当前位置:文档之家› 型钢梁和组合梁的设计

型钢梁和组合梁的设计

型钢梁和组合梁的设计
型钢梁和组合梁的设计

型钢梁和组合梁的设计

一、考虑腹板屈曲后强度的组合梁设计

腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。

承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达到250时也不必设置纵向加劲肋。

1. 受剪腹板的极限承载力

腹板极限剪力设计值 V u 应按下列公式计算:

当8.0s ≤λ时 v w w u f t h V = (1a )

当2.18.0s ≤<λ时 [])8.0(5.01v w w u --=s f t h V λ (1b )

当2.1s >λ时 2.1v w w u

/s f t h V λ= (1c ) 式中 λs ──用于腹板受剪计算时的通用高厚比。

2.受弯腹板的极限承载力

腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。屈曲后的弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。

图1 受弯矩时腹板的有效宽度

假定腹板受压区有效高度为ρh c ,等分在h c 的两端,中部则扣去(1-ρ)h c 的高度,梁的中和轴也有下降。为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。

梁截面惯性矩为(忽略孔洞绕本身轴惯性矩) w c x c w c x xe t h I h t h I I 32)1(21)2(

)1(2ρρ--=--= (2)

梁截面模量折减系数为

x

w c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定:

当85.0≤b λ时 ρ=1.0

(4a ) 当25.185.0≤

(4b ) 当25.1>b λ时 b b λλρ/)/2.01(-= (4c )

梁的抗弯承载力设计值为

f W M x e x eu αγ= (5)

以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计

算。

3.弯矩和剪力共同作用下梁的极限承载力

图2 弯矩与剪力相关曲线

梁腹板同时承受弯矩和剪力的共同作用,承载力采用弯矩M 和剪力V 的相关关系曲线

确定。

假定弯矩不超过翼缘所提供的弯矩f M 时,腹板不参与承担弯矩作用,即在f M M ≤的

范围内相关关系为一水平线,0.1/=u V V 。

当截面全部有效而腹板边缘屈服时,腹板可以承受剪应力的平均值约为vy f 65.0左右。

对于薄腹板梁,腹板也同样可以负担剪力,可偏安全地取为仅承受剪力最大值u V 的0.5

倍,

即当5.0/≤u V V 时,取0.1/=eu M M 。

在图2所示相关曲线A 点(eu f M M /,1)和B 点(1,0.5)之间的曲线可用抛物线

表达,由此抛物线确定的验算式为

115.02≤--+???

? ??-f eu f u M M M M V V 这样,在弯矩和剪力共同作用下梁的承载力为

当≤f M M / 1.0时 u V V ≤

(6a ) 当5.0/≤u V V 时

eu M M ≤ (6b ) 其他情况 0.1)15.0(2≤--+-f eu f u M M M M V V (6c )

f h A h h A M f f f )(222

211+?= (7) 式中 M ,V ──梁的同一截面处同时产生的弯矩和剪力设计值;当V <0.5V u ,

取V =0.5V u ;当M

M f ——梁两翼缘所承担的弯矩设计值;

A f1、h 1——较大翼缘的截面积及其形心至梁中和轴的距离;

A f2、h 2——较小翼缘的截面积及其形心至梁中和轴的距离;

M eu ,V u ──梁抗弯和抗剪承载力设计值。

4.考虑腹板屈曲后强度的梁的加劲肋的设计

当仅配置支承加劲肋不能满足式(6)的要求时,应在两侧成对配置中间横向加劲肋。

(1)腹板高厚比超过170y f /235(受压翼缘扭转受到约束时)或超过150y

f /235(受压翼缘扭转未受到约束时)也可只设置横向加劲肋,其间距一般采用0)5.1~0.1(h a =。

(2)中间横向加劲肋 梁腹板在剪力作用下屈曲后以斜向张力场的形式继续承受剪力,梁的受力类似桁架,张力场的水平分力在相邻区格腹板之间传递和平衡,而竖向分力则由加劲肋承担,为此,横向加劲肋应按轴心压杆计算其在腹板平面外的稳定,其轴力为

cr w u s t h V N τ0-= (8)

若中间横向加劲肋还承受固定集中荷载F ,则

F t h V N cr w u s +-=τ0 (9)

(3)支座加劲肋 支座加劲肋除承受梁支座反力R 外,还承受张力场斜拉力的水平分力H t 。

200)/(1)(h a t h V H cr w a t +-=τ (10) H t 的作用点可取为距上翼缘h 0/4处(图3a )。

图3 梁端构造

为了增加抗弯能力,还应在梁外延的端部加设封头板。可采用下列方法之一进行计算:①将封头板与支座加劲肋之间视为竖向压弯构件,简支于梁上下翼缘,计算其强度和稳定;②将支座加劲肋按承受支座反力R 的轴心压杆计算,封头板截面积则不小于)16/(30ef H h A t c =,式中e 为支座加劲肋与封头板的距离;f 为钢材强度设计值。

梁端构造还有另一方案:即缩小支座加劲肋和第一道中间加劲肋的距离a 1(图3b ),使范围内的8.0≤s λ,此种情况的支座加劲肋就不会受到H t 的作用。

二、型钢梁的设计

型钢梁中应用最广泛的是工字钢和H 型钢。

型钢梁设计一般应满足强度、整体稳定和刚度的要求。型钢梁腹板和翼缘的宽厚比都不太大,局部稳定常可得到保证,不需进行验算。

首先按抗弯强度(当梁的整体稳定有保证时)求出需要的截面模量

)/(max f M W x nx γ= (11)

由截面模量选择合适的型钢,然后验算其他项目。由于型钢截面的翼缘和腹板厚度较大,不必验算局部稳定;端部无大的削弱时,也不必验算剪应力。而局部压应力也只在有较大集中荷载或支座反力处才验算。

三、梁的拼接和连接

1.梁的拼接

梁的拼接分为工厂拼接和工地拼接两种。由于钢材规格和现有钢材尺寸的限制,必须将

钢材接长,这种拼接常在工厂中进行,称为工厂拼接。由于运输或安装条件的限制,梁必须分段运输,然后在工地进行拼装连接,称为工地拼接。

型钢梁的拼接可采用对接焊缝连接(图4a ),但由于翼缘与腹板连接处不易焊透,故

有时采用拼接板拼接(图4b )。拼接位置均宜设在弯矩较小处。

图4 型钢梁的拼接

焊接组合梁的工厂拼接,翼缘和腹板的拼接位置最好错开并用直对接焊缝相连。腹板的

拼接焊缝与横向加劲肋之间至少应相距10w t (图5)。对接焊缝施焊时宜加引弧板,并采用一级或二级焊缝,这样焊缝可与主体金属等强。

图5 组合梁的工厂拼接

梁的工地拼接应使翼缘和腹板基本上在同一截面处断开,以便分段运输。高大的梁在工

地施焊时应将上、下翼缘的拼接边缘均做成向上开口的V 形坡口,以便俯焊(图6)。有时将翼缘和腹板的接头略为错开一些(图6b )。

图6 组合梁的工地拼接 图7 采用高强度螺栓的工地拼接

较重要或受动力荷载的大型梁,其工地拼接宜采用高强度螺栓(图7)。

当梁拼接处的对接焊缝采用三级焊缝时,应对受拉区翼缘焊缝进行验算。对用拼接板的

接头,应按下列规定的内力进行计算的内力进行计算:翼缘拼接板及其连接所承受的内力1N 为翼缘板的最大承载力

f A N fn ?=1 (12)

