当前位置:文档之家› 套管介损测试

套管介损测试

套管介损测试
套管介损测试

介质损耗高压套管的测试

试验接线及试验设备

介质损耗因数的定义

绝缘介质在交流电压作用下的等值回路及相量图如图3-1所示。

图3-1绝缘介质在交流电压作用下的等值回路及相量图

众所周知,在某一确定的频率下,介质可用确定的电阻与一确定的电容并联来等效,流

过介质的电流由两部分组成,I CX 为电容性电流的无功分量,I RX 为电阻性电流的有功分量,介

质的有功损耗将引起绝缘的发热,同时介质也存在着散热,而发热、散热跟表面积等有关,

为此应测试与体积相对无关的量来判断绝缘状况,为此测试有功损耗除以无功损耗的值,此

比值即为介质损耗因数。

Q=U ·I CX

P=U ·I RX

则Q P =CX RX I I =tg δ (3-1)

从公式(3-1)可以看到图3-1中介质损耗因数即为介质损失角δ的正切值tg δ。

试验目的

高压套管大量采用油纸电容型绝缘结构,这类绝缘结构具有经济实用的优点。但当绝缘

中的纸纤维吸收水分后,纤维中的β氢氧根之间的相互作用变弱,导电性能增加,机械性能

变差,这是造成绝缘破坏的重要原因。受潮的纸纤维中的水分,可能来自绝缘油,也可能来

自绝缘中原先存在的局部受潮部分,这类设备受潮后,介质损耗因数会增加。

液体绝缘材料如变压器油,受到污染或劣化后,极性物质增加,介质损耗因数也会从清

洁状态下的0.05%左右上升到0.5%以上。

除了用介质损耗因数的大小及变化趋势判断设备的绝缘状况外,电容量的变化也可以发

现电容型设备的绝缘的损坏。如一个或几个电容屏发生击穿短路,电容量会明显增加。

由此可见,测量绝缘介质的介质损耗因数及电容量可以有效地发现绝缘的老化、受潮、开裂、污染等不良状况。

典型介损测试仪的原理接线图

从20年代即开始使用西林电桥测量tgδ,目前介损测试电桥已向全自动、高精度、良好抗干扰性能方向发展,比较经典的有三种原理即西林型电桥、电流比较型电桥及M型电桥。下面分别作简要的介绍:

(1)西林电桥的原理图3-2所示

图3-2西林电桥的原理图

图中当电桥平衡时,G显示为零,此时

3

R

Z

x=

4

Z

Z

x

根据实部虚部各相等可得:

tgδ=ωR4C4

C≈

R

R

Cn

3

4

(当tgδ<<1

时)

根据R3、C4、R4的值可计算得出tgδ、

C的值。

从原理上讲,西林电桥测介质损耗没

有误差,但由于分布电容是无所不在的,

尤其是Cn必须有良好的屏蔽,当反接法

时,必须屏蔽掉B点对地的分布电容,正

接法时,必须屏蔽掉C点与B点间的分布

电容,但由于屏蔽层的采用增加了C4、

R4及R3两端的分布电容带来了新的误

差,以R3正接法为例,R3最图3-3

大值为1k Ω左右,当分布电容达10000PF 时,对介损的影响为0.3%,为了消除这一分布电

容的影响,提高测试精度,试验室采用双屏蔽,如原理图3-3所示。

Us 电位自动跟踪S 点电位,这样R3对地的分布电容电流为零,从原理上消除了杂散电

容的影响,但采用这种方式不能用于反接法,因为S 点电位是高压,在现场不可能使用。

目前国内外典型的西林电桥有QS1(现场用)、QS37(试验室用)、瑞士2801(试验室

用)。

(2)电流比较型电桥

电流比较型电桥的原理图如图3-4所示。

图3-4

图中T 为环形互感器,通过调节k1、k2、k3使电桥达到平衡,即G 的指示为零,根据磁

路定律:?φ1+?φ2+?φ3=0

根据实部虚部相等有:Cx=2

1K K C N tg δ=1

3k k 这种电桥因各线圈的等值阻抗较小,对地的分布电容影响很小,测试较为准确,由于T

是一互感器,谐波及电晕电流的影响很大,在现场使用与试验室差别较大。这种电桥国内有

QS30等。

(3)M 型电桥

M 型电桥的原理图如图3-5所示。

图3-5

这种电桥是利用标准臂产生的电容电流与试品的电容电流相抵消,余下的即为阻性分量,从而计算出介损值,具体分析如下:

?U A =?I N ·R 4·k (k ≤1,其数值与可调电阻动触头的位置有关)

?U B =(?I

RX +?I CX )R 3 ?W =?u A -?u B =?I N ·R 4·k-?I

RX ·R 3-?I CX ·R 3 =(?I N ·R 4·k-?I

CX ·R 3)-?I RX ·R 3 由于?

I N 与?

I CX 均超前于?

u 900,为同相分量。 当I N ·R 4·k=Icx ·R 3 3-2

W 有最小值,此时W=I RX ·R 3 3-3

通过式(3-2)可得Icx=3

4R k R I N 3-4 其中,k 与R 4动触头的位置有关,当W 调至最小值时,可以通过特有回路测得K ,这样

可测得Icx 值,同时可得到电容量的值。

通过)式(3-3获得I RX =3

R W (3-5)

那么,tg δ=CX

RX I I 可以算出tg δ值。 由于R 3、R 4阻值较小,最大值为100Ω,杂散分布电容的影响仅为西林电桥的1/10,且

R 3、R 4的值较为固定,分布电容可以补偿,可以进一步提高精度。

当设备为一端接地时,M 型电桥采用反接法,即在B 点接地,此时如不采取措施,高压

变压器及高压电缆对地电容就并联在试品两端,影响了测量精度,为此M 型电桥的高压电缆及高压变压器均采用双重屏蔽,如图3-5中。Ce 为高压变压器的耦合电容,直接并联在高压线圈两端,对测量没有影响。

