当前位置:文档之家› 高磁导率锰锌铁氧体材料的发展

高磁导率锰锌铁氧体材料的发展

高磁导率锰锌铁氧体材料的发展
高磁导率锰锌铁氧体材料的发展

高磁导率锰锌铁氧体材料的发展

软磁铁氧体材料是国民经济中一种非常重要的基础功能材料,广泛应用于各类电子产品中,例如:通信设备,家用电器,计算机,汽车等。近年来,电子产品向轻、薄、短、小方向的发展,对软磁铁氧体材料的性能提出了更高的要求,其中高磁导率锰锌材料是随着市场发展变化最快,市场前景最好的材料之一。高磁导率锰锌铁氧体材料主要用于电子电路宽带变压器,综合业务数字网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明等领域的脉冲变压器,抗电磁波滤波器等领域。这些领域的磁心基本上是在弱场下工作,这时材料的高磁导率就会显示出独特的优越性。

首先,材料的磁导率较高时,较少的线圈匝数就可以获得需求的电感量,进而有效地降低线圈的直流电阻及由其引起的损耗;其次,使用磁导率高的材料能明显减小变压器的体积,有利于器件和系统的小型化、轻量化。这些特点顺应了电子产品的发展趋势,目前其产量已占全部软磁铁氧体总产量的25%以上。随着通信、计算机、网络等电子信息产业的高速发展,其市场需求以年均20%以上的速度高速增长。因此,国内外相关企业对高磁导率MnZn铁氧体的研究都非常重视,研究成果不断涌现。材料研究进展早期高导材料的发展只是片面追求高磁导率和一定的居里温度。然而,这种材料在实际中的应用十分有限,应用市场大量的需求要求材料不仅要具有高的初始磁导率,同时必须具有良好的温度特性、频率特性、低的损耗、高的阻抗和良好的叠加性能等。这就要求在提高磁导率的同时,兼顾其他性

能参数,使材料性能达到一个很好的平衡。

高磁导率领域的研究已经从简单的追求高磁导率方面转移到提高综合性能上来,这是当前高磁导率铁氧体的发展趋势,其市场需求具有以下一些显著特征:

1.普遍的宽温要求目前,市场需求对许多材料性能都提出了宽温的要求。1)磁导率具有宽温特性。现代通信设备的户外设施,如中继器、增音机、微波接力站、海底电缆、光缆水下设备等,不仅要求耐高温,还要承受严寒,要求通信设备都能可靠稳定地工作。因而很多客户都要求材料在-40~+80°C,甚至到125°C的宽温范围,电感都能满足要求,这就要求材料从低温到高温都具有很高的磁导率。TDK公司的H5C4,是这类材料的典型代表。2)具有高居里点。这种材料主要应用在汽车电子中,由于汽车内的特殊条件,要求工作温度在-50~+150℃,一般高磁导率材料的居里温度很难达到这么高,西门子公司为填补这块空白,专门开发了T39等材料,居里温度大于160℃。3)阻抗具有宽温特性。对用于抗电磁干扰的器件共模扼流圈来说最重要的一个元件指标是阻抗,一些客户要求材料在很宽的温度范围内阻抗都能够满足要求。上面提到的T39就是这方面的材料之一。4)低谐波失真(THD)具有宽温特性。随着网络技术的快速发展,xDSL调制解调变压器得到了广泛的应用。这类材料的磁心要求具有低的THD。现在许多下游企业对磁心THD的要求,不再仅仅局限在常温,往往要求材料在-20℃,甚至更宽的温度范围内的都能满足要求。5)高直流叠加具有宽温特性。TDK公司开发出的

在-40~+85℃的温度区间具有良好叠加特性的DNW45材料就是为了应对这方面的市场需求。

2.低谐波失真(THD)要求近年来,通信技术快速发展,xDSL (包含非对称数字用户线ADSL和对称数字用户线SDSL)技术得到广泛引用。对用来实现隔离、阻抗匹配和高低通滤波功能的高磁导率铁氧体磁心的需求量越来越大,同时对铁氧体磁心提出了更高的要求。为了在信号传输过程中减小波形失真,减少传输错误,延长传输距离,要求变压器具有低的总谐波失真。总谐波失真与磁心材料的性能、磁心的几何形状和变压器的设计直接相关。其中与磁心材料性能相关的指标是比磁滞损耗系数ηB,它表征铁氧体材料在一定磁通密度变化情况下的损耗特性。国内外厂家都十分重视这一市场,并积极应对,开发出了各自相应的低THD材料。典型牌号有EPCOS公司的新T38,磁导率为10000±30%,ηB

