当前位置:文档之家› 北邮信通院数据结构实验报告三哈夫曼编码器之欧阳光明创编

北邮信通院数据结构实验报告三哈夫曼编码器之欧阳光明创编

北邮信通院数据结构实验报告三哈夫曼编码器之欧阳光明创编
北邮信通院数据结构实验报告三哈夫曼编码器之欧阳光明创编

数据结构实验报告

欧阳光明(2021.03.07)

实验名称:实验三树——哈夫曼编/解码器

学生姓名:

班级:

班内序号:

学号:

日期: 2014年12月11日

1.实验要求

利用二叉树结构实现赫夫曼编/解码器。

基本要求:

1、初始化(Init):能够对输入的任意长度的字符串s进行统

计,统计每个字符的频度,并建立赫夫曼树

2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编

码,并将每个字符的编码输出。

3、编码(Encoding):根据编码表对输入的字符串进行编码,并

将编码后的字符串输出。

4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符

串进行译码,并输出译码结果。

5、打印(Print):以直观的方式打印赫夫曼树(选作)

6、计算输入的字符串编码前和编码后的长度,并进行分析,

讨论赫夫曼编码的压缩效果。

测试数据:

I love data Structure, I love Computer。I will try my best to study

data Structure.

提示:

1、用户界面可以设计为“菜单”方式:能够进行交互。

2、根据输入的字符串中每个字符出现的次数统计频度,对没有

出现的

字符一律不用编码。

2. 程序分析

2.1 存储结构

Huffman树

给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,其中带权路径长度最小的二叉树称为Huffman树,也叫做最优二叉树。

weight lchild rchildparent 2-1-1-1

5-1-1-1 6-1-1-1 7-1-1-1 9-1-1-1

weight lchild rchild parent

2-1-15

5-1-15

6-1-16

7-1-16

9-1-17

7017

13238

16548

2967-1

2.2关键算法分析

(1)计算出现字符的权值

利用ASCII码统计出现字符的次数,再将未出现的字符进行筛选,将出现的字符及頻数存储在数组a[]中。

void Huffman::Init()

{

int nNum[256]= {0}; //记录每一个字符出现的次数

int ch = cin.get();

int i=0;

while((ch!='\r') && (ch!='\n'))

{

nNum[ch]++; //统计字符出现的次数

str[i++] = ch; //记录原始字符串

ch = cin.get(); //读取下一个字符}

str[i]='\0';

n = 0;

for ( i=0;i<256;i++)

{

if (nNum[i]>0) //若nNum[i]==0,字符未出现

{

l[n] = (char)i;

a[n] = nNum[i];

n++;

}

}

}

时间复杂度为O(1);

(2)创建哈夫曼树:

算法过程:

Huffman树采用顺序存储---数组;

数组的前n个结点存储叶子结点,然后是分支结点,最后是根结点;

首先初始化叶子结点元素—循环实现;

以循环结构,实现分支结点的合成,合成规则按照huffman 树构成规则进行。

关键点:选择最小和次小结点合成。

void Huffman::CreateHTree()

{

HTree = new HNode [2*n-1]; //根据权重数组a[0..n-1] 初始化Huffman树

for (int j = 0; j < n; j++)

{

HTree[j].weight = a[j];

HTree[j].LChild = HTree[j].RChild = HTree[j].parent = -1;

}

int x,y;

for (int i = n; i < 2*n-1; i++) //开始建Huffman树

{

SelectMin( HTree, i, x, y); //从1~i中选出两个权值最小的结点

HTree[x].parent = HTree[y].parent = i;

HTree[i].weight = HTree[x].weight+ HTree[y].weight;

HTree[i].LChild = x;

HTree[i].RChild = y;

HTree[i].parent = -1;

}

}

时间复杂度为O(n2)

void Huffman::SelectMin( HNode *hTree,int n, int &i1, int &i2 ) {

int i;

//找一个比较值的起始值

for(i=0; i

{ if(hTree[i].parent==-1 )

{ i1=i; break; }

}

i++;

for( ; i

{ if(hTree[i].parent==-1 )

{ i2=i; break; }

}

if(hTree[i1].weight>hTree[i2].weight) //i1指向最小的

{ int j=i2; i2=i1; i1 = j; }

//开始找最小的两个

i++;

for( ; i

{ if(hTree[i].parent==-1

&& hTree[i].weight < hTree[i1].weight )

{ i2=i1; i1 = i; }

else if( hTree[i].parent==-1

&& hTree[i].weight < hTree[i2].weight)

{ i2=i; }

}

}

时间复杂度为O(n)

(3)创建编码表

算法过程:从叶子到根---自底向上

首先定义码表存储空间;

循环对n个叶子结点自底向上回溯到根,记下途径的左右关系,形成编码的逆序串;

将各个叶子结点对应的逆序串反序即可。

void Huffman::CreateCodeTable()

{

HCodeTable = new HCode[n]; //生成编码表

for (int i=0;i

{

HCodeTable[i].data = l[i];

int child = i; //孩子结点编号

int parent = HTree[i].parent; //当前结点的父结点编号

int k=0;

while(parent!=-1)

{

if (child==HTree[parent].LChild) //左孩子标‘0’