电容型套管的介损试验方法

电容型套管的最外层有末屏引出,试验时可采用电桥正接法进行一次导杆对末屏的介损

及电容量测量。

对于电容型套管末屏的介损测试,可采用电桥反接法测量末屏对地的介损和电容量,试

验电压加在末屏与套管油箱底箱之间,并将依次导杆接到电桥的“E ”端屏蔽,试验时所加的电压须根据末屏绝缘水平和电桥的测量灵敏度而定。一般可取2~3kV 。

电场干扰对介损测试结果的影响

现场的干扰主要是电场及磁场干扰,电场干扰主要是外界带电部分通过电桥臂耦合产生

电流流入测量臂;另一种干扰是磁场干扰,其主要是对桥体本身的感应,随着电磁屏蔽技术的发展,这一干扰可以利用桥体的磁屏蔽层消除。

下面主要讲述电场的影响

电场对测量的影响,对各种电桥来讲,原理上是相同的,现以M 型电桥为例作简要的介

绍,对220kV 套管来说,图3-6为干扰对M 型电桥影响的原理图。

图3-6

正接法时,当高压变压器初级合闸后,高压变压器次级相对于3200kV

的电源来讲处于短

路状态(叠加法),可以认为流过Cn 及试品臂的电流为零,也就可以认为干扰电流Ig 对测试没有影响。当然由于干扰除对试品的顶部有影响,对试品中部亦有耦合,有较小的干扰,所以正接法时,现场干扰很小。

反接法时,高压变压器合上后,高压变压器次级相当于短路,试品或Cn 阻抗很大,Ig 主

要通过变压器次级及R 3到地,那么Ig 对测量的影响很大,所以反接法时,测试受外界电场干扰很大。

介质损耗测量时电场干扰的抑制

现场进行介质损耗测量时抑制干扰的方法很多,常用有的屏蔽法、移相法、倒相法。

这三种方法,许多文献上有过专门介绍,总的来说各有利弊。屏蔽法可以抑制外界电场

对试验的干扰,缺点是比较麻烦,而且在一定程度上改变了被试品内部的电场分布,因

此测量结果与实际值有一定的差异;移相法测量介质损耗,测量值比较准确但需要有专

门的移相设备,同时测量也比较复杂;倒相法无需专门设备,操作方便,但当电场干扰

较大时,倒相后介质损耗测量值有可能出现负值。移相法与倒相法,都是在外界电场干

扰电流?'I 与被试品电流?I x 幅值不变的情况下,靠改变?I x 的相位,经过简单的数学计算

来比较准确地反映被试品的真实介质损耗。

另一类抑制电场干扰的方法是提高介质损耗测量时的信噪比。由于?'I 可以认为是恒

流源,而?I x 的幅值随试验电压的增加而增加,故提高试验电压可以提高信噪比k=??'I Ix

从而起到抑制干扰电流、提高测量精度的作用。但此种方法受到无损标准电容器耐受电

压的限制,现场往往难以实施。

(1) 屏蔽法

在设备上方放置一屏蔽罩,屏蔽罩接地,干扰则直接到地,不影响电桥的桥臂,但

这一方案实际使用很麻烦。

(2)采用移相电源

电桥电源采用移相电源,由于干

扰电流?

I g 的相位不变,所以调节电源

的相位,?I x 相位便相应的变化,

当?I x 与?I g 的相位一致时,δ角测试受外界

的影响很小。但这种方法设备较重,

较复杂,操作亦十分麻烦,现场使用

很不方便。

(3)采用倒相法

这是一种比较简单的方法,测量

时将电源正、反倒相各测一次。由于

干扰电源Ig 的相位不变,分析时可认为电桥电源相位不变,即?I x 的相位不变,而?

I g 作1800的反相,如图3-7所示。

tg δ1=CX RX I I '' tg δ2=CX

R I I ''''

tg δ=CX RX I I =)"'(2/1"'(2/1)CX CX RX RX I I I I ++=CX CX CX CXt I I tg I g I "'"'21++δδ="

'"'212111C C tg C tg C ++δδ

由图中可知:

Cx=2

"'x C x C + 这种方法从原理上可以完全消除干扰,但在干扰很大时,tg δ1、tg δ2可能很大且一正、

一负,但tg δ却很小,这样tg δ1、tg δ2的测量误差相对tg δ来讲已很大,对tg δ测量的误差则很大。

(4)50%加压法

这是一种无需另加试验设备、操作简便,只需作简单计算就可以比较准确地反映被

试品真实介质损耗的方法。

所谓50%加压法,就是在政党介质损耗测试回路不变的情况下,将试验电压升到额

定试验电压,调节电桥平衡,测得第一组R3与tg δ的值,即R 31与tg δ1, 然后将试验电压

退到50%的额定试验电压,重新调节电桥平衡,测得另一组R3与tg δ的值R 32与tg δ2,进行简单计算,求取被试品真实介质损耗的方法。

现以图3-8为例分析如下:

根据电桥平衡原理,可得有干扰电

压时的电桥平衡方程为:

34R Z Z N -Zx 1=??UZe

U '

式中:

Z 4=(4

1R +j 4C ω)-1

Z N =N C j ω1

高压绝缘耐压试验技术标准及《规程》规定

高压电网中的各种故障多是由于高压电气设备绝缘的损坏所导致,因此了解设备绝缘特性、掌握绝缘状况、不断提高电气设备绝缘水平是至关重要的。 高压绝缘耐压试验,是按照有关电力行业及相关技术标准或产品技术条件以及《规程》规定对电力运行设备(如:电缆、电机、发电机、变压器、互感器、高压开关、避雷器等)要求做一系列的电气或机械方面的某些特性试验。 高压电气设备在运行中必须保持良好的绝缘,为此从设备的制造开始,要进行一系列绝缘测试。这些测试包括:在制造时对原材料的试验、制造过程的中间试验、产品的定性及出厂试验、在使用现场安装后的交接试验、使用中为维护运行而进行的绝缘预防性试验等。其中电气设备的交接试验和预防性试验是两类最重要的试验。 高压试验设备,高压耐压试验设备主要包括:

其中电力试验设备主要有:变压器容量测试仪、直流电阻快速测试仪、全自动变比组别测试仪、三倍频发生器、变压器空载负载特性测试仪、变压器有载开关测试仪、全自动绝缘油介电强度测试仪、全自动抗干扰异频介损测试仪、交流耐压调频谐振装置、交直流高压试验变压器(油浸式、充气式、干式试验变压器)、开关接触电阻测试仪(回路电阻测试仪)、真空开关真空度测试仪、高压开关机械动特性测试仪、六氟化硫气体检漏仪、六氟化硫气体微水测量仪、大电流发生器、氧化锌避雷器测试仪、氧化锌避雷器直流参数测试仪、直流高压发生器、0.1HZ超低频高压发生器、电缆故障测试仪。 输电线路故障距离测试仪、线缆高度测量仪、无线高压核相器、绝缘电阻测试仪、接地电阻测试仪、钳形接地电阻测试仪、大型地网接地电阻测试仪、互感器伏安特性综合测试仪、继电保护测试仪。 绝缘防护工具耐压试验装置、局部放点测试仪、全自动电容电桥测试仪、配电网电容电流测试仪等仪器设备。绝缘预防性试验可分为两大类:一类是非破坏性试验或称绝缘特性试验,是在较低的电压下或用其他不会损坏绝缘的办法来测量的各种特性参数,主要包括测量绝缘电阻、泄漏电流、介质损耗角正切值等,从而判断绝缘内部有无缺陷。实验证明,这类方法