3.直流叠加要求随着局域网(LAN)大规模发展,100Mbps的传输速度成为主流,为了达到器件的小型化和薄型化,满足直流偏置情况下电感的要求,需要大量具有良好叠加性能的铁氧体磁心。在这方面TDK公司先开发出了DN45材料,μi=4500±25%,其使用温度在0~70℃之间,与传统的HP5材料(5000±25%)相比,其直流叠加特性提高30%以上。随后,随着宽温要求的提出,该公司又开发出了能工作在-40~85℃的DNW45新材料,其μi=4200±25%,与DN45相比,其直流叠加特性又提高23%。Steward公司也开发出了类似的46材料。

4.高阻抗要求电子技术的迅猛发展,使得电磁污染问题日益突出。为了限制电磁干扰的危害,许多国家都对电子产品制定了电磁兼容标准,要求电子设备本身抗电磁干扰要达到一定的标准,同时对周边的电磁干扰必须限制在一定程度。这就需要大量的抗电磁干扰磁心,其最重要的元件指标就是阻抗。德国EPCOS公司的新T38以及日本TDK公司HS52、HS72、HS10等材料主要针对的就是这一部分市场。

此外,越来越多的客户还要求材料具有高的稳定性,主要包括:1)应力稳定性,要求材料在由于绕线,封装,压簧等使用过程产生应力后电感的跌落要小;2)时间的稳定性,要求材料减落系数要小;3)温度稳定性,要求温度系数、抗热冲击能力等满足要求;4)磁场稳定性,包括弱磁场下品质因数Q值和比磁滞损耗系数ηB的稳定性等。表1列出了当前世界各大公司生产的高磁导率锰锌材料的典型类别和一些具有代表性的牌号,其中:类型1)仅要求材料具有高磁导率和一定的居里温度。典型的代表是日本TDK公司的H5C5,其初始磁导率为30000±30%,为当前国际行业中最高水平。此外还有德国EPCOS公司的T56,其初始磁导率为20000±30%;荷兰Ferroxcube公司的3E8和3E9, 其初始磁导率分别为18000±20%和20000±20%。类型2)要求材料具有宽温高磁导率特性。典型材料为TDK公司的H5C4,其初始磁导率为12000±25%,-20℃时,μi39000。此外还有FDK的2H15B, 其初始磁导率为10000±20%,在-40~85℃都具有较高的磁导率;

类型3)强调材料具有宽频特性。典型代表为Steward公司的40材料,其10000的磁导率能够保持到250kHz以上;类型4)强调低谐波失真(THD),典型材料为上文提到的TDK公司的DN40,DN70,台湾越峰的A101,赢赛拉公司的10TB;类型5)强调材料具有良好的叠加性能。典型材料为上文提到的TDK公司的DN45;类型6)要求材料同时具有高磁导率和高Bs特性。典型材料为TDK 公司的DN50,其初始磁导率为5200±20%,Bs=550mT(25℃),380mT(100℃);类型7)强调材料的良好的叠加性能,并且能在很宽的温度实现。典型材料为上文提到的TDK公司的DNW45,Steward公司的46材料;类型8)强调温度特性和高阻抗特性。典型材料为上文提到的EPCOS公司的T39, 其居里温度大于160℃,并且在从-40~150℃区间有良好的阻抗特性;类型9)强调材料同时具有宽频特性和高阻抗特性。典型材料牌号为TDK公司的HS52,HS72,HS10。类型10)强调材料同时具有宽频特性、高阻抗特性和低谐波失真。

典型代表为EPCOS公司的新T38,其初始磁导率为10000±30%,阻抗的峰值在700kHz以上,并且比磁滞损耗系数ηB随着市场需求的变化,新的材料还将不断产生。产业发展趋势近年来,西方发达国家的磁性材料工业纷纷向中国转移。国外主要的高磁导率锰锌材料相关企业,如日本的TDK、FDK、赢赛拉,欧洲的Ferroxcube、EPCOS等都纷纷在大陆投资,创立独资或者合资公司,建立生产基地,产量逐年大幅度增长。并且这种转移还将继

续。这主要是由于我国具有:1)廉价的劳动力;2)丰富的原材料资源;3)巨大的国内市场。并且这些特点在今后很长的一段时间仍将存在。这种转移一方面增强了中国的磁性材料生产总量和产品的档次,壮大了中国磁性材料工业队伍,加速了中国成为世界磁性材料生产基地和销售的市场;另一方面使得中国磁性材料市场的竞争更加剧烈。由于这些企业具有技术优势,同时获得了国内廉价的劳动力资源和原材料资源,对国内的企业造成十分大的压力。