式中 fn A ——被拼接的翼缘板净截面积。

腹板拼接板及其连接,主要承受梁截面上的全部剪力V ,以及按刚度分配到腹板上的弯

矩I I M M w w /?=,式中w I 为腹板截面惯性矩;I 为整个梁截面的惯性矩。

2.次梁与主梁的连接

次梁与主梁的连接型式有叠接和平接两种。

叠接将次梁直接搁在主梁上面,用螺栓或焊缝连接,构造简单,但需要的结构高度大,其使用常受到限制。图8a 是次梁为简支梁时与主梁连接的构造,而图8b 是次梁为连续梁时与主梁连接的构造示例。如次梁截面较大时,应另采取构造措施防止支承处截面的扭转。

图8 次梁与主梁的叠接

平接(图9)是使次梁顶面与主梁相平或略高、略低于主梁顶面,从侧面与主梁的加劲

肋或在腹板上专没的短角钢或支托相连接。图9a 、b 、c 是次梁为简支梁时与主梁连接的构造,图8d 是次梁为连续梁时与主梁连接的构造。平接虽构造复杂,但可降低结构高度,在实际工程中应用较广泛。

图9 次梁与主梁的平接

四、组合梁的设计

1.截面选择

组合梁截面应满足强度、整体稳定、局部稳定和刚度的要求。设计组合梁时,首先需要

初步估计梁的截面高度、腹板厚度和翼缘尺寸。

(1)梁的截面高度

确定梁的截面高度应考虑建筑高度、刚度和经济三个方面的要求。.

建筑高度是指梁的底面到铺板顶面之间的高度,通常由生产工艺和使用要求决定。确定了建筑高度也就确定了梁的最大高度m ax h 。

刚度要求确定了梁的最小高度m in h 。刚度条件要求梁在全部荷载标准值作用下的挠度v 不大于容许挠度[]T v 。

梁的经济高度,梁用钢量最少的高度。经验公式为

)mm (30073-=x e W h (13)

式中x W 的单位为mm 3, e h 的单位为mm 。

实际采用的梁高,应介于建筑高度和最小高度之间,并接近经济高度。梁的腹板高度w h 可稍小于梁的高度,一般取腹板高度w h 为50mm 的倍数。

(2)腹板厚度

腹板厚度应满足抗剪强度的要求。初选截面时,可近似的假定最大剪应力为腹板平均剪应力的1.2倍,根据腹板的抗剪强度计算公式

v

w w f h V t m ax 2.1≥ (14) 由式(14)确定的w t 值往往偏小。为了考虑局部稳定和构造等因素,腹板厚度一般用下列经验公式进行估算

5.3w

w h t = (15)

式(15)中,w t 和w h 的单位均为mm 。实际采用的腹板厚度应考虑钢板的现有规格,

一般为2mm 的倍数。对于非吊车梁,腹板厚度取值宜比式(15)的计算值略小;对考虑腹板屈曲后强度的梁,腹板厚度可更小,但腹板高厚比不宜超过250y f /235。

(3)翼缘尺寸

图10 组合梁截面

已知腹板尺寸,可求得需要的翼缘截面积f A 。

已知 2221212

130h W h A h t I x f w x =??

? ??+= 由此得每个翼缘的面积

2132161h h t h h W A w w x f -= 近似取01h h h ≈≈,则翼缘面积为

06

1h t h W A w w x f -= (16) 翼缘板的宽度通常为1b =(1/6~l/2.5)h ,厚度t =f A /1b 。翼缘板常用单层板做成,

当厚度过大时,可采用双层板。

确定翼缘板的尺寸时,应注意满足局部稳定要求,使受压翼缘的外伸宽度b 与其厚度t

之比b /t ≤15y f /235(弹性设计)或13y f /235(考虑塑性发展)。选择翼缘尺寸时,同样应符合钢板规格,宽度取10mm 的倍数,厚度取2mm 的倍数。

2.截面验算

根据初选的截面尺寸,求出截面的几何特性,然后进行验算。梁的截面验算包括强度、刚度、整体稳定和局部稳定四个方面。

3.组合梁截面沿长度的改变

梁的弯矩是沿梁的长度变化的,因此,梁的截面如能随弯矩的变化而变化,则可节约钢

材。对跨度较小的梁,加工量的增加,不宜改变截面。为了便于制造,一般只改变一次截面。

单层翼缘板的焊接梁改变截面时,宜改变翼缘板的宽度(图11)而不改变其厚度。

图11 梁翼缘宽度的改变

对承受均布荷载的梁,截面改变位置在距支座l /6处最有利。较窄翼缘板宽度f b '应由截

面开始改变处的弯矩1M 确定。为了减少应力集中,宽板应从截面开始改变处向一侧以不大于1∶2.5(动力荷载时1∶4)的斜度放坡,然后与窄板对接。多层翼缘板的梁,可用切断外层板的办法来改变梁的截面(图12)。理论切断点的位置可由计算确定。为了保证被切断的翼缘板在理论切断处能正常参加工作,其外伸长度1l 应满足下列要求:

端部有正面角焊缝:

当f h ≥0.751t 时, 1l ≥1b (17a )

当f h <0.751t 时, 1l ≥1.51b (17b )

端部无正面角焊缝 1l ≥21b (18)

1b 和1t 分别为被切断翼缘板的宽度和厚度;f h 为侧面角焊缝和正面角焊缝的焊脚尺寸。

为了降低梁的建筑高度,简支梁可以在靠近支座处减小其高度,而使翼缘截面保持不变(图13)其中图13a 构造简单制作方便。梁端部高度应根据抗剪强度要求确定,但不宜小于跨中高度的1/2。

图12 翼缘板的切断 图13 变高度梁

4.焊接组合梁翼缘焊缝的计算

当梁弯曲时,由于相邻截面中作用在翼缘截面的弯曲正应力有差值,翼缘与腹板间将产生水平剪应力(图14)。沿梁单位长度的水平剪力为

x

w w x w I VS t t I VS t v 1111=?==τ

图14 翼缘焊缝的水平剪力

当腹板与翼缘板用角焊缝连接时,角焊缝有效截面上承受的剪应力f τ不应超过角焊缝强度设计值w f f

w f x

f f f f I h VS h v ≤=?=

4.17.0211τ 需要的焊脚尺寸为:

w

f x f f I VS h 4.11≥ (19) 当梁的翼缘上受有固定集中荷载而末设置支承加劲肋时,或受有移动集中荷载(如吊车轮压)时,上翼缘与腹板之间的连接焊缝,除承受沿焊缝长度方向的剪应力f τ外,还承受垂直于焊缝长度方向的局部压应力