套管介损测试

介质损耗高压套管的测试 试验接线及试验设备 介质损耗因数的定义 绝缘介质在交流电压作用下的等值回路及相量图如图3-1所示。 图3-1绝缘介质在交流电压作用下的等值回路及相量图 众所周知,在某一确定的频率下,介质可用确定的电阻与一确定的电容并联来等效,流 过介质的电流由两部分组成,I CX 为电容性电流的无功分量,I RX 为电阻性电流的有功分量,介 质的有功损耗将引起绝缘的发热,同时介质也存在着散热,而发热、散热跟表面积等有关, 为此应测试与体积相对无关的量来判断绝缘状况,为此测试有功损耗除以无功损耗的值,此 比值即为介质损耗因数。 Q=U ·I CX P=U ·I RX 则Q P =CX RX I I =tg δ (3-1) 从公式(3-1)可以看到图3-1中介质损耗因数即为介质损失角δ的正切值tg δ。 试验目的 高压套管大量采用油纸电容型绝缘结构,这类绝缘结构具有经济实用的优点。但当绝缘 中的纸纤维吸收水分后,纤维中的β氢氧根之间的相互作用变弱,导电性能增加,机械性能 变差,这是造成绝缘破坏的重要原因。受潮的纸纤维中的水分,可能来自绝缘油,也可能来 自绝缘中原先存在的局部受潮部分,这类设备受潮后,介质损耗因数会增加。 液体绝缘材料如变压器油,受到污染或劣化后,极性物质增加,介质损耗因数也会从清 洁状态下的0.05%左右上升到0.5%以上。 除了用介质损耗因数的大小及变化趋势判断设备的绝缘状况外,电容量的变化也可以发 现电容型设备的绝缘的损坏。如一个或几个电容屏发生击穿短路,电容量会明显增加。

由此可见,测量绝缘介质的介质损耗因数及电容量可以有效地发现绝缘的老化、受潮、开裂、污染等不良状况。 典型介损测试仪的原理接线图 从20年代即开始使用西林电桥测量tgδ,目前介损测试电桥已向全自动、高精度、良好抗干扰性能方向发展,比较经典的有三种原理即西林型电桥、电流比较型电桥及M型电桥。下面分别作简要的介绍: (1)西林电桥的原理图3-2所示 图3-2西林电桥的原理图 图中当电桥平衡时,G显示为零,此时 3 R Z x= 4 Z Z x 根据实部虚部各相等可得: tgδ=ωR4C4 C≈ R R Cn 3 4 (当tgδ<<1 时) 根据R3、C4、R4的值可计算得出tgδ、 C的值。 从原理上讲,西林电桥测介质损耗没 有误差,但由于分布电容是无所不在的, 尤其是Cn必须有良好的屏蔽,当反接法 时,必须屏蔽掉B点对地的分布电容,正 接法时,必须屏蔽掉C点与B点间的分布 电容,但由于屏蔽层的采用增加了C4、 R4及R3两端的分布电容带来了新的误 差,以R3正接法为例,R3最图3-3

变压器介损

FS3001抗干扰介质损耗测试仪 一、产品简介 FS3001抗干扰介质损耗测试仪用于现场抗干扰介损测量,或试验室精密介损测量。仪器为一体化结构,内置介损电桥、变频电源、试验变压器和标准电容器等。采用变频抗干扰和傅立叶变换数字滤波技术,全自动智能化测量,强干扰下测量数据非常稳定。测量结果由大屏幕液晶显示,自带微型打印机可打印输出。 二、产品别称 介损测试仪、抗干扰介损测试仪、全自动介损测试仪、异频介损测试仪、异频介质损耗测试仪、抗干扰介质损耗测试仪、全自动介质损耗测试仪 三、产品特征 1、变频抗干扰 采用变频抗干扰技术,在200%干扰下仍能准确测量,测试数据稳定,适合在现场做抗干扰介损试验。 2、高精度测量 采用数字波形分析和电桥自校准等技术,配合高精度三端标准电容器,实现高精度介损测量。 仪器所有量程输入电阻低于2Ω,消除了测量电缆附加电容的影响。 3、多级安全保护,确保人身和设备安全

高压保护:试品短路、击穿或高压电流波动,能以短路方式高速切断输出。 低压保护:误接380V、电源波动或突然断电,启动保护,不会引起过电压。 接地保护:仪器接地不良使外壳带危险电压时,启动接地保护。 C V T:高压电压和电流、低压电压和电流四个保护限,不会损坏设备;误选菜单不会输出激磁电压。CVT测量时无10kV高压输出。 防误操作:两级电源开关;电压、电流实时监示;多次按键确认;接线端子高/低压分明;缓速升压,可迅速降压,声光报警。 防“容升”:测量大容量试品时会出现电压抬高的“容升”效应,仪器能自动跟踪输出电压,保持试验电压恒定。 抗震性能:仪器采用独特抗震设计,可耐受强烈长途运输震动、颠簸而不会损坏。 高压电缆:为耐高压绝缘导线,可拖地使用。 四、技术指标 准确度:Cx: ±(读数×1%+1pF) tgδ: ±(读数×1%+0.00040) 抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度 电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV 外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV 分辨率:最高0.001pF,4位有效数字 tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。 试验电流范围:10μA~1A 内施高压:设定电压范围:0.5~10kV 最大输出电流:200mA 升降压方式:连续平滑调节 试验频率:45、50、55单频 45/55Hz自动双变频 频率精度:±0.01Hz 外施高压:正接线时最大试验电流1A,工频或变频40-70Hz 反接线时最大试验电流10kV/1A,工频或变频40-70Hz CVT自激法低压输出:输出电压3~50V,输出电流3~30A

AI-6000K全自动介质损耗测试仪说明书

AI-6000K全自动介质损耗测试仪说明书 一、产品简介: 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。AI-6000K自动抗干扰精密介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。 二、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4、仪表应避免剧烈振动。 5、对仪器的维修、护理和调整应由专业人员进行。 6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。 7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他

人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。 8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。 9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。 10、仪器出现故障时,关闭电源开关,等待一分钟之后再检查。 三、可测试参数 仪器可测量下列参数并数字显示: 被测试品的电容量值CX,以pF或nF为单位,1nF=1000pF。 被测试品的介质损耗值tgδ,以%显示。 四、性能特点 1、仪器采用复数电流法,测量电容、介质损耗及其它参数。测试结果精度高,便于实现自动化测量。 2、仪器采用了变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。 3、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。