HCodeTable[i].code[k] = '0';

else

HCodeTable[i].code[k] = '1' ; //右孩子标‘1’

k++;

child = parent; //迭代

parent = HTree[child].parent;

}

HCodeTable[i].code[k] = '\0';

Reverse(HCodeTable[i].code); //将编码字符逆置

}

}

时间复杂度为O(n)

(4)生成编码串

将输入的字符串的每一个字符与编码表比较

void Huffman::Encode(char *d)//编码,d为编码后的字符串

{

char *s = str;

while(*s!='\0')

{

for (int i=0;i

if (*s == HCodeTable[i].data )

{

strcat(d, HCodeTable[i].code);

break;

}

s++;

}

}

时间复杂度为O(n)

(5)解码:

算法过程:从根到叶子---自顶向下

基于huffman树存储数组,从根结点开始,依据输入待解码串s中码字0或1,分别向左或右跟踪至叶子结点,叶子结点对应的字符(见码表),即为解码得到的字符;

只要s串为结束,重复上述过程

void Huffman::Decode(char* s, char *d) //解码,s为编码串,d为解码后的字符串

{

while(*s!='\0')

{

int parent = 2*n-2; //根结点在HTree中的下标

while (HTree[parent].LChild!=-1) //如果不是叶子结点

{

if (*s=='0')

parent = HTree[parent].LChild;

else

parent = HTree[parent].RChild;

s++;

}

*d = HCodeTable[parent].data;

d++;

}

}

时间复杂度为O(n)

2.3其他

(1)哈夫曼树的输出是以凹入表示法来实现的,具体算法如下:void Huffman::Print(int i, int m)

{

if (HTree[i].LChild == -1)

cout<

else

{

cout<

Print(HTree[i].LChild,m+1);

Print(HTree[i].RChild,m+1);

} } (2)统计字符頻数时,利用字符的ASCII 码进行计数统计,调用了cin.get()函数

3. 程序运行

程序框图:

程序源代码: #include

#include

using namespace std;

struct HNode

{

int weight; //结点权值

int parent; //双亲指针

int LChild; //左孩子指针 int RChild ; //右孩子指针

};

开始 输入要编码的字符串 统计字符頻数 生成哈夫曼树 创建编码表 生成编码串 解码

结束

struct HCode

{

char data;

char code[100];

};

class Huffman

{

private:

HNode* HTree; //Huffman树

HCode* HCodeTable; //Huffman编码表

char str[1024]; //输入的原始字符串

char l[256]; //叶子节点对应的字符

int a[256]; //记录每个出现的字符的个数

public:

int n; //叶子节点数

void Init(); //初始化

void CreateHTree(); //创建huffman树

void CreateCodeTable(); //创建编码表

void PrintTable();

void Encode(char *d); //编码

void Decode(char *s, char *d); //解码

void Print(int i,int m); //打印Huffman树

void SelectMin( HNode *hTree,int n, int &i1, int &i2);//找出最小的两个权值

void Reverse(char* s); //逆序

void Compare(char*d); //比较压缩大小

~ Huffman(); //析构

};

void Huffman::Init()

{

int nNum[256]= {0}; //记录每一个字符出现的次数

int ch = cin.get();

int i=0;

while((ch!='\r') && (ch!='\n'))

{

nNum[ch]++; //统计字符出现的次数

str[i++] = ch; //记录原始字符串

ch = cin.get(); //读取下一个字符

}

str[i]='\0';

n = 0;

for ( i=0;i<256;i++)

{

if (nNum[i]>0) //若nNum[i]==0,字符未出现

{

l[n] = (char)i;

a[n] = nNum[i];

n++;

}

}

}

void Huffman::CreateHTree()

{

HTree = new HNode [2*n-1]; //根据权重数组a[0..n-1] 初始化Huffman树

for (int j = 0; j < n; j++)

{

HTree[j].weight = a[j];

HTree[j].LChild = HTree[j].RChild = HTree[j].parent = -1;

}

int x,y;

for (int i = n; i < 2*n-1; i++) //开始建Huffman树

{

SelectMin( HTree, i, x, y); //从1~i中选出两个权值最小的结点

HTree[x].parent = HTree[y].parent = i;

HTree[i].weight = HTree[x].weight+ HTree[y].weight;

HTree[i].LChild = x;

HTree[i].RChild = y;

HTree[i].parent = -1;

}

}

void Huffman::SelectMin( HNode *hTree,int n, int &i1, int &i2 )

{

int i;

//找一个比较值的起始值

for(i=0; i

{ if(hTree[i].parent==-1 )

{ i1=i; break; }

}

i++;

for( ; i

{ if(hTree[i].parent==-1 )

{ i2=i; break; }

}

if(hTree[i1].weight>hTree[i2].weight) //i1指向最小的 { int j=i2; i2=i1; i1 = j; }

//开始找最小的两个

i++;

for( ; i

{ if(hTree[i].parent==-1

&& hTree[i].weight < hTree[i1].weight )

{ i2=i1; i1 = i; }

else if( hTree[i].parent==-1

&& hTree[i].weight < hTree[i2].weight)

{ i2=i; }

}

}

void Huffman::Print(int i, int m)