z f z e f l h F l h F

4.12??σ==

因此,受有局部压应力的上翼缘与腹板之间的连接焊缝应按下式计算强度

2124.11???? ??+???? ??x z f f

I VS l F h β?≤w f f 从而 f h ≥2124.11???? ??+???? ??x z

f w

f I VS l F h β? (20) 对直接承受动力荷载的梁,f β=1.0;对其他梁,f β=1.22。

图15 焊透的T 形焊缝

对承受动力荷载的梁,腹板与上翼缘的连接焊缝常采用焊透的T 形接头对接与角接组

合焊缝,如图15所示,此种焊缝与主体金属等强,不用计算。

型钢混凝土梁-钢筋混凝土柱组合节点施工工法

型钢混凝土梁-钢筋混凝土柱组合节点施工工法 广西建工集团第一建筑工程有限责任公司 唐光暹郑毅成翠艳葛智超黄扬 1.前言 型钢混凝土结构是一种内配型钢的组合结构,它综合了钢筋混凝土结构及钢结构的特点,能充分发挥钢结构和钢筋混凝土结构各自材料的优点,具有承载力高,延性好,抗震性能优越等优点,成为结构工程领域重要的研究方向并在工程建设中广泛应用。 型钢混凝土梁-钢筋混凝土柱组合节点是一种新型组合节点形式,国内外均未见相关文献报道。该类节点复杂,型钢的吊装定位、节点核心区钢筋绑扎、混凝土的浇筑工艺均不同于普通的钢筋混凝土节点,也与常规型钢混凝土梁柱节点有所区别。我们知道,节点是有效连接梁、柱构件并使二者共同工作的重要部分,其施工质量直接影响到整个结构的安全性,该节点的施工工艺将是施工控制的重点。 我公司在施工四川省南充市泰合·青年城项目过程中,通过优化创新、方案改革,总结了型钢混凝土梁-钢筋混凝土柱组合节点施工方法。采用本工法,该工程节点施工质量满足设计要求,缩短工期,节约成本。表明本工法可推广性强,在跨度大的转换层结构及类似工程领域具有广泛的应用前景。 2.工法特点 2.1 应用CAD三维建模技术,优化型钢梁开孔位置及节点区内钢筋精确定位排布,提高型钢梁加工制作的准确性。 2.2型钢梁构件实行工厂化制作,避免了现场纠偏、补开孔的工作量,保证构件尺寸、精度及开孔位置的准确,保证了柱纵向受力钢筋能准确、顺利的穿过型钢梁。 2.3 对节点区自密实混凝土进行试配,并根据试验最终确定自密实混凝土工作性控制参数范围,保证了节点区混凝土的质量。 2.4充分利用梁内型钢的结构刚度进行梁支撑系统的设计计算,梁侧模板需设对拉螺栓时,可在型钢梁腹板上设耳板,将其固定于耳板上,耳板应在钢结构深化设计时考虑并在工厂加工时完成。 2.5本工法具有施工简单、快捷、易于掌握,施工综合费用低等特点,保证了质量和施工进度,有较高的应用推广价值。

型钢梁和组合梁的设计

型钢梁和组合梁的设计 一、考虑腹板屈曲后强度的组合梁设计 腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。 承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达到250时也不必设置纵向加劲肋。 1. 受剪腹板的极限承载力 腹板极限剪力设计值 V u 应按下列公式计算: 当8.0s ≤λ时 v w w u f t h V = (1a ) 当2.18.0s ≤<λ时 [])8.0(5.01v w w u --=s f t h V λ (1b ) 当2.1s >λ时 2.1v w w u /s f t h V λ= (1c ) 式中 λs ──用于腹板受剪计算时的通用高厚比。 2.受弯腹板的极限承载力 腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。屈曲后的弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。 图1 受弯矩时腹板的有效宽度 假定腹板受压区有效高度为ρh c ,等分在h c 的两端,中部则扣去(1-ρ)h c 的高度,梁的中和轴也有下降。为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。 梁截面惯性矩为(忽略孔洞绕本身轴惯性矩) w c x c w c x xe t h I h t h I I 32)1(21)2( )1(2ρρ--=--= (2)

梁截面模量折减系数为 x w c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定: 当85.0≤b λ时 ρ=1.0 (4a ) 当25.185.0≤b λ时 b b λλρ/)/2.01(-= (4c ) 梁的抗弯承载力设计值为 f W M x e x eu αγ= (5) 以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计 算。 3.弯矩和剪力共同作用下梁的极限承载力 图2 弯矩与剪力相关曲线 梁腹板同时承受弯矩和剪力的共同作用,承载力采用弯矩M 和剪力V 的相关关系曲线 确定。 假定弯矩不超过翼缘所提供的弯矩f M 时,腹板不参与承担弯矩作用,即在f M M ≤的 范围内相关关系为一水平线,0.1/=u V V 。 当截面全部有效而腹板边缘屈服时,腹板可以承受剪应力的平均值约为vy f 65.0左右。 对于薄腹板梁,腹板也同样可以负担剪力,可偏安全地取为仅承受剪力最大值u V 的0.5 倍,

钢-混组合梁桥的设计优化及应用

龙源期刊网 https://www.doczj.com/doc/062375082.html, 钢-混组合梁桥的设计优化及应用 作者:周俊书李兵任亚 来源:《中国科技纵横》2020年第06期 摘要:近年来,钢-混凝土组合梁桥因其施工快速及结构性能优越而越来越多地被应用于高速公路的建设中。以某高速公路互通主线的钢-混组合连续梁桥为背景,介绍了该类型梁桥的基本结构形式,阐述了钢-混组合连续梁桥设计过程中优化负弯矩区混凝土桥面板受力采取的措施,为类似桥梁设计优化提供思路。 关键词:钢-混组合梁;连接件;负弯矩区混凝土 中图分类号:U448.2 文献标识码:A 文章编号:1671-2064(2020)06-0130-02 1设计背景 随着科学技术的进步,中国桥梁建设工作在近年来迅速发展,预应力混凝土箱梁由于施工工艺成熟,施工质量优异等优点而被广泛应用。然而,随着桥梁对大跨径需求的增加,传统的混凝土箱梁桥由于结构自重大、地震响应大、腹板后期开裂等问题日益突出,已逐渐满足不了大跨径桥梁建设的需求。大跨径桥梁趋于选择自重更轻、跨越能力更大的结构形式。钢-混凝土组合梁桥相较于传统的混凝土箱梁桥具有自重小、结构轻巧美观、施工周期短、不中断下穿公路的通行等优点,而越来越多地被应用于高速公路的建设中。 钢-混凝土组合梁是由混凝土桥面板和钢梁通过剪力连接件组合共同承受荷载的梁。在设计过程中,尽力让混凝土桥面板承受压应力,钢梁承受拉应力,以此充分发挥各自材料特性来使结构的经济效益最大化。然而在钢-混组合连续梁的设计过程中,不可避免墩存在顶负弯矩区域的混凝土桥面板承受拉应力、钢梁承受压应力。此时需要采取措施控制混凝土桥面板开裂和钢梁承压局部失稳的问题。如根据路线设计要求,半径较小的曲線组合梁桥还应考虑弯扭耦合效应[1]。即将通车的杨寨东互通主线桥主跨部分采用36m+60m+42m的组合结构,本文将介绍其设计优化过程中采取的相关措施。 2工程概况 杨寨东互通K0+412.5主线大桥位于武汉城市圈环线高速公路大随至汉十段杨寨东互通内,为跨越麻竹高速而设。桥梁左幅桥宽8.25m,跨径为11×20m+(36+60+42)m+4×20m的连续小箱梁和钢-混凝土组合梁;桥梁右幅桥宽12.75m,跨径为11×20m+(42+60+36) m+4×20m的连续小箱梁和钢-混凝土组合梁。其中跨越麻竹高速主线按照8车道41m路幅预留,且建设期不中断麻竹高速公路的交通通行,受制于上跨麻竹高速主线的净空要求,预应力混凝土箱梁方案不再适用。在钢-混凝土组合梁与钢箱梁的方案选择过程中,钢筋混凝土桥面