110kV变压器套管介损试验方法

1引言 按照《电力设备预防性试验规程》的规定,在对电容量为 3150kVA 及以上的变压器进行大修或有必要进行绕组连同 套管时,应对损失角正切值tan δ进行测量[1]。若介损值超标,就意味着变压器可能受潮、绝缘老化、油质劣化、绝缘上附着油泥或设备绝缘存在严重缺陷;若电介质严重发热,设备则有爆炸的危险,应立即检修。然而实际中,对大中型变压器的 tan δ测量,只能发现整体的分布性缺陷,因为局部集中性缺 陷所引起的损失增加值占总损失的很小部分,也就是说套管缺陷引起的损耗增加值占总损耗的很小部分,因此若要检测大容量变压器套管的绝缘状况,应单独测量套管的介质损耗正切值和末屏对地的介损值[2]。 2变压器套管结构 变压器套管是将变压器绕组的高压线引至油箱外部 的出线装置。110kV 以上的变压器套管通常是油纸电容型,这种套管是依据电容分压原理卷制而成的,电容芯子是以电缆纸和油作为主绝缘,其外部是瓷绝缘,电容芯子必须全部浸在优质的变压器油中[3]。110kV 级以上的电容型套管,在其法兰上有一只接地小套管,接地小套管与电容芯子的最末屏(接地屏)相连,运行时接地,检修时供试验(如测量介损、绝缘电阻等)用。当套管因密封不良等原因受潮时,水分往往通过外层绝缘逐渐进入电容芯子,因此测量主绝缘和测量外层绝缘即末屏对地的绝缘电阻及介质损耗因数,能有效地发现绝缘是否受潮。为防止套管在运行中发生爆炸事故,应定期进行主绝缘和末屏对地介损试验[4]。 3变压器试验规程的规定 为了及时有效地发现电容型套管绝缘受潮,《电力设备 预防性试验规程》规定大修后或运行中油纸电容型110kV 套管主绝缘的tan δ值在20℃时不大于1.0%,当电容型套管末屏对地绝缘电阻小于1000M Ω时,应测量末屏对地的介质损耗因数,其值不大于2。电容型套管的电容值与出厂值或上一次试验值的差别超出±5%时,应查明原因[5]。 4套管的介损试验方法 为了准确测量套管的受潮情况和末屏对地的绝缘情况, 在实验室内,对一台110kV 电容型套管进行如下试验:该试验采用HJY-2000B 型介损测试仪。图1a 中U H 是测量高压输出端,与被测物一端相接。I X 是测量电流输入端,有两个出线头,中心头应与被试品一端相接;屏蔽头是仪器内部用高压输出的一个参考端,一般情况下用正接法测量时应接地,用反接法测量时应浮空。I N 是标准电流输入端。采用图1b~图 1d 所示的测试方法,在电容套管的额定电容量296pF 下,对 用HJY-2000B 型介损测试仪测得的数据与QS1型西林电桥 收稿日期:2008-07-16 稿件编号:200807033 作者简介:张小娟(1974-),女,陕西长安人,工程师。研究方向:电力系统主设备高压试验部分。 110kV 变压器套管介损试验方法 张小娟,黄永清,贺胜强 (中原油田供电管理处,河南濮阳457001) 摘要:为了准确、迅速测出110kV 变压器套管的受潮状况,防止运行中发生爆炸,给出了定期对主绝缘和末屏对地介损试验的新方法。介绍了新型仪器在110kV 变压器套管介损试验中的应用,通过新旧仪器测试数据对比分析,说明了HJY-2000B 型介损仪测试110kV 变压器套管介损的特点,并给出了介损试验中应注意的事项。关 键 词:变压器;介质;损耗;试验方法 中图分类号:TM41 文献标识码:B 文章编号:1006-6977(2008)10-0087-02 Experiment method for dielectric losses of the 110kV transformer bushing ZHANG Xiao -juan,HUANG Yong -qing,HE Sheng -qiang (Electric Power Management of Zhongyuan Oil Field ,Puyang 457001,China ) Abstract:A new instrument and a new method are adopted to implement the dielectric loss test in order to exam the moist -ened situation of 110kV transformer bushing.The application of a new instrument is introduced in this paper.The process and the data of new instrument are compared with those of the old instruments ﹒The result shows that the novel instrument is important to test the dielectric loss.The noticing events are also given in this paper.Key words:transformer ;media ;loss ;test method 新特器件应用 《国外电子元器件》2008年第10期-87-

介损测试仪的原理和测量方式

FS3001异频介质损耗测试仪 一、概述 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。 FS3001异频介质损耗测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高12千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。 二、测量方式及原理

接地分两种测量方式,即正接线测量方式和反接线测量方式。两种测量方式的原理如图 一所示: 高压输出端 Icx R 高压输出端 Icx C N (a )正接线测量 (b )反接线测量 图一 在高压电源的12kV 侧,高压分两路,一路给机内标准电容CN ,此电容介损非常小,可 以认为介损为零,即为纯容性电流,此电流ICN Cx 试品一侧,试 品电流Icx 通过采样电阻R 采入机内,此Icx 通 过计算水平分量与垂直分量的比值即可得到tg δ值。 在图一(a )中Cx 为非接地试品,试品电流Icx R ,得到全电 流值,在图一(b )中Cx 为接地试品,机内Cx 端直接接地,电流Icx 从试品高压端到机内 采样电阻取得全电流值。 I I I R I R u (a )电流矢量法 (b )试品等效电路 图 二 三、常见设备的接线方法 1.仪器引出端子说明: HV —— 仪器的测量引线高压端(带危险电压) 。

SX-9000全自动介质损耗测试仪使用说明书

SX-9000全自动介质损耗测试仪使用说明书全自动介质损耗测试仪 使 用 讲 明 书

目录 1概述 (2) 2技术指标 (2) 3内部结构与工作原理 (3) 4使用和操作 (5) 5注意事项 (9) 6仪器成套性 (9) 7保管及免费修理期限 (9) 8附录1、2、3…………………………………..……...(10-12) 1.概述 SX-9000(CVT)型全自动介质损耗测试仪是在我公司生产智能化介质 损耗测量仪和变频(异频)抗干扰介质损耗测试仪之后,研制成功第五代 一种新型的测量仪,随着城乡电网改造的持续深入,更高电站越来越多, 倒相法、移相法,已不能满足现场测试需求,异频测量(变频),把50HZ 变成其它频率,能够排除干扰。但由于电子技术的限制,其变频后的频率 一样离50HZ有一定距离,其50Hz条件下的电容值cx及tgδ值是换算模拟出来的,与真实工频测试有一定的距离,专门对少数被试品,测出数据 就有明显误差,通过综合比较,现研制一种新型介质损耗测量仪,其原理 不改变频率,能得到50HZ条件下电容值cx及tgδ值,提升测量可靠性和准确性,完全抑制电场干扰,满足电场下的使用要求,SX-9000(CVT)型全自动介质损耗测试仪体积最小,重量最轻,便于携带。有灵活的扩展性, 通过接口与运算机连接,使用强大的软件附件,对仪器升级,人性化设计,

