的利益达成一致,为EPC承包商通过优化设计实现利润空间拓展提供了可能。本文就EPC项目设计阶段如何通过优化设计来控制工程造价、提高项目效益进行一些初步的探讨,希望对公司后续EPC项目的实施有所借鉴。 1优化设计对EPC项目运作的影响 1.1优化设计的概念 优化设计是指从多种方案中选择最佳方案的设计方法。对于工程优化设计,是指在满足业主功能需求及工程进度、质量、成本控制目标的前提下,通过优化设计方案的评选,确定最终用以工程施工的设计方案。 1.2优化设计在投标阶段的作用 EPC项目投标时,业主在招标文件中一般以基础设计包的形式对工程规模、结构等相关技术条件和执行规范、标准等提出详细说明,要求承包商按照上述文件完成方案图。业主为便于管理,一般都采用总价一次包干的形式进行招标,在激烈的市场竞争中投标总价往往是决定投标成败的关键因素。在受到勘察设计深度限制、没有充裕时间进行详细设计的条件下,如何从优化设计着手,提出既能满足业主功能需求又能保证工程造价最优的方案,从而编制合理、准确、详细、适用的工程量清单是投标阶段设计工作的核心,也是成功报价的第一步。 1.3优化设计在实施阶段的作用 由于EPC项目采用固定总价合同,工程一旦中标,EPC总承包商就需要按照投标阶段业主批准的投资估算进行进一步的初步设计和施工图设计。工程成本控制的主要手段包括限额设计和优化设计。限额设计是将业主批准的投资额和工程量先行分解到各专业,从而实现对设计规模、设计标准、工程数量和概算指标等方面的控制,其目标主要是防止工程造价超出业主审定的投资限额。而优化设计是对限额设计目标的深化,它在保证限额设计目标的前提下,通过可施工性分析,优化设计方案来降低成本,从而增加总承包企业的利润空间。以国内某地下室地

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

机械优化设计习题及答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:??? ?????????????=??+??= ??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。 解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在

约束优化设计

行域 φ 内,选择一个初始点 X 然后确定一个可行 得一个目标函数有所改善的可行的新点 X 即完成了 第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: s .t . min f (x ) g u (x ) ≤ 0 h v (x ) = 0 x ∈ R n u = 1, 2,..., m v = 1, 2,..., p < n 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于 这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由 m 个不等式约束条件 gu(x )≤0 所确定的可 0 搜索方向 S ,且以适当的步长沿 S 方向进行搜索,取 1 一次迭代。以新点为起始点重复上述搜索过程,每次 均按如下的基本迭代格式进行计算: X k+1=X k +α k S k (k=0,1,2,..) 逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算 不论何时终止,都可以获得比初始点好的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局 部最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集

φ(X,μ1,μ2)=F(X)+∑μ 1 G??g j X)??+∑μ2H??h k(X)?? a)可行域是凸集;b)可行域是非凸 集 间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数 结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优 化问题。 m l j=1k=1 新目标函数 然后对新目标函数进行无约束极小化计算。 加权因子 间接法是结构优化设计中广泛使用的有效方法,其特点: 1)由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和数值计算的稳定性大有提高; 2)可以有效处理具有等式约束的约束优化问题; 3)目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精度,甚至导致计算失败。