型钢混凝土梁施工方案

型钢混凝土梁施工方案 一、编制依据及原则 1、本工程设计图纸及合同文件 2、施工组织设计 3、《混凝土结构施工质量验收规范》GB50204-2002 4、《钢结构施工质量验收规范》GB50205-2002 5、《建筑钢结构焊接技术规范》JGJ81-2002 6、《钢结构高强度焊接连接的设计、施工及验收规范》JGJ82-91 7、《山东省建筑工程施工工艺规程》DBJ14-032-2004 二、工程概况 本工程为独立基础、框架结构,局部为型钢混凝土梁结构,总建筑面积9470㎡,地下一层,地上四层,局部五层。位于德州市经济开发区,是由XXXX投资建设,山东鲁北地质工程勘察院勘察,青岛房地产建筑设计院有限责任公司设计,山东聊建集团总公司负责施工,本工程抗震等级为四级六度设防,地基基础设计等级为丙级,结构安全等级为二级,多层建筑二类防火设计,地下防水设计等级为Ⅰ级,屋面防水设计等级为Ⅱ级。 该工程一~四层的C~E轴间跨度为16米的框架梁为型钢混凝土梁,每层型钢梁跨度均为16米。一层型钢梁:400×800的共1架重3.33T,500×900的 4架共重15.83T。二层型钢梁:400×900的 4架共重13.94T,450×950的共 1架重3.64T。三层型钢梁:400×900的 3架共重10.46T。四层型钢梁:500×950的 2架共重7.91T,500×1000的共1架重4.11T,,梁内型钢向两侧外伸八分

之一跨度。混凝土等级为C30,粗骨料最大料径≤25mm。 型钢采用Q235-B,焊条采用E43型 二、施工准备 (一)、材料准备 1、型钢梁及其配件 (1)、“工”字钢的制作采用工厂制作,现场拼装。 型钢构件出厂前,应向安装单位提供每个构件的质量检查记录及产品合格证,安装单位在安装前,要对外形尺寸、预留孔直径及位置、连接件位置及角度、焊缝、栓钉焊的加工质量等进行全面检查,在符合设计文件和有关标准后,方可进行安装。凡偏差大于有关规定、规程、规定的允许偏差者,安装前应在地面进行维修。(2)、构配件应配套进场,且必须有出厂质量证明书和有关技术文件等,能满足安装要求。并应有明显标识,严禁混装混放和标识不清。 2、钢筋类原材 (1)钢筋的品种、规格、型号、机械性能等必须符合设计要求要求且必须有合格证、性能检测报告和进场复验单。 (2)钢筋进场时,应按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499等的规定抽取试件做力学性能检验。其质量必须符合有关标准规定。 (3)采用C30商品混凝土,并有相关配比单、坍落度及测温记录 2、机具准备 (1)起重设备 塔式起重机、汽车式起重机。 (2)主要机具

型钢混凝土梁施工工艺及验收标准

型钢混凝土梁施工工艺及验收标准 1、工艺流程 型钢梁对接→钢梁清理→焊接定位钢筋→焊接锚固钢板→型钢梁支撑体系及底模的架设→连接安装梁下部主筋→连接安装梁上部主筋→绑扎内箍筋→连接安装内箍筋外的纵向钢筋→安装绑扎梁腰筋→外箍筋绑扎→挂保护层垫块→隐蔽验收→侧模安装→梁、板砼浇筑。 2施工工艺 型钢与钢筋的连接,型钢安装就位,校正无误,并连结牢固验收合格后,方可进行普通钢筋的绑扎、连接、锚固。型钢混凝土结构的钢筋绑扎,与钢筋混凝土结构中的钢筋绑扎基本相同。 3型钢梁侧模的安装 为保证梁的截面尺寸,除竖向均采用钢管加固外,在梁高的方向上主楞到梁底距离依次是:150mm,1100mm,主楞材料为不小于φ48*3.0圆钢管;穿梁螺栓水平间距每隔700mm设置φ16钢筋对拉螺栓加固,按此安装方法计算,可以满足型钢梁截面在浇筑混凝土时的受力要求,之于此方式考虑,主要因为避免与型钢混凝土梁的拉筋同时在型钢梁上过多钻孔削弱型钢受力性能。 4剪力钉做法 型钢腹板全长栽焊剪力钉;A19@300,L≧65mm;型钢伸入支座同墙宽,型钢

当与暗柱主筋有冲突处,应切割U行豁口,主筋通过后补焊同级别钢板。剪力钢筋焊接接缝为三级。 剪力钉的焊接应按照工厂所制定的焊接工艺进行,必要时应保括预热工序。当温度低于0℃或钢板表面潮湿时不应进行焊接,对于有影响焊接质量的物质必须清除干净。将剪力钉焊在钢梁上的其位置误差应符合设计要求;焊接工艺试验除选择电流、电压、焊接时间和焊枪;剪力钉焊接前,应除去锈蚀、油污、水份及其它不利于焊接的物质。焊接瓷环使用前在150℃的烤炉中烘干2小时。钢梁上翼缘应处在平焊位置,焊接部位应打磨清理,范围大于2倍剪力钉直径;剪力钉施焊时,与钢板要保持垂直,焊枪保持稳定不动,直至焊接金属完全固化。 剪力钉焊接程序原则上从翼缘长度方向中心逐渐向两边展开,接地导线尽可能对称于被焊杆件。 对焊接剪力钉的质量检验应包括外观检查和锤击弯曲检验。 外观检查应观察剪力钉的熔化长度、焊缝饱满度、焊缝宽度、高度以及剪力钉与底金属结合程度。以H wm、H wmin分别代表焊缝沿剪力钉轴线方向的平均高度和最小高度,D w、D分别代表焊缝的平均直径和剪力钉直径,则应满足: H wm≥0.2D;H wmin≥0.15D;D w≥1.25D,方为合格。 焊接剪力钉时,每日每台班开始焊接前或更换一种焊接条件时都必须按规定的焊接工艺试焊两个剪力钉,进行30°弯曲试验,即用锤击或套筒把剪力钉从原来轴线弯曲30°,其焊缝和热影响区没有肉眼可见的裂缝为合格,若有一个破坏应重新焊两个进行试验,若仍不合要求,应调整焊接工艺参数重新试焊,直到合格为止。若试验的剪力钉未发现破坏现象,则该钉可保留在弯曲位置。