{

if (HTree[i].LChild == -1)

cout<

else

{

cout<

')<

Print(HTree[i].LChild,m+1);

Print(HTree[i].RChild,m+1);

}

}

void Huffman::CreateCodeTable()

{

HCodeTable = new HCode[n]; //生成编码表

for (int i=0;i

{

HCodeTable[i].data = l[i];

i nt child = i; //孩子结点编号

i nt parent = HTree[i].parent; //当前结点的父结点编号

i nt k=0;

w hile(parent!=-1)

{

if (child==HTree[parent].LChild) //左孩子标‘0’

HCodeTable[i].code[k] = '0';

else

HCodeTable[i].code[k] = '1' ; //右孩子

标‘1’

k++;

child = parent; //迭代

parent = HTree[child].parent;

}

HCodeTable[i].code[k] = '\0';

Reverse(HCodeTable[i].code); //将编码字符逆置

}

}

void Huffman::PrintTable()

{

for (int i=0;i

cout<

}

void Huffman::Encode(char *d)//编码,d为编码后的字符串

{

char *s = str;

while(*s!='\0')

{

for (int i=0;i

if (*s == HCodeTable[i].data )

{

strcat(d,

HCodeTable[i].code);

break;

}

s++;

}

}

void Huffman::Decode(char* s, char *d) //解码,s为编码串,d为解码后的字符串

{

while(*s!='\0')

{

int parent = 2*n-2; //根结点在HTree中的下标

while (HTree[parent].LChild!=-1) //如果不是叶子结点

{

if (*s=='0')

parent = HTree[parent].LChild;

else

数据结构实验答案1

重庆文理学院软件工程学院实验报告册 专业:_____软件工程__ _ 班级:_____软件工程2班__ _ 学号:_____201258014054 ___ 姓名:_____周贵宇___________ 课程名称:___ 数据结构 _ 指导教师:_____胡章平__________ 2013年 06 月 25 日

实验序号 1 实验名称实验一线性表基本操作实验地点S-C1303 实验日期2013年04月22日 实验内容1.编程实现在顺序存储的有序表中插入一个元素(数据类型为整型)。 2.编程实现把顺序表中从i个元素开始的k个元素删除(数据类型为整型)。 3.编程序实现将单链表的数据逆置,即将原表的数据(a1,a2….an)变成 (an,…..a2,a1)。(单链表的数据域数据类型为一结构体,包括学生的部分信息:学号,姓名,年龄) 实验过程及步骤1. #include #include #include #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define ElemType int #define MAXSIZE 100 /*此处的宏定义常量表示线性表可能达到的最大长度*/ typedef struct

{ ElemType elem[MAXSIZE]; /*线性表占用的数组空间*/ int last; /*记录线性表中最后一个元素在数组elem[ ]中的位置(下标值),空表置为-1*/ }SeqList; #include "common.h" #include "seqlist.h" void px(SeqList *A,int j); void main() { SeqList *l; int p,q,r; int i; l=(SeqList*)malloc(sizeof(SeqList)); printf("请输入线性表的长度:"); scanf("%d",&r); l->last = r-1; printf("请输入线性表的各元素值:\n"); for(i=0; i<=l->last; i++) { scanf("%d",&l->elem[i]); } px(l,i); printf("请输入要插入的值:\n");

北邮信通院数据结构实验报告三哈夫曼编码器之欧阳光明创编

数据结构实验报告 欧阳光明(2021.03.07) 实验名称:实验三树——哈夫曼编/解码器 学生姓名: 班级: 班内序号: 学号: 日期: 2014年12月11日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统 计,统计每个字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编 码,并将每个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并 将编码后的字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符 串进行译码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析, 讨论赫夫曼编码的压缩效果。 测试数据: I love data Structure, I love Computer。I will try my best to study

data Structure. 提示: 1、用户界面可以设计为“菜单”方式:能够进行交互。 2、根据输入的字符串中每个字符出现的次数统计频度,对没有 出现的 字符一律不用编码。 2. 程序分析 2.1 存储结构 Huffman树 给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,其中带权路径长度最小的二叉树称为Huffman树,也叫做最优二叉树。

weight lchild rchildparent 2-1-1-1 5-1-1-1 6-1-1-1 7-1-1-1 9-1-1-1 weight lchild rchild parent

北京理工大学《数据结构与算法设计》实验报告实验四

《数据结构与算法设计》 实验报告 ——实验四 学院: 班级: 学号: 姓名:

一、实验目的 1. 通过实验实践、巩固线性表的相关操作; 2. 熟悉VC 环境,加强编程、调试的练习; 3. 用C 语言实现线性表的抽象数据类型,实现线性表构造、插入、取数据等基本操作; 4. 理论知识与实际问题相结合,利用上述基本操作实现三种排序并输出。 二、实验内容 从键盘输入10个数,编程实现分别用插入排序、交换排序、选择排序算法进行排序,输出排序后的序列。 三、程序设计 1、概要设计 为了实现排序的功能,需要将输入的数字放入线性表中,进行进一步的排序操作。 (1)抽象数据类型: ADT SqList{ 数据对象:D={|,1,2,,,0}i i a a ElemSet i n n ∈=≥ 数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈= 基本操作: InPut(SqList &L) 操作结果:构造一个线性表L 。 OutPut(SqList L) 初始条件:线性表L 已存在。 操作结果:按顺序在屏幕上输出L 的数据元素。 InsertSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行插入排序。 QuickSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行快速排序。 SelectSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行选择排序。 }ADT SqList ⑵主程序流程 由主程序首先调用InPut(L)函数创建顺序表,调用InsertSort(L)函数进行插入排序, 调用OutPut(L)函数显示排序结果。调用QuickSort(L)函数进行交换排序,调用OutPut(L) 函数显示排序结果。调用SelectSort(L)函数进行选择排序,调用OutPut(L)函数显示排序 结果。 ⑶模块调用关系 由主函数模块调用创建顺序表模块,排序模块与显示输出模块。

《数据结构》实验1实验报告

南京工程学院实验报告 <班级>_<学号>_<实验X>.RAR文件形式交付指导老师。 一、实验目的 1. 掌握查找的不同方法,并能用高级语言实现查找算法; 2. 熟练掌握二叉排序树的构造和查找方法。 3. 了解静态查找表及哈希表查找方法。 二、实验内容 设计一个算法读入一串整数,然后构造二叉排序树,进行查找。 三、实验步骤 1. 从空的二叉树开始,每输入一个结点数据,就建立一个新结点插入到当前已生成的二叉排序树中。 2. 在二叉排序树中查找某一结点。 3.用其它查找算法进行排序。

四、程序主要语句及作用 程序1的主要代码 public class BinarySearchTreeNode //二叉查找树结点 { public int key; public BinarySearchTreeNode left; public BinarySearchTreeNode right; public BinarySearchTreeNode(int nodeValue) { key = nodeValue; left = null; right = null; } public void InsertNode(BinarySearchTreeNode node)//插入结点 { if (node.key > this.key) { if (this.right == null) { this.right = node; return; } else this.right.InsertNode(node); } else { if (this.left == null) { this.left = node; return; } else this.left.InsertNode(node); } } public bool SearchKey(int searchValue) { if (this.key == searchValue) return true; if (searchValue > this.key) { if (this.right == null) return false; else return this.right.SearchKey(searchValue); } else { if (this.left == null) return false; else return this.left.SearchKey(searchValue); }

《数据结构》实验报告

苏州科技学院 数据结构(C语言版) 实验报告 专业班级测绘1011 学号10201151 姓名XX 实习地点C1 机房 指导教师史守正

目录 封面 (1) 目录 (2) 实验一线性表 (3) 一、程序设计的基本思想,原理和算法描述 (3) 二、源程序及注释(打包上传) (3) 三、运行输出结果 (4) 四、调试和运行程序过程中产生的问题及采取的措施 (6) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6) 实验二栈和队列 (7) 一、程序设计的基本思想,原理和算法描述 (8) 二、源程序及注释(打包上传) (8) 三、运行输出结果 (8) 四、调试和运行程序过程中产生的问题及采取的措施 (10) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10) 实验三树和二叉树 (11) 一、程序设计的基本思想,原理和算法描述 (11) 二、源程序及注释(打包上传) (12) 三、运行输出结果 (12) 四、调试和运行程序过程中产生的问题及采取的措施 (12) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12) 实验四图 (13) 一、程序设计的基本思想,原理和算法描述 (13) 二、源程序及注释(打包上传) (14) 三、运行输出结果 (14) 四、调试和运行程序过程中产生的问题及采取的措施 (15) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16) 实验五查找 (17) 一、程序设计的基本思想,原理和算法描述 (17)

二、源程序及注释(打包上传) (18) 三、运行输出结果 (18) 四、调试和运行程序过程中产生的问题及采取的措施 (19) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19) 实验六排序 (20) 一、程序设计的基本思想,原理和算法描述 (20) 二、源程序及注释(打包上传) (21) 三、运行输出结果 (21) 四、调试和运行程序过程中产生的问题及采取的措施 (24) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24) 实验一线性表 一、程序设计的基本思想,原理和算法描述: 程序的主要分为自定义函数、主函数。自定义函数有 InitList_Sq、Out_List、ListInsert_Sq、ListDelete_Sq、LocateElem_Sq 、compare。主函数在运行中调用上述的自定义函数,每个自定义函数实现程序的每部分的小功能。 1.程序设计基本思想 用c语言编译程序,利用顺序存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;然后根据屏幕菜单的选择,可以进行数据的插入、删除、查找,并在插入或删除数据后,再输出线性表;最后在屏幕菜单中选择结束按钮,即可结束程序的运行。 2.原理 线性表通过顺序表现,链式表示,一元多项式表示,其中链式表示又分为静态链表,双向链表,循环链表等,在不同的情况下各不相同,他可以是一个数字,也可以是一个符号,通过符号或数字来实现程序的运行。 3.算法描述