现代优化设计方法的现状和发展趋势

M ac hi neBuil di ng Auto m atio n,D ec2007,36(6):5~6,9 现代优化设计方法的现状和发展趋势 王基维1,熊伟2,李会玲1,汪振华3 (1.宁波职业技术学院,浙江宁波315800;2.湖南生物机电职业技术学院,湖南长沙410126; 3.南京理工大学,江苏南京210094) 摘要:优化设计是近年来发展起来的一门新学科,为机械设计提供了一种重要的科学设计方 法。优化设计在解决复杂设计问题时,能从众多设计方案中寻到尽可能完美或最适宜的设计 方案。对现代优化设计方法进行了概括和总结,展望了现代优化设计的发展方向和发展趋势。 关键词:优化设计;机械设计;发展趋势 中图分类号:T H122文献标识码:B文章编号:167125276(2007)0620005202 Develop ing T rend on M odern O pt im a l Design M ethods WANG J i2wei1,XI ONG W ei2,LI H u i2li ng1,WANG Zhen2hua3 (1.Ni ngbo Voca ti on Te chno l ogy C o ll e ge,N i n gbo315800,C h i na; 2.Huna n B i o l ogy Me c ha ni c a la nd E l e c tri c a lP ro f e ss i ona lTe chno l ogy C o ll ege,C ha ngsha410126,C h i na; 3.Na n ji ng Un i ve rs ity o f S c i e nc e a nd Te chno l o gy,Na n ji ng210094,C h i n a) Abstr ac t:As a new d i s c i p l i ne,o p tm i a l de s i gn p rov i de s an m i p o rtan t sc i en tifi c de s i gn m e t h od f o r e ng i nee https://www.doczj.com/doc/0711420770.html, i ng op tm i a ld es i gn, t he y can fi nd o ut a nea rl y pe rf e ct o r op tm i um des i gn s ch em e fr om l o ts o f feas i b l e ap p r o ache s.T he p ape r s um m a ri ze s t he de ve l o p i ng trend a nd d ir e cti o n o f t he m ode rn op tm i a l des i gn m e t hod s. K ey word s:op tm i a ld es i g n;m a ch i n e des i gn;de ve l o p t re nd 0引言 机械设计与制造是机械工程领域中最重要的内容,而机械设计又是机械制造的前提。优化设计(opti m a l de2 si gn)是近年来发展起来的一门新的学科,优化设计为机械设计提供了一种重要的科学设计方法,在机械设计上起着重要的作用,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案[1]。实践证明,在机械设计中采用优化设计方法,不仅可以减轻机械设备质量,降低材料消耗与制造成本,而且可以提高产品的品质和工作性能[2]。文中初步论述了机械优化设计方法的发展现状和趋势。 优化设计方法[3]是数学规划和计算机技术相结合的产物,它是一种将设计变量表示为产品性能指标、结构指标或运动参数指标的函数(称为目标函数),然后在产品规定的性态、几何和运动等其它条件的限制(称为约束条件)的范围内,寻找满足一个目标函数或多个目标函数最大或最小的设计变量组合的数学方法。优化设计方法已成为解决复杂设计问题的一种有效工具。 1优化设计方法及应用现状 优化设计的基础和核心是优化理论和算法。迄今为止,己有上百种优化方法提出,这里重点介绍以下几种优化方法[4,5]。 a)线性逼近法:线性逼近法SLP是将原非线性问题转化为一系列线性优化问题,通过求解线性优化问题得到原问题的近似解。根据形成线性优化的方法不同,可以得到不同的线性逼近法。常用的线性逼近法有近似规划法和割平面法; b)遗传算法[2,6,14]:遗传算法GA(genetic a l gorith m s)是一种基于生物自然选择与遗传机理的随机搜索算法。它是1962年首先由美国密执安大学的J.H.H olland教授提出、随后主要由他和他的一批学生发展起来的[7],并在1975年的专著中作了介绍,首先提出了以二进制串为基础的基因模式理论,用二进制位串来模拟生物群体的进化过程。进化结束时的二进制所对应的设计变量的值即为优化问题的解。GA方法的主要优点是具有很强的通用优化能力,它不需要导数信息,也不需要设计空间或函数的连续性条件,其优化搜索具有隐性并行性,可以多点同时在大空间中作快速搜索,因此有可能获得全局最优解。由于G A有着其他优化算法不可比拟的优点,因此,GA的应用非常广泛,取得大量研究应用成果。在结构优化设计方面的如离散结构的遗传形状优化设计[8]、悬臂扭转结构和梁结构的优化设计[9]、桁架和薄壁的结构优化问题[10]等。在文献[11]中对平面四杆机构的遗传优化设计进行了研究。文献[12]介绍了一个用于ZL40装载机的直齿圆锥齿轮差速器的优化设计问题,用GA中的实数编码进行优化求解,取群体大小为50,交叉率为0.2,变异率为0.5,经过120代的进化并经圆整后得到最优解。文献[15]中通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。 此外,G A还应用在函数优化、机械工程、结构优化、电工、神经网络、机器学习、自适应控制、故障诊断、系统工程调度和运输问题等诸多领域中[13]; #5 #