1-型钢混凝土梁施工方案

目录 一、编制依据.......................................................... - 1 - 二、工程概况......................................................... - 1 - 2.1建筑设计概况................................................... - 1 - 2.2结构概况....................................................... - 2 - 三、施工特点及施工安排................................................ - 3 - 四、材料准备.......................................................... - 3 - 4.1、型钢梁及其配件................................................ - 3 - 4.2、钢筋类原材.................................................... - 3 - 4.3、机具准备...................................................... - 4 - 4.4、技术准备...................................................... - 4 - 4.5、作业准备...................................................... - 4 - 五、施工工艺及验收标准................................................ - 5 - 5.1、工艺流程...................................................... - 5 - 5.2施工工艺....................................................... - 5 - 5.3型钢梁侧模的安装............................................... - 5 - 5.4剪力钉做法..................................................... - 5 - 5.5焊接工程:..................................................... - 6 - 5.6焊接检查:..................................................... - 7 - 5.7质量标准....................................................... - 9 - 5.8 型钢梁的安装与校正............................................. - 9 - 5.9梁、板混凝土浇筑.............................................. - 10 - 5.10钢筋安装质量检查............................................. - 11 - 5.11施工试验计划................................................. - 11 - 六、安全文明施工..................................................... - 11 - 七、成品保护......................................................... - 12 -

《钢结构》之型钢梁与组合梁的设计(doc 11页)

《钢结构》网上辅导材料六 型钢梁和组合梁的设计 一、考虑腹板屈曲后强度的组合梁设计 腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。 承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达到250时也不必设置纵向加劲肋。 1. 受剪腹板的极限承载力 腹板极限剪力设计值 V u 应按下列公式计算: 当8.0s ≤λ时 v w w u f t h V = (1a ) 当2.18.0s ≤<λ时 [])8.0(5.01v w w u --=s f t h V λ (1b ) 当2.1s >λ时 2.1v w w u /s f t h V λ= (1c ) 式中 λs ──用于腹板受剪计算时的通用高厚比。 2.受弯腹板的极限承载力 腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。屈曲后的弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。 图1 受弯矩时腹板的有效宽度 假定腹板受压区有效高度为ρh c ,等分在h c 的两端,中部则扣去(1-ρ)h c 的高度,梁的中和轴也有下降。为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。 梁截面惯性矩为(忽略孔洞绕本身轴惯性矩)

w c x c w c x xe t h I h t h I I 32)1(2 1)2( )1(2ρρ--=--= (2) 梁截面模量折减系数为 x w c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定: 当85.0≤b λ时 ρ=1.0 (4a ) 当25.185.0≤b λ时 b b λλρ/)/2.01(-= (4 c ) 梁的抗弯承载力设计值为 f W M x e x eu αγ= (5) 以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计算。 3.弯矩和剪力共同作用下梁的极限承载力 图2 弯矩与剪力相关曲线 梁腹板同时承受弯矩和剪力的共同作用,承载力采用弯矩M 和剪力V 的相关关系曲线 确定。 假定弯矩不超过翼缘所提供的弯矩f M 时,腹板不参与承担弯矩作用,即在f M M ≤

DB33∕T 2283-2020 公路钢板混凝土组合梁桥设计规范

ICS 93.080.01 CCS P 28 DB33浙江省地方标准 DB33/T 2283—2020 公路钢板混凝土组合梁桥设计规范 Specification for design of highway steel plate-concrete composite girder bridg e 2020 - 11 - 27 发布2020 - 12 - 27 实施 浙江省市场监督管理局发布

DB33/T 2283-2020 目次 前言................................................................................ II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 材料 (2) 4.1 一般规定 (2) 4.2 钢材 (2) 4.3 混凝土 (3) 4.4 连接件 (3) 5 基本规定 (3) 5.1 一般规定 (3) 5.2 结构形式 (3) 5.3 结构布置 (3) 6 结构设计 (6) 6.1 一般规定 (6) 6.2 钢结构 (6) 6.3 混凝土桥面板 (10) 6.4 连接件 (12) 6.5 支座 (12) 6.6 连续组合梁负弯矩区 (12) 7 耐久性设计 (12) 7.1 一般规定 (13) 7.2 排水设计 (13) 7.3 维修空间 (13) 7.4 钢结构 (14) 7.5 混凝土桥面板 (14) 7.6 连接件 (15) 7.7 钢混结合部 (15) 8 结构计算 (15) 8.1 一般规定 (15) 8.2 作用及作用组合 (15) 8.3 计算模型 (17) 8.4 承载能力极限状态计算 (17) 8.5 正常使用极限状态计算 (17) I

组合梁桥的发展与应用

组合梁桥的发展与应用 钢和混凝土是建造桥梁的主要结构材料,这两种材料在物理和力学性能上具有不同的优势和劣势,如果只采用其中一类材料建造桥梁,其结构性能往往受到材料性能的制约而有所不足。通过某种方式将钢材与混凝土组合在一起共同工作,可以充分发挥不同材料的优势,扬长避短,从而为桥梁工程师提供了更广阔的创作空间。钢-混凝土组合梁桥在很多情况下具有良好的综合技术经济效益和社会效益。例如,组合梁桥相对于混凝土桥上部结构高度较低、自重轻、地震作用小,相应使得结构的延性提高、基础造价降低。同时,组合梁桥便于工厂化生产、现场安装质量高、施工费用低、施工速度快,并可以适用于传统砖石及混凝土结构难以应用的情况。相对于钢桥,钢-混凝土组合桥将钢梁与混凝土桥面板组合后,截面惯性矩和抗弯承载力均显著提高,混凝土桥面板对钢梁稳定性的增强使得钢材强度可以充分发挥。由焊接抗剪栓钉所增加的费用要明显低于减少用钢量所节省的费用,从而可以降低造价。国外的研究表明,对于跨度超过18m的桥梁,组合桥在综合效益上具有一定优势。例如,法国统计指出,当跨径为30m至110m,特别是60m至80m范围内,钢-混凝土组合桥的单位面积造价要低于混凝土桥18%。在这一跨度范围内,法国近年建造的桥梁中有85%都采用了组合技术。目前,欧美等国跨径在15m以下的小跨度桥梁多采用钢筋混凝土梁桥,15m~25m跨径则用预应力混凝土梁桥,25m~60m跨径往往采用钢-混凝土组合梁桥。钢梁和桁架梁则一般用于大跨径桥梁。而在大跨度的斜拉桥中,采用组合桥面也可以获得很高的经济效益。通常情况下,钢梁主要承担斜拉桥的桥面弯矩,混凝土桥面板则主要承担轴向力。 我国桥梁过去多采用钢筋混凝土和预应力混凝土桥以及圬工拱桥等结构形式。随着道路等级的不断提高和建设规模的扩大,桥梁呈现出跨径不断增大、桥型不断丰富、结构不断轻型化的发展趋势,同时对桥梁建设的经济性也越来越重视。在这种背景和需求条件下,这些传统桥梁结构形式在许多情况下已经不能满足设计、建造和使用的要求。近年来,钢%混凝土组合结构桥梁在我国的应我国桥梁过去多采用钢筋混凝土和预应力混凝土桥以及圬工拱桥等结构形式。随着道路等级的不断提高和建设规模的扩大,桥梁呈现出跨径不断增大、桥型不断丰富结构不断轻型化的发展趋势,同时对桥梁建设的经济性也越来越重视。在这种背景和需求条件下,这些传统桥梁结构形式在许多情况下已经不能满足设计、建造和使用的要求。近年来,钢%混凝土组合结构桥梁在我国的应用实践表明,它兼有钢桥和混凝土桥的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,将成为桥梁结构 体系的重要发展方向之一。2组合结构桥梁的研究及应用2.1钢-混凝土组合梁桥的基本理论和设计方法组合梁最初的计算方法是基于弹性理论的换算截面法。这种方法假设钢材与混凝土均为理想弹性体,两者连接可靠,完全共同变形,通过弹性模量比将两种材料换算成一种 材料进行计算。目前,换算截面法仍是对组合桥进行弹性分析和设计的基本方法。考虑到混凝土是一种弹塑性材料,钢材是理想的弹塑性材料,计算构件或结构的极限承载力时,在能够 保证塑性变形充分发展的前提下,有时需要考虑塑性发展带来承载力的提高。1951年美国的N.M.Newmark等人提出了求解组合梁交界面剪力的微分方程解法。这种方法假设材料均为弹性、抗剪连接件的荷载-滑移曲线为线性关系,通过求解微分方程得到组合梁的挠曲线。国内外对钢-混凝土组合梁的研究表明,当连接件的数量达到完全抗剪连接时,连接件数量增加 对组合梁的极限强度几乎没有影响;当连接件的数量少到一定程度后,组合梁的极限强度开始降低,直到最后只有钢梁本身提供的承载力1975年R.P.Johnson 根据前人的研究提出了简化的分析方法,提出部分抗剪连接组合梁的极限抗弯承载力可根据完全抗剪连接和纯钢梁 的极限抗弯承载力按连接件数进行线性插值而确定。 随着有限元理论的发展,有限元法被用于钢- 混凝土组合桥梁的研究。由于两种材料组合所引起的复杂性,有限元分析中重点研究的内容为:采用合理的二维或三维混凝土本构