全自动操作本仪器适合500kv及以下电站有干扰现场的试验。本仪器通过 国家电力研究所及行业专家的鉴定,并获得国家高电压计量站的校准证书。 ●具有多种测量方式,可选择正/反接线、内/外标准电容器、CVT和内/外试验电压进行测量。正接线可测量高压介损。 ●测量电容式电压互感器(CVT)时,无需其它外接设备。 ●内置SF6标准电容器,tgδ<0.005%,受空气湿度阻碍小。 ●抗干扰成效好;能有效地排除强烈的电场干扰对测量的阻碍,适用 于500kv极其以下电站的强干扰现场试验。 ●高压短路和突然断电时,仪器能迅速切断高压,并发出警告信息。 ●测量重复性好,电压线性好(测量准确度不受电压阻碍) ●一体化结构,重量适中,便于携带。 ●大屏幕带背光中文液晶显示器信息提示操作,使用方便。 ●仪器自带打印机,及时储存测试数据。 ●高压电缆连接至试品,保证安全;仪器未接地报警,安全措施完备。 2.技术指标 2.1额定工作条件 2.1.1环境温度:0~40℃(当温度超出20℃±5℃时,每变化10℃仪器差不多误差的改变量不超过差不多误差限的1/2。) 2.1.2相对湿度:30%~85% 2.1.3供电电源:市电。电压:220V±22V, 频率:50±1Hz 2.2外型尺寸:a×b×h,mm:450×330×380 2.3仪重视量:不大于18kg 2.4电子电路功耗:不大于40VA 2.5测量范畴: 2.5.1介质损耗(tgδ): 0~1 辨论率0.0001 2.5.2电容量(Cx): ≤60000PF 最小辨论率0.01P F 2.5.2.1内接方式 试验电压试品电容量

异频全自动介质损耗测试仪技术规范书

产品技术规范书 (图片仅供参考) 设备名称:异频全自动介质损耗测试仪型号: 生产厂家: 产品编码: 品牌:

一、概述 异频全自动介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为50Hz、47.5Hz\52.5Hz、45Hz\55Hz、60Hz、57.5Hz\62.5Hz、55Hz\65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯加温控装置可测试绝缘油介质损耗。 二、性能特点 1、超大液晶中文显示 操作简单,仪器配备了高端的全触摸液晶显示屏,超大全触摸操作界面,每过程都非常清晰明了,操作人员不需要额外的专业培训就能使用。轻轻点击一下就能完成整个过程的测量,是目前非常理想的智能型介损测量设备。 2、海量存储数据 仪器内部配备有日历芯片和大容量存储器,保存数据200组,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出。 3、科学先进的数据管理 仪器数据可以通过U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据。 4、多种测试模式 仪器能够分别使用内高压、外高压、内标准、外标准、正接法、反接法、自激法等多种方式测试;在外标准外高压情况下可以做高电压(大于10kV)介质损耗。 5、CVT测试一步到位 该仪器还可以测试全密封的CVT(电容式电压互感器)C1、C2的介损和电容量,实现了C1、C2的同时测试。该仪器还可以测试CVT变比和电压角差。 6、不拆高压引线测量CVT 仪器可在不拆除CVT高压引线的情况下正确测量CVT的介质损耗值和电容值。 7、CVT反接屏蔽法测量C0

10kv变压器介质损耗测试仪反接法应该怎么测量

https://www.doczj.com/doc/062444556.html, 10kv变压器介质损耗测试仪反接法应该怎么测量 反接法的基本条件 当被试设备的低压测量端或二次端对地无法绝缘,直接接地时所采用的测量方法,反接发的测量推荐使用SJJS-H全自动抗干扰介质损耗测试仪,如下图: 介质损耗测试仪 反接法使用步骤 第一步:按照说明书要求接好测试线,打开介质损耗测试仪主电源开关,显示屏幕出现参数的选择和设置。 第二步:设置参数,将测量方式、连接方式、测量电压选择并输入,测量方式分

https://www.doczj.com/doc/062444556.html, 为工频和异频,如果在干扰比较大或者在线运行设备比较多时,采用异频方式测量,否则采用工频方式测量,两者相比,工频测试速度要比异频快,异频采用47.5Hz和52.5Hz两种频率测量之后计算50Hz时的介质损耗值。试验电压一般选10KV,或者保持默认值即可。 第三步:打开“内高压允许”开关,按“确认”键,仪器开始产生高压输出,同时伴有“嘟”的提示音,此时,屏幕显示“正在测量中请等待”。 在经过约40秒后,测量结束,高压自动切断,屏幕显示测量结果,如需打印结果,按“确认”键即可打印。 反接法接线方法 当被试设备的低压测量端或二次端对地无法绝缘,直接接地时,采用该方法。 将红色专用高压电缆从仪器后侧的HVx端上引出,高压芯线接被试设备高压端,低压端接地,此时的CX输入线悬空,如图: 注意:HVx的芯线与屏蔽线严禁短接,否则无取样,无法测量。

https://www.doczj.com/doc/062444556.html, 反接法示意图 使用注意事项 (1)本仪器只能在停电的设备上使用,接地端应可靠接地。 (2)被试设备从运行状态断开高压引线转为检修状态,并对其清扫,初步绝缘试验良好后,方可利用该仪器进行试验,以防被试设备绝缘低劣,使仪器在加压过程中损坏。 (3)根据设备的安装情况确定采用那种接线,并在相应的菜单选项中选择其接线方法。 (4)根据不同设备正确选择测试电压等级,并在相应的菜单选项中选择所需电压。 (5)测试过程中如遇危及安全的特殊情况时,可紧急关闭总电源。 (6)断开面板上电源开关,并明显断开220V试验电源,才能进行接线更改或工作结束;重复对同一试验设备进行复测时,可按下复位后,重新测量,也可以