北理工《数据结构与算法》在线作业_2

北理工《数据结构与算法》在线作业 试卷总分:100 测试时间:-- 试卷得分:99.5 一、单选题(共40 道试题,共99.5 分。)得分:99.5 1. 下列说法正确的是() A. 堆栈是在两端操作、先进后出的线性表 B. 堆栈是在一端操作、先进后出的线性表 C. 队列是在一端操作、先进先出的线性表 D. 队列是在两端操作、后进先出的线性表 正确答案:B 满分:2.5 分得分:2.5 2. 判定一个队列Q(最多元素为m0)为满队列的条件是() A. rear-front= = m0 B. rear-front-1= =m0 C. front= =rear D. front= =rear+1 正确答案:D 满分:2.5 分得分:2.5 3. 评价排序算法好坏的标准主要是()。 A. 执行时间 B. 辅助空间 C. 算法本身的复杂度 D. 执行时间和所需的辅助空间 正确答案:D 满分:2.5 分得分:2.5 4. 设有50行60列的二维数组A[50][60],其元素长度为4字节,按行优先顺序存储,基地址为200,则元素A[18][25]的存储地址为()。 A. 3700 B. 4376 C. 3900 D. 4620 正确答案:D 满分:2.5 分得分:2.5 5. 根据二叉树的定义可知二叉树共有()种不同的形态。 A. 4 B. 5 C. 6 D. 7 正确答案:B 满分:2.5 分得分:2.5 6. 以下排序方法中,稳定的排序方法是()。 A. 直接插入排序和希尔排序 B. 直接插入排序和冒泡排序 C. 希尔排序和快速排序 D. 冒泡排序和快速排序 正确答案:B 满分:2.5 分得分:2.5 7. 下述几种排序方法中,平均查找长度最小的是()。 A. 插入排序 B. 选择排序 C. 快速排序

数据结构实验总结报告

数据结构实验总结报告 一、调试过程中遇到哪些问题? (1)在二叉树的调试中,从广义表生成二叉树的模块花了较多时间调试。 由于一开始设计的广义表的字符串表示没有思考清晰,处理只有一个孩子的节点时发生了混乱。调试之初不以为是设计的问题,从而在代码上花了不少时间调试。 目前的设计是: Tree = Identifier(Node,Node) Node = Identifier | () | Tree Identifier = ASCII Character 例子:a(b((),f),c(d,e)) 这样便消除了歧义,保证只有一个孩子的节点和叶节点的处理中不存在问题。 (2)Huffman树的调试花了较长时间。Huffman编码本身并不难处理,麻烦的是输入输出。①Huffman编码后的文件是按位存储的,因此需要位运算。 ②文件结尾要刷新缓冲区,这里容易引发边界错误。 在实际编程时,首先编写了屏幕输入输出(用0、1表示二进制位)的版本,然后再加入二进制文件的读写模块。主要调试时间在后者。 二、要让演示版压缩程序具有实用性,哪些地方有待改进? (1)压缩文件的最后一字节问题。 压缩文件的最后一字节不一定对齐到字节边界,因此可能有几个多余的0,而这些多余的0可能恰好构成一个Huffman编码。解码程序无法获知这个编码是否属于源文件的一部分。因此有的文件解压后末尾可能出现一个多余的字节。 解决方案: ①在压缩文件头部写入源文件的总长度(字节数)。需要四个字节来存储这个信息(假定文件长度不超过4GB)。 ②增加第257个字符(在一个字节的0~255之外)用于EOF。对于较长的文件,

会造成较大的损耗。 ③在压缩文件头写入源文件的总长度%256的值,需要一个字节。由于最后一个字节存在或不存在会影响文件总长%256的值,因此可以根据这个值判断整个压缩文件的最后一字节末尾的0是否在源文件中存在。 (2)压缩程序的效率问题。 在编写压缩解压程序时 ①编写了屏幕输入输出的版本 ②将输入输出语句用位运算封装成一次一个字节的文件输入输出版本 ③为提高输入输出效率,减少系统调用次数,增加了8KB的输入输出缓存窗口 这样一来,每写一位二进制位,就要在内部进行两次函数调用。如果将这些代码合并起来,再针对位运算进行一些优化,显然不利于代码的可读性,但对程序的执行速度将有一定提高。 (3)程序界面更加人性化。 Huffman Tree Demo (C) 2011-12-16 boj Usage: huffman [-c file] [-u file] output_file -c Compress file. e.g. huffman -c test.txt test.huff -u Uncompress file. e.g. huffman -u test.huff test.txt 目前的程序提示如上所示。如果要求实用性,可以考虑加入其他人性化的功能。 三、调研常用的压缩算法,对这些算法进行比较分析 (一)无损压缩算法 ①RLE RLE又叫Run Length Encoding,是一个针对无损压缩的非常简单的算法。它用重复字节和重复的次数来简单描述来代替重复的字节。尽管简单并且对于通常的压缩非常低效,但它有的时候却非常有用(例如,JPEG就使用它)。 变体1:重复次数+字符 文本字符串:A A A B B B C C C C D D D D,编码后得到:3 A 3 B 4 C 4 D。

数据结构实验报告(2015级)及答案

数据结构实验报告(2015级)及答案

《数据结构》实验报告 专业__信息管理学院______ 年级__2015级___________ 学号___ _______ 学生姓名___ _ _______ 指导老师____________ 华中师范大学信息管理系编