混凝土T型梁设计

一. 设计要求 钢筋混凝土简支梁,构件处于正常坏境(环境类别为一类),安全等级为二级,试设计该梁并绘制其配筋详图。 跨度取值为:根据学号尾数在1120m之间选取。 其他条件及要求: ①材料:采用C30混凝土,纵筋采用400钢筋;箍筋采用300钢筋。 ②荷载:活载标准值 35 恒载 g 1 10 自重荷载γ=25 3。 ③截面尺寸:取翼缘宽度'=800,其他尺寸根据荷载大小自行拟定。 二. 设计内容 1.已知设计参数 C30混凝土:α 1=1.00 β 1 =0.80 14.3 2 1.43 2 纵筋(400):360 2′=360 2ξ0.518 箍筋(300):270 2′=270 2 梁的总跨度13m 计算跨度L =12.6m 净跨度L′=12.2m 2.拟定梁截面尺寸 梁的截面高 取:1000 截面宽度 取:300 由以上可得′=84 初选90 则- 3.内力计算 自重: 按永久荷载控制

按可变荷载控制 故最大设计弯矩值为 4.判定T形截面类型 故为第二类T形截面5.纵筋计算 取4Φ20;8Φ25 验算: 故满足条件 6.抗弯复核

抗弯符合要求 7.腹筋设计 (1)剪力计算 按恒定荷载考虑: 按可变荷载考虑: 故取434.68 剪力图: (2)验算截面尺寸 所以,截面满足要求(3)验算腹筋配置 故需按计算配置腹筋(4)腹筋配置 选用双肢箍筋(

310271.1270 43.124.024.0min ,310347.1250300101sv -?=?==>-?=?==yv f t f sv bs sv A ρρ满足条件 将跨中抵抗正弯矩钢筋弯起)491(2512 mm A S =Φ 弯起筋水平投影长度:1000-30×2-120=820 弯起筋距支座边缘距离:200+820=1020 故不需布置另一批弯起筋 8.复核 (1)抗弯复核 箍筋直径取8,则保护层厚度32 > 20,满足要求 (2)抗剪复核 KN V KN A f h s A f bh f V s sb sv yv t cv 68.434129.43545sin 3053608.0910250 101 27091030043.17.0sin 8.0y 00u =>=????+??+???=++=αα满足条件

混凝土梁钢筋与型钢柱组合连接技术

逆施混凝土梁钢筋与正施型钢柱组合连接技术 【摘 要】 xxxxx 广场工程逆施结构与正施型钢混凝土组合结构中采用了“逆施混凝土梁钢筋与正施型钢柱组合连接技术”,解决了窄间隙下逆施混凝土梁筋与正施型钢柱连接钢筋不同心、钢筋无伸缩的连接难题,为正逆施粗直径钢筋连接、特别是正施结构采用型钢混凝土组合结构钢筋连接技术作出了成功的探索。 【关键词】 可焊接套筒 熔槽帮条焊 型钢混凝土组合结构 钢筋连接 正逆施 前言:随着施工技术的发展,高层建筑越来越多,鉴于逆作法施工在工程周期方面的优势、型钢混凝土组合结构在抗震、防火及造价方面的优势,逆作法施工工艺及型钢混凝土组合结构在高层、超高层建筑中应用越来越多。而高层、超高层结构中混凝土梁配筋量大、钢筋排数多、钢筋间距较小,加之结构体系抗震等级高,钢结构体系不允许开洞,且正逆施连接部位空间较小,如何实现逆施混凝土梁钢筋与正施型钢柱的合理连接,成为此类工程施工的难点。 1 工程概况 xxxx 广场工程包含1栋办公楼,3栋公寓楼及商业裙楼,设有4层地下室。1栋办公楼及3栋公寓楼为超高层建筑,办公楼共53层,总高度258m ;A 、B 、C 三栋公寓分别为57层、53层、49层, 总高度分别为191m 、179m 、168m 。 工程抗震设防烈度为7度,主体结构 抗震等级为特一级或一级。 本工程地下结构采用敞开式逆作法施工工艺,逆施结构与正施结构型钢柱间距最小为600mm 如图1所 示。由于抗震等级高,与型钢柱连接 的逆施混凝土梁钢筋直径大(最大达 ф32)、排数多(大部分为3排),为保证结构的整体性,设计禁止在型钢柱上开洞,要求梁钢筋与型钢柱连接采用机械连接方式直接连接。 图1 逆施混凝土与正施型钢柱对接平面图

型钢混凝土梁箍筋要求

混合结构中型钢混凝土梁有哪些构造要求? 1 型钢混凝土梁的混凝土强度等级不宜低于C30,混凝土粗骨料最大直径不宜大于25mm,型钢宜采用Q235及Q345级钢材,也可采用Q390或其他符合结构性能要求的钢材。 2 型钢混凝土梁的最小配筋率不宜小于0.30%。梁的纵向受力钢筋不宜超过两排;配置两排时,第二排钢筋宜配置在型钢截面外侧。梁的纵筋宜避免穿过柱中型钢翼缘。当梁的腹板高度大于450mm时,在梁的两侧面应沿高度配置纵向构造钢筋,纵向构造钢筋的间距不宜大于200mm。 3 型钢混凝土梁中型钢的混凝土保护层厚度不宜小于100mm,梁纵向钢筋净间距及梁纵向钢筋与型钢骨架的最小净距不应小于30mm,且不小于粗骨料最大粒径的1.5倍及梁纵向钢筋直径的1.5倍。 4 型钢混凝土梁中的纵向受力钢筋宜采用机械连接。如纵向钢筋需贯穿型钢柱腹板并以90°弯折固定在柱截面内时,抗震设计的弯折前直段长度不应小于0.40倍的钢筋抗震基本锚固长度labE,弯折直段长度不应小于15倍纵向钢筋直径;非抗震设计的弯折前直段长度不应小于0.40倍的钢筋基本锚固长度lab,弯折直段长度不应小于12倍纵向钢筋直径。 5 梁上开洞不宜大于梁截面总高的40%,且不宜大于内含型钢截面高度的70%,并应位于梁高及型钢高度的中间区域。