110KV变压器套管介损试验方法及注意问题探讨

110KV变压器套管介损试验方法及注意问题探讨 发表时间:2017-04-17T16:07:58.060Z 来源:《基层建设》2017年2期作者:郑丽璇 [导读] 摘要:本文阐述了110KV变压器套管的结构及试验流程,并对110KV变压器套管介损试验控制要点与注意问题进行了分析与探讨,以供同仁参考。 广东电网有限责任公司汕头供电局广东汕头 515000 摘要:本文阐述了110KV变压器套管的结构及试验流程,并对110KV变压器套管介损试验控制要点与注意问题进行了分析与探讨,以供同仁参考。 关键词:110KV变压器;套管介损试验;注意问题 一、前言 变压器套管的主要作用是把变压器装置里的高压引线、低压引线牵引到油箱之外,对整个装置内的电流负荷有很大的引导作用。变压器套管上的绝缘结构对变压器套管的性能具有重要作用,但当绝缘受潮时就会导致导电性能增加,套管介质受损。此外,绝缘材料受到污染或破损时,介损值也会增加。因此,测量绝缘物的介损值可以及时有效地判断出套管是否存在老化、受潮、破裂、污染等不良状况出现。由此可见,通过变压器套管介损试验,根据试验数据值的变化就能够判断变压器的状态是否正常。在进行变压器套管介损试验时,主要判断介损因数tanδ值的变化,tanδ值的变化代表了变压器套管介质的变化即绝缘性能的变化,因此,在对同一个变压器套管介损试验时。历次的tanδ值不能有太大的差别。下面就对110KV变压器套管的结构、试验流程、套管介损试验控制要点与注意问题进行了分析与探讨,以供同仁参考。 二、变压器套管结构及试验流程 (1)套管结构。电容套管的具体结构为:套管的主绝缘使用了油纸电容芯子,载流方法是选用了穿缆式,套管在变压器中的连接结合了多组压力弹簧引起的轴向压紧力完成。一般情况下,110kV以上的套管在瓷件、连接套管之间的连接处添加了心卡装结构,这样可以显著改善套管的密封效果。套筒在连接过程中设置了抽头装置、取油阀、放气塞等,每一种结构都有着不同的作用。 (2)试验流程。第一,选择HJY-2000B介损仪装置,将其与变压器准确地连接起来;第二,把HJY-2000B型的数据、QSI型数据之间进行对比分析;第三,检测电容套管的受潮状况,测量套管主绝缘的介损、末屏对地的绝缘电阻等值数;第四,总结试验中需要注意的相关事项,为后期的试验积累经验。 三、110KV变压器套管介损试验方法 套管在变压器装置中负责引线,能够保持变压器设备处于正常的运行状态。若变压器套管介损过大,极易造成各种线路故障。因而,对变压器套管介损试验深入分析是很有必要的,技术人员在试验现场要做好各项数据的记录处理。 (1)试验目的及原理 试验目的:测量套管主绝缘介损值和套管电容量值,详细检测变压器套管介损值是否超标,变压器在运行中是否正常。 试验原理:按Q/CSG114002-2011《电力设备预防性试验规程》规定,11O千伏变压器套管主绝缘的tanδ值在20℃时不大于1%。当电容型套管末屏对地绝缘电阻小于1000MΩ时。末屏对地的介损值不应大于2%,介损值与上一次试验值的差别超出±5%时,表明变压器套管介损值不符合标准,可能存在受潮、老化等问题。 (2)试验控制要点 1)数据分析。为了有助于变压器套管介损的试验分析,本次研究选用110kV变压器的套管介损为对象。此次接受套管介损试验的是110kV的电容型套管,运用到的设备为广东电力公司提供的HJY-2000B型介损测试仪。根据现场试验的情况看,变压器套管介损试验可通过两个试验完成,即主绝缘试验、末屏对地介损试验。两组试验数据,见表1、表2。 ②测量参数。考虑到更加准确地判断110kV变压器电容型套管内部的受潮情况,应对主绝缘介损、末屏对地绝缘电阻等分别测量,两个方面必须同时进行才能反映套管介损状况。判断介损时参照的指标包括:主绝缘介损因素0.31,末屏对地绝缘电阻因素0.15%。HJY-2000B型的数据、QSI型数据对比发现,单从数据看两组型号的数值十分接近。但在现场试验中,选择HJY-2000B设备的操作难度明显小于QSI型介损仪。试验人员操作时间减短,且获得数据的准确性更高,加快了套管介损试验的流程速度。 ③受潮分析。tanδ会受到试验温度、试验电压的影响,应做好相关参数的控制。在对介损测量之前,必须要把大小套管内清理干净,防比测量误差过大;在试验过程中,要避免各种干扰因素造成的不利影响,一般选择屏蔽法将电场干扰消除,可结合倒相、移相等方法缩小误差;在受潮分析中要注重各项参数指标的对比分析,这些都会影响到最终的试验判断。 四、现场试验注意的问题 (1)试验方面。试验是判断套管介损情况的核心环节,110千伏变压器套管介损试验期间,应避免干扰源造成的不利影响。在试验阶

变压器绕组连同套管的介质损耗因数测量

变压器绕组连同套管的介质损耗因数测量一、工作目的 发现变压器绕组绝缘整体受潮程度。 二、工作对象 SL7-1000/35型电力变压器变压器一次绕组连同套管三、知识准备 见第一篇第四章、第二篇第七章第三节 四、工作器材准备 序号名称数量 1 介质损耗测试仪1套 2 试验警示围栏4组 3 标示牌2个 4 安全带2个 5 绝缘绳2根 6 低压验电笔1支 7 拆线工具2套 8 湿温度计1支 9 计算器1个 10 放电棒1支 11 接地线2根 12 短路铜导线2根 13 高压引线1根

14 低压引线1根 五、工作危险点分析 (1)实验前后充分放电; (2)介质损耗测试仪一定要接地; (3)禁止湿手触摸开关或带电设备; (4)注意与其他相邻带电间隔的协调。 六、工作接线图 图1介质损耗因数测试试验接线示意图 七、工作步骤 1. 试验前准备工作。 1)布置安全措施; 2)对变压器一、二次绕组充分放电; 3)试验前应将变压器套管外绝缘清扫干净; 4)测量并记录顶层油温及环境温度和湿度。 2.试验接线。 1)将介质损耗测试仪接地端接地。

2)二次绕组短路接地、非测量绕组套管末屏接地; 3)高压绕组短路接高压芯线; 4)两人接取电源线,并用万用表测量电压是否正常,测试电源 盘继电器是否正常工作; 5)复查接线; 6)接通电源。 3.试验测试过程,参数设定。 1)打开介质损耗测试仪,在菜单中选取反接法; 2)对于额定电压10KV及以上的变压器为10KV,对于额定电 压10KV及以上的变压器,试验电压不超过绕组的额定电 压; 3)打开高压允许开关,进行升压, 4)测试介质损耗, 5)填写试验报告。 4.测量结束的整理工作。 1)关闭高压允许开关,抄录数据; 2)关闭介质损耗测试仪,切断试验电源; 3)用放电棒对变压器一次绕组充分放电; 4)收线,整理现场。 八、工作标准 1)当变压器电压等级为35kV 及以上且容量在8000kV A及以上时,应测量介质损耗角正切值tanδ ;

HTJS型抗干扰介损测试仪说明书资料(20210129135204)

目录 一、概述...................................................... 1 . 二、工作原理.................................................. 1... 三、主要参数.................................................. 3... 四、面板介绍.................................................. 4... 五、操作方法.................................................. 5... 六、接线...................................................... 6 . 七、注意事项.................................................. 7... 八、配套清单.................................................. 9... 九、参考接线方法.............................................. 9.. 附件.............................................................. 1..3 ..