I 实验要求 1.每次实验中有若干习题,每个学生至少应该完成其中的两道习题。 2.上机之前应作好充分的准备工作,预先编好程序,经过人工检查无误后,才能上机,以提高上机效率。 3.独立上机输入和调试自己所编的程序,切忌抄袭、拷贝他人程序。 4.上机结束后,应整理出实验报告。书写实验报告时,重点放在调试过程和小节部分,总结出本次实验中的得与失,以达到巩固课堂学习、提高动手能力的目的。 II 实验内容 实验一线性表 【实验目的】 1.熟悉VC环境,学习如何使用C语言实现线性表的两种存储结构。 2.通过编程、上机调试,进一步理解线性表的基本概念,熟练运用C语言实现线性表基本操作。 3.熟练掌握线性表的综合应用问题。 【实验内容】 1.一个线性表有n个元素(n

的顺序不变。设计程序实现。要求:采用顺序存储表示实现;采用链式存储表示方法实现;比较两种方法的优劣。 2. 从单链表中删除指定的元素x,若x在单链表中不存在,给出提示信息。 要求: ①指定的值x由键盘输入; ②程序能处理空链表的情况。 3.设有头结点的单链表,编程对表中的任意值只保留一个结点,删除其余值相同的结点。 要求: ①该算法用函数(非主函数)实现; ②在主函数中调用创建链表的函数创建一个单链表, 并调用该函数,验证算法的正确性。 LinkedList Exchange(LinkedList HEAD,p)∥HEAD是单链表头结点的指针,p是链表中的一个结点。本算法将p所指结点与其后 继结点交换。 {q=head->next;∥q是工作指针,指向链表中当前待处理结点。 pre=head;∥pre是前驱结点指针,指向q的前驱。 while(q!=null && q!=p){pre=q;q=q->next;} ∥

北邮数据结构实验3哈夫曼编码

数据结构实验报告 实验名称:实验3——哈夫曼编码 学生姓名: 班级: 班内序号: 学号: 日期:2013年11月24日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个 字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每 个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的 字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译 码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼 编码的压缩效果。 2. 程序分析 2.1存储结构: struct HNode { char c;//存字符内容 int weight; int lchild, rchild, parent; }; struct HCode

{ char data; char code[100]; }; //字符及其编码结构 class Huffman { private: HNode* huffTree; //Huffman树 HCode* HCodeTable; //Huffman编码表 public: Huffman(void); void CreateHTree(int a[], int n); //创建huffman树 void CreateCodeTable(char b[], int n); //创建编码表 void Encode(char *s, string *d); //编码 void Decode(char *s, char *d); //解码 void differ(char *,int n); char str2[100];//数组中不同的字符组成的串 int dif;//str2[]的大小 ~Huffman(void); }; 结点结构为如下所示: 三叉树的节点结构: struct HNode//哈夫曼树结点的结构体 { int weight;//结点权值 int parent;//双亲指针 int lchild;//左孩子指针 int rchild;//右孩子指针 char data;//字符 }; 示意图为: int weight int parent int lchild int rchild Char c 编码表节点结构:

北理工《实用数据结构与算法》在线作业

北理工《实用数据结构与算法》在线作业 一、单选题: 1.(单选题)当两个元素比较出现反序时就相互交换位置的排序方法称为()。 (满分 A归并排序 B选择排序 C交换排序 D插入排序 正确:C 2.(单选题)设数组Data[0..m]作为循环队列SQ的存储空间,front为队头指针,rear为队尾指针,则执行出队操作的语句为() (满分 Afront=front+1 Bfront=(front+1)%m Crear=(rear+1)%m Dfront=(front+1)%(m+1) 正确:D 3.(单选题)快速排序方法在()情况下最不利于发挥其长处。 (满分 A被排序的数据量太大 B被排序数据中含有多个相同值 C被排序数据已基本有序 D被排序数据数目为奇数 正确:C 4.(单选题)具有65个结点的完全二叉树其深度为(根的层次号为1)()。 (满分 A8 B7 C6 D5 正确: 5.(单选题)稀疏矩阵一般的压缩存储方法有两种,即()。 (满分 A二维数组和三维数组 B三元组表和散列表 C三元组表和十字链表 D散列表和十字链表 正确: 6.(单选题)从未排序序列中依次取出一个元素与已排序序列中的元素依次进行比较,然后将其放在已排序序列的合适位置,该排序方法称为()排序法。 (满分:) A插入 B选择 C交换 D二路归并 正确: 7.(单选题)下列排序方法中效率最高的排序方法是()。 (满分:) A起泡排序 B堆排序 C快速排序 D直接插入排序 正确: 8.(单选题)栈与一般的线性表的区别在于()。 (满分:) A数据元素的类型不同 B运算是否受限制 C数据元素的个数不同

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

数据结构实验报告-答案

数据结构(C语言版) 实验报告

专业班级学号姓名 实验1 实验题目:单链表的插入和删除 实验目的: 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测 试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码: #include"" #include"" #include"" #include"" typedef struct node . . 示意图:

head head head 心得体会: 本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。另外实验指导书上给出的代码是有一些问题的,这使我们认识到实验过程中不能想当然的直接编译执行,应当在阅读并完全理解代码的基础上再执行,这才是实验的意义所在。