6 型钢混凝土悬臂梁自由端的纵向受力钢筋应伸至自由端且向下弯折,型钢梁的上翼缘宜设置栓钉。型钢混凝土转换梁在型钢上翼缘宜设置栓钉。栓钉的最大间距不宜大于200,栓钉的最小间距沿梁轴线方向不应小于6倍的栓钉杆直径,垂直梁方向的间距不应小于4倍的栓钉杆直径,且栓钉中心至型钢板件边缘的距离不应小于50mm。栓钉顶面的混凝土保护层厚度不应小于15mm。

钢结构课程设计--简支钢板梁桥

钢结构设计原理课程设计 计算说明书 班级 姓名 学号 指导教师

《钢结构设计原理》课程设计 一、设计目的 1、巩固、提高、充实和运用所学的《钢结构》课程有关理论知识; 2、培养和锻炼独立工作能力及分析和解决实际问题的能力; 3、为将来毕业设计打下基础。 二、设计要求 必须符合钢结构设计规范GBJ17-88规定的有关设计公式及设计内容。 三、设计题目 按照表格中所给设计任务条件,进行简支钢板梁桥的主梁设计,截面都采用焊接双轴对称工型截面。 四、设计内容 包括主梁的截面选择、变截面设计、截面校核、翼缘焊缝计算、腹板加劲肋配置、支座处支承加劲肋设计等内容,并画出设计后的主梁构造图。 五、已知条件 跨度:14米 钢号:Q345 焊条号:E50 恒荷载标准值:88kN F F F F F F/2 F/2 L

活载标准值:196kN 集中荷载个数:6个 集中荷载跨度C=2米 六、其它说明 1、恒、活荷载的分项系数分别为1. 2、1.4; 2、表中恒荷载标准值包括主梁上的次梁自重,且集中荷载F 是恒、活荷载通过次梁传到主梁上; 3、主梁自重估计值均为m kN q /4=,且主梁钢板采用手工焊接; 4、主梁允许最大挠度值[]400/1/=l v T ; 5、主梁的截面建筑容许最大高度为mm 2500。 七、设计过程 ㈠主梁设计 1 主梁自重标准值m kN q GK /4=,设计值为m kN m kN q /8.4/42.1=?=。 则主梁最大剪力(支座处)为 kN kN ql F V 6.11732148.438026226max =?? ? ???+?=+?= 最大弯矩(跨中)为 m kN m kN F F F F ql Rl M ?=???? ? ??-?-?-?-?-?=-?-?-?--=4.444238033805380723808148.421413303572 822 2max 采用焊接工字形组合截面梁,估计翼缘板厚度mm t f 16≥,故抗弯强度设计值 2/295mm N f =。 计算需要的截面模量为 3336 1014342295 05.1104.4442mm mm f M W x x x ?=??==γ

型钢混凝土设计要点

型钢混凝土设计要点 型钢混凝土(Steel Reinforced Concrete,简称SRC)结构是以型钢为骨架并在型钢周围配置钢筋和浇筑混凝土的埋入式组合结构体系。由于型钢混凝土的内部型钢与外包混凝土形成整体,共同受力,其受力性能优于这两种结构的简单叠加,因此型钢混凝土结构在我国已得到日益广泛的应用。 01SRC组合结构的结构类型 早年美国及日本为了解决钢结构建筑的耐火、耐久性及增加钢结构房屋的抗水平力作用的刚度和避免受压屈曲, 简单地在钢结构外部包围以砖石砌体, 在静载作用时取得一定的效果, 日本关东大地震, 建筑物震害严重, 但是, 钢结构外包钢筋混凝土的建筑(日本兴业银行大楼) 却没有震害, 这才开始确认了SRC 结构的抗震性, 以后再经过多次大地震害调查, 又进一步证实实腹式型钢的结构(SRC结构) 的抗震性能是优越的。SRC结构兼有钢结构和钢筋混凝土结构的各自优点, 而又克服了他们在单独使用时的一些缺点。

目前SRC结构构件在各种结构体系中的应用一般有以下方式: (1) SRC纯框架或支撑框架结构; (2) SRC框架(框筒) ———SRC剪力墙(核心筒)或钢筋混凝土剪力墙(核心筒) 结构; (3)地下室或底部若干层采用SRC, 上部采用钢结构; (4)地下室或底部若干层采用SRC, 上部采用钢筋混凝土结构; (5)框架柱采用SRC, 梁采用钢或钢筋混凝土; (6)在一般剪力墙和筒体———剪力墙中采用SRC剪力墙。 02SRC梁正截面承载力计算方法 型钢混凝土结构可根据内部配钢形式的不同分为实腹式和空腹式两大类。实腹式型钢通常采用由钢板焊接拼制成或直接轧制而成的工字型、H 型、口字型、十字型截面等;空腹式型钢一般由缀板或缀条连接角钢或槽钢构成空间桁架式骨架。

(完整版)钢结构设计原理题库及答案(2)

1.下列情况中,属于正常使用极限状态的情况是 【 D 】 A 强度破坏 B 丧失稳定 C 连接破坏 D 动荷载作用下过大的振动 2.钢材作为设计依据的强度指标是 【 C 】 A 比例极限f p B 弹性极限f e C 屈服强度f y D 极限强度f u 3.需要进行疲劳计算条件是:直接承受动力荷载重复作用的应力循环次数 n 大于或等于 【 A 】 A 5×104 B 2×104 C 5×105 D 5×106 4.焊接部位的应力幅计算公式为 【 B 】 A max min 0.7σσσ?=- B max min σσσ?=- C max min 0.7σσσ?=- D max min σσσ?=+ 5.应力循环特征值(应力比)ρ=σmin /σmax 将影响钢材的疲劳强度。在其它条件完全相同 情况下,下列疲劳强度最低的是 【 A 】 A 对称循环ρ=-1 B 应力循环特征值ρ=+1 C 脉冲循环ρ=0 D 以压为主的应力循环 6.与侧焊缝相比,端焊缝的 【 B 】 A 疲劳强度更高 B 静力强度更高 C 塑性更好 D 韧性更好 7.钢材的屈强比是指 【 C 】 A 比例极限与极限强度的比值 B 弹性极限与极限强度的比值 C 屈服强度与极限强度的比值 D 极限强度与比例极限的比值. 8.钢材因反复荷载作用而发生的破坏称为 【 B 】 A 塑性破坏 B 疲劳破坏 C 脆性断裂 D 反复破坏. 9.规范规定:侧焊缝的计算长度不超过60 h f ,这是因为侧焊缝过长 【 C 】 A 不经济 B 弧坑处应力集中相互影响大 C 计算结果不可靠 D 不便于施工 10.下列施焊方位中,操作最困难、焊缝质量最不容易保证的施焊方位是 【 D 】 A 平焊 B 立焊 C 横焊 D 仰焊 11.有一由两不等肢角钢短肢连接组成的T 形截面轴心受力构件,与节点板焊接连接,则肢 背、肢尖内力分配系数1k 、2k 为 【 A 】 A 25.0,75.021==k k B 30.0,70.021==k k C 35.0,65.021==k k D 35.0,75.021==k k 12.轴心受力构件用侧焊缝连接,侧焊缝有效截面上的剪应力沿焊缝长度方向的分布是 【 A 】 A.两头大中间小 B. 两头小中间大 C.均匀分布 D.直线分布 . 13.焊接残余应力不影响钢构件的 【 B 】