运用ANSYS Workbench快速优化设计

运用ANSYS Workbench快速优化设计 摘要:从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表。本文将结合实际应用介绍如何使用Pro/E和ANSYS软件在AWE环境下如何实现快速优化设计过程。 关键词:有限元分析、集成、ANSYS Workbench 1 前言 ANSYS系列软件是融合结构、热、流体、电磁、声于一体的大型通用多物理场有限元分析软件,在我国广泛应用于航空航天、船舶、汽车、土木工程、机械制造等行业。ANSYS Workbench Environment(AWE)是ANSYS公司开发的新一代前后处理环境,并且定为于一个CAE协同平台,该环境提供了与CAD软件及设计流程高度的集成性,并且新版本增加了ANSYS很多软件模块并实现了很多常用功能,使产品开发中能快速应用CAE技术进行分析,从而减少产品设计周期、提高产品附加价值。 现今,对于一个制造商,产品质量关乎声誉、产品利润关乎发展,所以优化设计在产品开发中越来越受重视,并且方法手段也越来越多。从易用性和高效性来说AWE下的DesignXplorer/VT模块为优化设计提供了一个几乎完美的方案,CAD模型需改进的设计变量可以传递到AWE环境下,并且在DesignXplorer/VT下设定好约束条件及设计目标后,可以高度自动化的实现优化设计并返回相关图表,本文将结合实际应用介绍如何使用Pro/E 和ANSYS软件在AWE环境下如何实现快速优化设计过程。 2 优化方法与CAE 在保证产品达到某些性能目标并满足一定约束条件的前提下,通过改变某些允许改变的设计变量,使产品的指标或性能达到最期望的目标,就是优化方法。例如,在保证结构刚强度满足要求的前提下,通过改变某些设计变量,使结构的重量最轻最合理,这不但使得结构耗材上得到了节省,在运输安装方面也提供了方便,降低运输成本。再如改变电器设备各发热部件的安装位置,使设备箱体内部温度峰值降到最低,是一个典型的自然对流散热问题的优化实例。在实际设计与生产中,类似这样的实例不胜枚举。 优化作为一种数学方法,通常是利用对解析函数求极值的方法来达到寻求最优值的目的。基于数值分析技术的CAE方法,显然不可能对我们的目标得到一个解析函数,CAE计算所求得的结果只是一个数值。然而,样条插值技术又使CAE中的优化成为可能,多个数值点可

机械优化设计方法概述

机械优化设计方法概述 摘要 机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案。作为一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题。优化设计为工程设计提供了一种重要的科学设计方法。因而采用这种设计方法能大大提高设计效率和设计质量。本文论述了优化设计方法的发展背景、流程,并对无约束优化及约束优化不同优化设计方法的发展情况、原理、具体方法、特点及应用范围进行了叙述。 关键词:机械优化设计;约束;特点;选取原则 Mechanical optimization design is optimized technology in the field of mechanical design and application of transplantation, its basic idea is based on mechanical design theory, methods and standards to establish a reflect problems in engineering design and meet the requirements of the mathematical programming model, and then applying the mathematical programming method and computer technology to find out the design problem of the optimal scheme of automatic. As a new subject, which is based on the theory of mathematical programming and computer program design basis, by numerical calculation, from the large number of design so as to improve or the most suitable design, so that the desired economic index optimal, it can successfully solve the analysis and other methods are difficult to deal with complex problem. Optimization design and provides an important scientific design method. So using this design method can greatly improve the design efficiency and design quality. This paper discusses the optimized design method of the background, development process, and to the unconstrained and constrained optimization of different optimal design method for the development, principle, methods, characteristics and scope of application are described. Key words: mechanical design optimization; constraint; characteristics; selection principle.

机械优化设计大作业

一、问题描述 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高 ; (2)传动效率高,工作高 ;(3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min ;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 二、分析 传动比u=4.64,输入扭矩T=1175.4N.m ,齿轮材料均选用38SiMnMo 钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02.0≤?u 。 弹性影响系数Z E =189.8MPa 1/2;载荷系数k=1.05;齿轮接触疲劳强度极限[σ]H =1250MPa ;齿轮弯曲疲劳强度极限[σ]F =1000MPa ;齿轮的齿形系数Y Fa =2.97;应力校正系数Y Sa =1.52;小齿轮齿数z 取

值范围17--25;模数m取值范围2—6。 注:优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T 三、数学建模 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z1 ˉ ̄太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d1--太阳轮1的分度圆直径,mm;d2--行星轮2的分度圆直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函 数则为:

浅谈机械优化设计方法

浅谈机械优化设计方法 发表时间:2019-08-29T14:17:25.640Z 来源:《基层建设》2019年第16期作者:钟文 [导读] 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。 深圳市海目星激光智能装备股份有限公司 518110 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。机械优化设计是近几年来发展起来的一门新的学科,在二十世纪中旬的时候开始,优化技术和计算机技术的兴起,在每个设计领域中被应用,为工程设计提供了重要的科学的设计方法。因此,对机械设计的优化方法加以分析,吸取精华,紧跟时代步伐,与国际同步,才能增强制造业在我国市场中的竞争压力。 关键词:机械;优化设计;方法特点 引言 当今是一个信息化的社会,科技发展速度非常快,人们对多功能产品不仅有强烈的需求,也需要产品必须具备相应的功能,可靠性优化设计由此应运而生,已经取得了飞速发展和广泛应用,即以时间、费用和性能为基础,将产品能得以可靠使用作为优先考虑的设计准则,进行设计和生产可靠的性能要求。因此,可靠性设计是诸多学科和技术的交融而新兴的一种技术。 1 机械优化的概述 机械优化是顺应时代发展而不断延伸出来的一种现代化的生产而发展兴起的。它是建立在数学规划的理论和计算通过有效的实验数据和科学的评价体系来从众多的设计方案中寻找到能够尽可能的完善和适宜的设计方案,在这机械优化的这个机械方面的研究和应用的发展速度都是非常的快速,并且在快速发展的过程中取得了非常显著的效果。 2 机械设计优化方法的分类及特点 2.1 无约束优化设计法 无约束优化设计是没有约束函数的优化设计。无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法;另一类是只利用目标函数值的无约束优化方法。 2.2 约束优化设计法 优化设计问题大多数是约束的优化问题,根据处理约束条件方法的不同可分为直接法和间接法。直接法常见的方法有复合形法、约束坐标轮换法和网络法等。其内涵是构造一个迭代过程,使每次的迭代点都在可行域中,同时逐步降低目标函数值,直到求得最优解。间接法常见的有惩罚函数法、增广乘子法。它是将约束优化问题转化成无约束优化问题,再通过无约束优化方法来求解,或者非线性优化问题转化成线性规划问题来处理。 2.3 遗传算法 遗传算法是一种非确定性的拟自然算法,它仿造自然界生物进化的规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。最近几年中遗传算法在机械工程领域也开展了多方面的应用,主要表现在:机械结构优化设计;可靠性分析;故障诊断;参数辨识;机械方案设计。遗传算法尽管已解决了许多难题,但还存在许多问题,如算法本身的参数优化问题、如何避免过早收敛、如何改进操作手段或引入新的操作来提高算法的效率、遗传算法与其它优化算法的结合问题等。 2.4 蚁群算法 蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法。蚁群算法对系统优化问题的数学模型没有很高的要求,只要可以显式表达即可,避免了导数等数学信息,使得优化过程更加简单,遍历性更好,适合非线性问题的求解。 2.5 模拟退火算法 模拟退火算法是一个全局最优算法,以优化问题的求解与物理系统退火过程的相似性为基础,适当的控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。模拟退火算法是一种通用的优化算法,用以求解不同的非线性问题;对不可微甚至不连续的函数优化,能以较大概率求得全局优化解;并且能处理不同类型的优化设计变量(离散的、连续的和混合型的);不需要任何的辅助信息,对目标函数和约束函数没有任何要求。 3机械优化设计过程中的设计方式 众所周知,在机械方面的设计都是非常的复杂困难的,要对机械进行优化设计面临的挑战也是非常大的,但是由于机械领域中优化形式十分的广泛,相关的研究人员根据优化运算的形式进行划分,主要分为准则优化,其次是线性规划,最后是非线性规划三种。其中准则优化是一种传统的优化方式,这种方式没有通过机械优化设计的数学理论方式进行优化,而是通过物理学方面的分析得出相应的结果,这样的方式得出的结论往往是具备一定的主观性的,但是这样的传统的优化设计方式具有的优点就是可以直观的看到优化的概念,并且这种优化设计的方式相对来说也是比较简单的,并且能够充分的发挥出目标函数的最大功效,并且非常的符合传统的工程需要,但是同样具有一定的缺点,就是在效率上始终优点偏低。 线性规划就是依据数学的基础进行优化的方式,同样线性规划是机械优化设计中最重要的设计方式,但是线性规划的优化设计方式在通过数学的理论上进行设计存在着很多的缺陷,就是在针对多函数的时候就不能充分的发挥出功效,还有就是在计算的过程中,十分的复杂,结算量非常的大,导致了在效率上有很大的缺陷,所以通常情况下,线性规则的优化设计方式都没有被采用。那么非线性规划的优化设计方式是整个生产和生活中应用最广泛的优化方式,并且能够有效的推进机械优化设计的发展,并且可以利用数学模式的计算将非线性规划分为两种,一种是没有约束的直接设计方式,就是在利用机械优化设计方案中以及存在的数据和再生的数据最为基础来进行合理的分析,进而得到最佳的效果,还有一种就是没有约束但是比较间接的方法,这种方式就是前者的方式的数学模式计算改变成了数学原理作为基础,通过利用函数的特性进行计算,从而得到最优的方式,这种方式在整个的机械优化设计中是非常重要的组成部分。 4机械设计优化方法的选择 根据优化设计问题的特点(如约束问题),选择适当的优化方法是非常关键的,因为同一个问题可以有多种方法,而有的方法可能会导致优化设计的结果不符合要求。选择优化方法有四个基本原则:效率要高、可靠性要高、采用成熟的计算程序、稳定性要好。另外选择适当的优化方法还需要个人经验,深入分析优化模型的约束条件、约束函数及目标函数,根据复杂性、准确性等条件对它们进行正确的选

相关主题
文本预览
相关文档 最新文档