HTJS型抗干扰介损自动测量仪 一、概述 HTJS 型抗干扰介损自动测量仪,是发电厂、变电站等现场全自动测量各种高压电力设备介损正切值及电容量的高精度仪器。由于采用了变频技术能保证在强电场干扰下准确测量。仪器在GWS-盅础上增加了中文菜单操作功能,一次操作,微机自动完成全过程的测量。是目前最理想的介损测量设备。 该仪器同样适用于车间、试验室、科研单位测量高压电器设备的tg S及电容量;对绝缘油的损耗测试、更具有方便、简单、准确等优点。 该仪器可用正、反接线方法测量不接地或直接地的高压电器设备。仪器内部装备了高压升压变压器,并采取了过零合闸、防雷击等安全保护措施。试验过程中输出0.5K V?10kV不同等级的高压,操作简单、安全。 二、工作原理在交流电压作用下,电介质要消耗部分电能,这部分电能将转变为热能产生损耗。这种能量损耗叫做电介质的损耗。当电介质上施加交流电压时,电介质中的电压和电流间存在相角差W, W的余角S称为介质损耗角,S的正切tg S称为介质损耗角正切。tg S值是用来衡量电介质损耗的参数。仪器测量线路包括一标准回路(Cn)和一被试回路(Cx),如图1所示。标准回路由内置高稳定度标准电容器与测量线路组成,被试回路由被试品和测量线路组成。测量线路由取样电阻与前置放大器和A/D转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位等,再由单片机运用数字化实时采集方法,通过矢量运算便可得出试品的电容值和介质损耗正切值。 仪器内部已经采用了抗干扰措施,保证在外电场干扰下准确测量。

高压套管的介质损耗测试

三高压套管的介质损耗测试 (一)试验目的 高压套管大量采用油纸电容型绝缘结构,这类绝缘结构具有经济实用的优点。但当绝缘中的纸纤维吸收水分后,纤维中的β氢氧根之间的相互作用变弱,导电性能增加,机械性能变差,这是造成绝缘破坏的重要原因。受潮的纸纤维中的水分,可能来自绝缘油,也可能来自绝缘中原先存在的局部受潮部分,这类设备受潮后,介质损耗因数会增加。 液体绝缘材料如变压器油,受到污染或劣化后,极性物质增加,介质损耗因数也会从清洁状态下的0.05%左右上升到0.5%以上。 除了用介质损耗因数的大小及变化趋势判断设备的绝缘状况外,电容量的变化也可以发现电容型设备的绝缘的损坏。如一个或几个电容屏发生击穿短路,电容量会明显增加。 由此可见,测量绝缘介质的介质损耗因数及电容量可以有效地发现绝缘的老化、受潮、开裂、污染等不良状况。 (二)试验接线及试验设备 1、介质损耗因数的定义 绝缘介质在交流电压作用下的等值回路及相量图如图3-1所示。 图3-1绝缘介质在交流电压作用下的等值回路及相量图众所周知,在某一确定的频率下,介质可用确定的电阻与一确定的电容并联来等效,流过介质的电流由两部分组成,I CX为电容性电流的无功分量,I RX为电阻性电流的有功分量,介质的有功损耗将引起绝缘的发热,同时介质也存在着散热,而发热、散热跟表面积等有关,为此应测试与体积相对无关的量来判断绝缘状况,为此测试有功损耗除以无功损耗的值,此比值即为介质损耗因数。 Q=U·I CX P=U·I RX

则 Q P = CX RX I I =tgδ(3-1) 从公式(3-1)可以看到图3-1中介质损耗因数即为介质损失角δ的正切值tgδ。 2 几种典型介损测试仪的原理接线图 国外从20年代即开始使用西林电桥测量tgδ,目前介损测试电桥已向全自动、高精度、良好抗干扰性能方向发展,比较经典的有三种原理即西林型电桥、电流比较型电桥及M型电桥。下面分别作简要的介绍: (1)西林电桥的原理图3-2所示 图3-2西林电桥的原理图 图中当电桥平衡时,G显示为零,此时 3 R Z x= 4 Z Z x 根据实部虚部各相等可得: tgδ=ωR4C4 C≈ R R Cn 3 4 (当tgδ<<1 时) 根据R3、C4、R4的值可计算得出tgδ、 C的值。 从原理上讲,西林电桥测介质损耗没 有误差,但由于分布电容是无所不在的, 尤其是Cn必须有良好的屏蔽,当反接法 时,必须屏蔽掉B点对地的分布电容,正 接法时,必须屏蔽掉C点与B点间的分布 电容,但由于屏蔽层的采用增加了C4、 R4及R3两端的分布电容带来了新的误 差,以R3正接法为例,R3最图3-3

介质损耗测试仪正接法测试过程与方法

https://www.doczj.com/doc/062444556.html,时基电力 介质损耗测试仪正接法测试过程与方法 什么是正接法 正接法是用于测量高压电气设备介质损耗因数(δ)的一种接线方法,与正接法相对的还有‘反接法’,正接法测量介质损耗因数值小,反接法测量介质损耗因数值偏大,与反接法相比,正接法测试可以有效的减少防晕层表面电阻对介质损耗因数测试值的影响。 现场测量时,根据被试设备接地情况正确选择正接法或反接法。 正接法接线流程方法 当被试设备的低压测量端或二次端对地绝缘时,采用该方法。 将红色专用高压电缆从仪器后侧的HVx端上引出,高压屏蔽线皮接被试设备高压端。 将黑色专用低压电缆从仪器面板上的Cx端引出,低压芯线接被试设备低压端L 如下图,低压屏蔽线接被试设备屏蔽端E。(试品无屏蔽端则悬空)HVx及Cx 的芯线与屏蔽线之间严禁短接,否则无法取样,无法测量。

https://www.doczj.com/doc/062444556.html,时基电力 按照上图接好连接线之后,打开主机电源,屏幕显示主界面菜单,选择测量方式,该仪器提供两种测量方式,a:工频,b:异频测量,工频测量时在现场无干扰或者干扰较小时所采取的测量方式,它相对异频测量法效率要高,如果对仪器的原理不是特别了解,建议您选择异频方式测量,其次,选择测量方式,除了上述正接法,反接发之外还有一种是CVT的接法,按照实际的接线方式选择测量方式,随着CVT互感器越来越多,我们在后期也会更新一部分相关的技术文章,再次,选择测量电压,互干器、电力变压器的介质损耗测量建议选用10kv。 介质损耗测试仪 全自动抗干扰介质损耗测试仪是用于工频高压作用下,测量绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗角正切值(tgδ)和电容值(Cx);最高可输出电压10kv,采用47.5、52.5双频和50Hz测量,精度更高,对抗干扰能力更强,介质损耗测试仪可用正、反接线方法测量不接地或直接接地的高压