如何估计钢梁、柱截面尺寸

梁的设计: 1.型钢梁设计 由梁的荷载和支承情况根据内力计算得到梁的最大弯矩,根据选用的型钢材料确定其抗弯强度设计值,由此求得所需要的梁净截面抵抗矩,然后在型钢规格表中选择型钢的型号。最后对选定的型钢梁截面进行强度、刚度和整体稳定验算。 2.组合梁设计 梁的截面选择步骤为:估算梁的高度(一般用经济高度)、确定腹板的厚度和翼缘尺寸,然后验算梁的强度、稳定和刚度。 柱的设计: 1.实腹柱设计 截面选择的步骤如下: (1)假定柱的长细比,一般在50—90范围之内,轴力大而长度小时,长细比取小值,反之取大值; (2)根据已假定的长细比,查得轴心受压稳定系数。然后根据已知轴向力和钢材抗压强度设计值求得所需截面积; (3)求出截面两个主轴方向所需的回转半径(根据已知的两个方向的计算长度和长细比); (4)由此计算出截面轮廓尺寸的高和宽; (5)通过求得的截面面积和宽以及高,再根据构造要求、钢材规格等条件,选择柱的截面形式和确定实际尺寸; (6)验算实腹柱的截面强度、刚度,整稳和局稳; 2.格构柱设计 截面选择的步骤如下: (1)假定长细比,一般在50—90之间; (2)计算柱绕实轴整体稳定,用与实腹柱相同的方法和步骤选出肢件的截面规格。根据假定的长细比,查稳定系数,最后确定所需的截面面积; (3)计算所需回转半径; (4)算出截面轮廓尺寸宽度和高度; (5)计算虚轴长细比;通过求得的面积、高度和宽度以及考虑到钢材规格及构造要求选择柱的截面形式和确定实际尺寸。 (6)强度、刚度和整稳验算; (7)缀条设计和缀板设计; 我总结了个轴心受压格构柱的设计步骤: 1、初选肢件截面,并验算柱绕实轴的刚度和整稳; (1) 假定绕实轴的长细比λy/,一般在50~90之间。 (2) 求A r、iy r。(按整个柱截面绕实轴的整稳求A r) (3) 查选分肢截面。 (4) 验算绕实轴的刚度和整稳。 2、确定分肢间距a,并验算柱绕虚轴的刚度和整稳; (1) 假定绕虚轴的换算长细比λ0x/。 根据等稳定原则,一般假定λ0x/=λy。 (2) 求λx r、ix r。 对缀条柱,先假定缀条角钢型号,查面积A L,进而求A1x。

波形钢腹板组合梁桥课程设计

波形钢腹板组合梁桥课程设计 姓名: 班级: 学号: 指导老师:

摘要 波形钢腹板组合梁桥由于具有比较优越的结构性能,近几年来在国内国外的运用越来越多,主要特点体现在:(1)自重小(相比与传统PC梁桥),有利于减轻结构自重,抗震性能好(2)波形钢腹板主要承担剪力,不能承担纵向轴力,纵向弯曲可不计入波形腹板的影响(3)波形钢腹板PC箱梁抗弯刚度、抗扭刚度与横向刚度均比混凝土PC箱梁小,设计中应注意按适当间距设计横隔板以增大其抗扭能力。除此之外,波形钢腹板组合箱梁特别适合于大、中跨径的多跨连续梁桥及连续刚构桥,当跨径超过50米时,经济效果很明显。MIDAS/Civil 是针对土木结构,特别是分析象预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式,同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析,通过建模分析运算可以可以大大减轻工程计算量,提高分析设计效率,给土木工程结构分析带来很大的方便。 关键词:波形钢腹板桥梁;迈达斯;有限元分析 Abstract Corrugated steel web composite girder bridge due to structure with superior performance, more and more used in recent years at home and abroad, the main characteristics embodied in: (1) the small weight, good seismic performance of corrugated steel web plate (2) the main bear shear (3) the corrugated steel web PC box girder bending stiffness and torsional stiffness and lateral stiffness are smaller than the PC box girder concrete.In addition, corrugated steel web composite box girder is particularly suitable for large, medium span of multi-span continuous beam bridge and

型钢混凝土梁柱施工方案.

型钢混凝土柱施工方案 (一)结构柱模板设计及施工 本工程框架柱模板均采用覆膜木胶合板,沿模板短边设置50×100方木,木枋与九夹板之间用钉子钉牢,模板就位后用短钢管临时固定,柱模板用柱箍加固。 (1) 对于截面小于800mm 的柱模板加固采用双向 “十”字形排列的对拉螺栓相结合的方法。示意图如1-1: 钢管箍@500mm (2)柱模每边设置两道对拉螺栓从而确保模板的刚度。示意图如1-2: 柱子模板支撑示意图 48钢管 (3)对于单边截面大于1200mm 的柱模,该长边再增设一道拉杆,其余做法 1-1 800mm 以下方柱模板支设示意图 图1-2 800-1200mm 柱模板支设示意图

同上,如图1-3所示。 18mm厚的复合木多层覆膜面板 (4)异型柱模板(核心筒体剪力墙) 工程的异型柱模板支设见示意见图8.2.1-4。 图1-3 单边截面大于1200m 柱模板示意图 图1-4 异型柱模板支设示意图

(5)劲性型钢混凝土柱模板。 本工程有大量的方形、圆形型钢柱,柱的模板设计同普通方形、圆形柱模板,但其加固方式不同,型钢柱模板加固螺杆焊接固定于柱箍筋上。如图8.2.1-5所示。 图8.2.1-5型钢柱模板支设示意图 (二)柱钢筋绑扎 (1)工艺流程:套柱箍筋→竖向受力筋连接→画箍筋间距线→绑箍筋 (2)施工要点: 1) 套柱箍筋: 按图纸要求间距,计算好每根柱箍筋数量,先将箍筋套在下层伸出的搭接筋上,然后立柱子钢筋,进行直螺纹连接。 2) 采用直螺纹连接柱钢筋。 3) 画箍筋间距线:在立好的柱子竖向钢筋上,按图纸要求做好皮数杆,用粉笔划箍筋间距线,保证箍筋间距,如图2-1。

文本预览
相关文档 最新文档