实验2 实验题目:二叉树操作设计和实现 实验目的: 掌握二叉树的定义、性质及存储方式,各种遍历算法。 实验要求: 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历 的操作,求所有叶子及结点总数的操作。 实验主要步骤: 1、分析、理解程序。 2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针), 如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求 所有叶子及结点总数。 实验代码 #include"" #include"" #include"" #define Max 20 ertex=a; irstedge=NULL; irstedge; G->adjlist[i].firstedge=s; irstedge; R[i] 留在原位

数据结构实验一 实验报告

班级::学号: 实验一线性表的基本操作 一、实验目的 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入和删除等。 二、实验容 定义一个包含学生信息(学号,,成绩)的顺序表和链表(二选一),使其具有如下功能: (1) 根据指定学生个数,逐个输入学生信息; (2) 逐个显示学生表中所有学生的相关信息; (3) 根据进行查找,返回此学生的学号和成绩; (4) 根据指定的位置可返回相应的学生信息(学号,,成绩); (5) 给定一个学生信息,插入到表中指定的位置; (6) 删除指定位置的学生记录; (7) 统计表中学生个数。 三、实验环境 Visual C++ 四、程序分析与实验结果 #include #include #include #include #define OK 1 #define ERROR 0 #define OVERFLOW -2

typedef int Status; // 定义函数返回值类型 typedef struct { char num[10]; // 学号 char name[20]; // double grade; // 成绩 }student; typedef student ElemType; typedef struct LNode { ElemType data; // 数据域 struct LNode *next; //指针域 }LNode,*LinkList; Status InitList(LinkList &L) // 构造空链表L { L=(struct LNode*)malloc(sizeof(struct LNode)); L->next=NULL; return OK;

数据结构实验报告-答案.doc

数据结构实验报告-答案 数据结构(C语言版)实验报告专业班级学号姓名实验1实验题目:单链表的插入和删除实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤:1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序:(1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码:#include“stdio.h“#include“string.h“#include“stdlib.h“#include“ctype. h“typedefstructnode//定义结点{chardata[10];//结点的数据域为字符串structnode*next;//结点的指针域}ListNode;typedefListNode*LinkList;//自定义LinkList单链表类型LinkListCreatListR1();//函数,用尾插入法建立带头结点的单链表LinkListCreatList(void);//函数,用头插入法建立带头结点的单链表ListNode*LocateNode();//函数,按值查找结点voidDeleteList();//函数,删除指定值的结点voidprintlist();//函数,打印链表中的所有值voidDeleteAll();//函数,删除所有结点,释放内存

北邮数据结构实验四-链表排序

数据结构实验报告 实验名称:实验四——链表的排序 学生姓名: 班级: 班内序号: 学号: 日期: 1.实验要求 [内容要求] 使用链表实现下面各种排序算法,并进行比较。 排序算法: 1、插入排序 2、冒泡排序 3、快速排序 4、简单选择排序 5、其他 要求: 1、测试数据分成三类:正序、逆序、随机数据 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其 中关键字交换计为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒 (选作) 4、对2和3的结果进行分析,验证上述各种算法的时间复杂度 编写测试main()函数测试线性表的正确性 代码要求 1、必须要有异常处理,比如删除空链表时需要抛出异常; 2、保持良好的编程的风格: 代码段与段之间要有空行和缩近 标识符名称应该与其代表的意义一致 函数名之前应该添加注释说明该函数的功能 关键代码应说明其功能 3、递归程序注意调用的过程,防止栈溢出

2. 程序分析 2.1 存储结构 [内容要求] 存储结构:双链表 2.2 关键算法分析 [内容要求] 定义类: template class LinkList { public: LinkList(){front = new Node ;front->next=rear;front->prior=NULL;rear=new Node;rear->next=NULL;rear->prior=front;} LinkList(T a[],int n); void BackLinkList(T a[]);//恢复原链表 ~LinkList();//析构函数 void PrintList();//打印数列 void InsertSort();//插入排序 void BubbleSort();//冒泡排序 Node * Partion(Node *i,Node *j);//快速排序中寻找轴值的函数 void Qsort(Node *i,Node *j);//快速排序 void SelectSort();//选择排序 Node*front; Node*rear; }; 成员函数包括:构造函数:单链表,打印单链表,插入排序,快速排序,冒泡排序,选择排序,析构函数 公有成员:头指针和尾指针 1、构造函数: LinkList::LinkList(T a[],int n) { front=new Node; rear=new Node; front->prior=NULL;front->next=rear; rear->next=NULL;rear->prior=front; Node *s; for (int i=n-1;i>=0;i--) {

数据结构实验四

数据结构实验四 1.实验要求 置换-选择排序的实现 【问题描述】 对文件中的记录的关键字采用外部排序的置换-选择算法实现。 【实验要求】 设计置换-选择排序的模拟程序。 (1)记录存储在文件中。 (2)采用多路归并算法实现。 (3)采用置换-选择算法实现。