介损测试仪接线方式

FS3001变频高压介质损耗测试仪 一、概述 FS3001型抗干扰介质损耗测试仪是在我公司生产智能化介质损耗测量仪,变频(异频)抗干扰介质损耗测试仪之后,研制成功第五代一种新型的测量仪,随着城乡电网改造的不断深入,更高电站越来越多,倒相法、移相法,已不能满足现场测试需求,异频测量(变频),把50HZ变成其它频率,可以排除干扰。但由于电子技术的限制,其变频后的频率一般离50HZ 有一定距离,其50Hz条件下的电容值cx及tgδ值是换算模拟出来的,与真实工频测试有一定的距离,尤其对少数被试品,测出数据就有明显误差,经过综合比较,现研制一种新型介质损耗测量仪,其原理不改变频率,能得到50HZ条件下电容值cx及tgδ值,提高测量可靠性和准确性,完全抑制电场干扰,满足电场下的使用要求,该仪器体积最小,重量最轻,便于携带。有灵活的扩展性,通过接口与计算机连接,使用强大的软件附件,对仪器升级,人性化设计,全自动操作本仪器适合500kv及以下电站有干扰现场的试验。本仪器通过国家电力研究所及行业专家鉴定,并获得国家高电压计量站认证,已在江苏、湖南、广东、云南、辽宁、四川等多个变电站使用,为状态维修提供了可靠的数据。 二、介损测试仪试验频率选择方法 1)开机默认频,光标在‘变频’,表示45/55HZ自动变频,光标在‘定频’,表示50HZ 单频。 2)选择更多频率光标在‘变频’处,按‘确定’键1~2秒钟不放,这时仪器会发出‘嘀’的一声,表明进入频率选择菜单,通过‘增大’或‘减小’键选择所需的频率:5-HZ(45/55HZ)、

6-HZ(55/65HZ)、4-HZ(47.5/52.5HZ)自动双变频。最后再按下‘确定’键1秒钟,会听到仪器‘嘀’的一声,表明选取的频率已保存;光标在‘定频’处选取的方法步骤同上(45、47.5、 50、52.5、55、60、65HZ单频)。 三、介损测试仪接线方法 1、介损测试仪正接法 当被试设备的低压测量端或二次端对地绝缘时,采用该方法。 (1)将红色专用高压电缆从仪器后侧的HVx端上引出,高压屏蔽线皮接被试设备高压端。 (2)将黑色专用低压电缆从仪器面板上的Cx端引出,低压芯线接被试设备低压端L (见下图左);低压屏蔽线接被试设备屏蔽端E。(试品无屏蔽端则悬空) (3)HVx及Cx的芯线与屏蔽线之间严禁短接,否则无法取样,无法测量。 2、介损测试仪反接法 当被试设备的低压测量端或二次端对地无法绝缘,直接接地时,采用该方法。 (1)将红色专用高压电缆从仪器后侧的HVx端上引出,高压芯线接被试设备高压端;低压端接地(见上图右);此时的CX输入线悬空。 (2)严禁将HVx及Cx的芯线与屏蔽线之间短接,否则无法取样,无法开展测量。

变压器介质损耗测试仪使用说明书

一、变压器介质损耗测试仪概说 变压器介质损耗测试仪是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,用于工频高压下,测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx )。它淘汰了QSI高压电桥,具有操作简单、中文显示、打印,使用方便、无需换算、自带高压,抗干扰能力强等优点。JSY—03体积小、重量轻,是我厂的第三代智能化介质损耗测试仪。 二、变压器介质损耗测试仪技术指标 1.环境温度:0~40℃(液晶屏应避免长时日照) 2.相对湿度:30%~70% 3.供电电源:电压:220V±10%,频率:50±1Hz 5.输出功率:1KVA 6.显示分辨率:4位 7.测量范围: 介质损耗(tgδ):0-50% 电容容量(Cx)和加载电压: 2.5KV档:≤300nF(300000pF) 3KV档:≤200nF(200000pF) 5KV档:≤76nF(76000pF) 7.5KV档:≤34nF(34000pF) 10KV档:≤20nF(20000pF) 8.基本测量误差: 介质损耗(tgδ):1%±0.07%(加载电流20μA~500mA)正接 介质损耗(tgδ):2%±0.09%(加载电流5μA~20μA)反接 电容容量(Cx):1.5%±1.5pF 三、变压器介质损耗测试仪结构 仪器为升压与测量一体化结构,输出电压2.5KV~10KV五档可调,以适应各种需要,在测量时无需任何外部设备。接线与QSI电桥相似,但比其方便。 图一为仪器操作面板图,图二为仪器接线端面图。 ⑴显示窗————————液晶显示屏。 ⑵试验电压选择开关———当开关置于“关”时,仪器无高压输出。 ⑶操作键盘———————选择测量方式、起动、停止、打印等操作。 ⑷电源插座———————保险丝用5A。 ⑸电源开关———————电源通断。 ⑹起动灯————————指示高压输出。 ⑺打印机————————打印测试结果。 ★★★★⑻接地端子——————使用前,必须将该端子可靠接地!!! ★⑼测量电流输入端IX———有两个出线头,中心头(红色,有CX标记)应与被试品一端相接,屏蔽头(黑色,有E标记)是仪器内部高压输出一个参考端,在正接法测量时应接地;在反接法测量时应浮空;外接法参见“外接高压法”。 ★⑽标准电流输入端IN———仅当外接标准电容器进行测量时才用,该端应与外接标准电容器一端相连。IN必须小于100mA!!! ⑾测量高压输出端UH——只有一个大铁夹出线头(有UH标记),与被试品一端相接。

相关主题
文本预览
相关文档 最新文档