2实验描述 外部排序过程中,为了减少外存读写次数需要减小归并趟数(外部排序的过程中用到归并),外部排序1(其中k为归并路数,n为归并段的个数)。增加k和减小n都可以达到减小归并趟数的目的。置换-选择排序就是一种减小n的、在外部排序中创建初始归并段时用到的算法。它可以让初始归并段的长度增减,从而减小初始归并段的段数(因为总的记录数是一定的)。 置换-选择排序是在树形选择排序的基础上得来的,它的特点是:在整个排序(得到初始归并段)的过程中,选择最小(或最大)关键值和输入、输出交叉或并行进行。它的主要思路是:用败者树从已经传递到内存中的记录中找到关键值最小(或最大)的记录,然后将此记录写入外存,再将外存中一个没有排序过的记录传递到内存(因为之前那个记录写入外存后已经给它空出内存),然后再用败者树的一次调整过程找到最小关键值记录(这个调整过程中需要注意:比已经写入本初始归并段的记录关键值小的记录不能参见筛选,它要等到本初始段结束,下一个初始段中才可以进行筛选),再将此最小关键值记录调出,再调入新的记录.......依此进行指导所有记录已经排序过。内存中的记录就是所用败者树的叶子节点。开发环境:VC6.0。 3.置换-选择排序的实现 //A是从外存读入n个元素后所存放的数组 template void replacementSelection(Elem * A, int n, const char * in, const char * out){ Elem mval; //存放最小堆的最小值 Elem r; //存放从输入缓冲区中读入的元素 FILE * iptF; //输入文件句柄 FILE * optF; //输出文件句柄 Buffer input; //输入buffer Buffer output; // 输出buffer //初始化输入输出文件 initFiles(inputFile, outputFile, in, out); //初始化堆的数据,读入n个数据 initMinHeapArry(inputFile, n, A); //建立最小值堆 MinHeap H(A, n, n); //初始化inputbuffer,读入部分数据 initInputBuffer(input, inputFile); for(int last = (n-1); last >= 0;){ mval = H.heapArray[0]; //堆的最小值 sendToOutputBuffer(input,output,iptF,optF, mval); input.read(r); //从输入缓冲区读入一个记录 if(!less(r, mval)) H.heapArray[0] = r; else {//否则用last位置记录代替根结点,把r放到last H.heapArray[0] = H.heapArray[last]; H.heapArray[last] = r;

数据结构实验一题目一线性表实验报告

数据结构实验报告 实验名称:实验1——线性表 学生姓名: 班级: 班内序号: 学号: 日期: 1.实验要求 1、实验目的:熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法 学习指针、模板类、异常处理的使用 掌握线性表的操作的实现方法 学习使用线性表解决实际问题的能力 2、实验内容: 题目1: 线性表的基本功能: 1、构造:使用头插法、尾插法两种方法 2、插入:要求建立的链表按照关键字从小到大有序 3、删除 4、查找 5、获取链表长度 6、销毁 7、其他:可自行定义 编写测试main()函数测试线性表的正确性。 2. 程序分析 存储结构 带头结点的单链表

关键算法分析 1.头插法 a、伪代码实现:在堆中建立新结点 将x写入到新结点的数据域 修改新结点的指针域 修改头结点的指针域,将新结点加入链表中 b、代码实现: Linklist::Linklist(int a[],int n)

堆中建立新结点 b.将a[i]写入到新结点的数据域 c.将新结点加入到链表中 d.修改修改尾指针 b、代码实现: Linklist::Linklist(int a[],int n,int m)取链表长度函数 a、伪代码实现:判断该链表是否为空链表,如果是,输出长度0 如果不是空链表,新建立一个temp指针,初始化整形数n为0 将temp指针指向头结点 判断temp指针指向的结点的next域是否为空,如果不是,n加一,否 则return n 使temp指针逐个后移,重复d操作,直到temp指针指向的结点的next 域为0,返回n b 、代码实现 void Linklist::Getlength()Linklist(); cout<

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

北邮信通院数据结构实验报告三哈夫曼编码器

数据结构实验报告 实验名称:实验三树——哈夫曼编/解码器 学生姓名: 班级: 班内序号: 学号: 日期:2014年12月11日 1.实验要求 利用二叉树结构实现赫夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个 字符的频度,并建立赫夫曼树 2、建立编码表(CreateTable):利用已经建好的赫夫曼树进行编码,并将每 个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的 字符串输出。 4、译码(Decoding):利用已经建好的赫夫曼树对编码后的字符串进行译 码,并输出译码结果。 5、打印(Print):以直观的方式打印赫夫曼树(选作) 6、计算输入的字符串编码前和编码后的长度,并进行分析,讨论赫夫曼 编码的压缩效果。 测试数据: I love data Structure, I love Computer。I will try my best to study data Structure. 提示: 1、用户界面可以设计为“菜单”方式:能够进行交互。 2、根据输入的字符串中每个字符出现的次数统计频度,对没有出现的 字符一律不用编码。

2. 程序分析 2.1 存储结构 Huffman树 给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,其中带权路径长度最小的二叉树称为Huffman树,也叫做最优二叉树。 weight lchild rchild parent

2-1-1-1 5-1-1-1 6-1-1-1 7-1-1-1 9-1-1-1 weight lchild rchild parent 2-1-15 5-1-15 6-1-16 7-1-16 9-1-17 7017

相关主题
文本预览
相关文档 最新文档