为迎接挑战,增强竞争能力,可以从以下几个方面入手。

1.进一步壮大经营规模中国磁性材料工业发展速度惊人,现在基本形成了自己的产业体系,同时出现了一批行业龙头企业。高磁导率锰锌铁氧体相关企业天通股份和金瑞高科已经上市,天通和东磁,产量上已经排在世界前列。但是与国外大公司相比,经营规模仍然太小。例如2005财政年度中国最大的磁性材料生产企业年销售额在25.2亿;而厦门TDK公司销售额就达到27.6亿,日本TDK公司年净销售收入约61.48亿美元(496.3亿人民币)。中国磁性材料企业只有进一步壮大规模,强强联合,优势互补,在搞好主营业务的前提下,进行多元化经营,才能进一步增强企业的抗风险能力。同时,规模壮大,企业才更有实力进行高端产品开发投入,提高产品的利润率,增强其竞争优势。行业的龙头日本TDK公司2005财政年度用于研究开发的经费达到了363亿日元(25.5亿人民币),比我国最大的磁性材料生产企业的销售额还要多。

2.提升产品开发能力,实施知识产权战略过去,中国磁性材料

行业基本上走的是低成本扩张战略,产品档次主要是中低档。如今,国外具有技术优势的企业进入中国,同样获得了廉价的劳动力,我国企业的低成本优势将不再明显,这导致国内磁性材料企业在竞争中处于劣势,许多企业将被淘汰。在这种情况下,中国高磁导率锰锌铁氧体相关企业必须注重技术进步,提升研发能力,使产品性能紧跟国际市场,并发展出自己的独特优势,获得专有的知识产权,使其他企业无法替代,这样才能在市场竞争中立于不败。在这种背景下,中国高磁导率锰锌铁氧体相关企业开始重视技术进步,加大技术投入。大型企业开始自建研究所,注意人才的引进、培养和使用,许多企业聘请了国内、国外专家指导研究开发和参与生产管理,并加强与大学,科研院所的合作,行业技术水平得到了大幅度提高。今后高磁导率锰锌铁氧体相关企业将在技术进步方面进行更大的努力,这样才能在国际竞争中取得优势。

3.重视上下游产业的联合上下游产业的联合是企业发展自己的重要方式。与上游原材料企业联合一方面可以稳定原材料供应,保证产品性能的一致性;另一方面可以减小原材料涨价的影响,提高企业的抗市场风险能力。而做好与下游客户的沟通,进行联合开发,根据客户要求,及时做出反馈,开发出适应市场需求的新材料,是企业提高产品利润,占据市场的重要方式。这要求企业有一批高素质的中间人才,既要懂材料、元器件,又要了解下游器件、整机。这样才能进行良好的沟通,提供良好的服务,建立客户对企业的信心,不断扩大自己在同业中的优势。此外,中国高磁导率锰锌铁氧体相关企业还必

需提高管理水平和信息化水平并解决行业内部企业自律差、恶性竞争等问题,才能真正在市场竞争中占据优势。

铁氧体材料在滤波中的应用

电磁干扰抑制铁氧体磁环、磁珠等由于使用方便、价格低廉而倍受设计人员的青睐,它的主要优点如下:

1) 使用非常方便,直接套在需要滤波的电缆上即可。

2) 不象其它滤波方式那样需要接地,因此对结构设计、线路板设计没有特殊的要求。

3) 作为共模扼流圈使用时,不会造成信号失真,这对于传输高频信号的导线而言非常可贵。

电磁干扰抑制铁氧体与普通铁氧体的最大区别在于它具有很大的损耗,用这种铁氧体做磁芯制作的电感,其特性更接近电阻。它是一个电阻值随频率增加而增加的电阻,当高频信号通过铁氧体时,电磁能量以热的形式耗散掉。

要充分发挥铁氧体的性能,下面一些注意事项十分重要:

A) 铁氧体磁环(磁珠)的效果与电路阻抗有关:电路的阻抗越低,则铁氧体磁环或磁珠的滤波效果越好。因此,在一般铁氧体材料

的产品手册中,并不给出铁氧体材料的插入损耗,而是给出铁氧体材料的阻抗,铁氧体材料的阻抗越大,滤波效果也越好。

B) 电流的影响:当穿过铁氧体的导线中流过较大的电流时,滤波器的低频插入损耗会变小,高频插入损耗变化不大。要避免这种情况发生,在电源线上使用时,可以将电源线与电源回流线同时穿过铁氧体。

C) 铁氧体材料的选择:根据要抑制干扰的频率不同,选择不同磁导率的铁氧体材料。铁氧体材料的磁导率越高,低频的阻抗越大,高频的阻抗越小。

D) 铁氧体磁环的尺寸确定:磁环的内外径差越大,轴向越长,阻抗越大。但内径一定要包紧导线。因此,要获得大的衰减,在铁氧体磁环内径包紧导线的前提下,尽量使用体积较大的磁环。

E) 共模扼流圈的匝数:增加穿过磁环的匝数可以增加低频的阻抗,但是由于寄生电容增加,高频的阻抗会减小。盲目增加匝数来增加衰减量是一个常见的错误。当需要抑制的干扰频带较宽时,可在两个磁环上绕不同的匝数。

F) 电缆上铁氧体磁环的个数:增加电缆上的铁氧体磁环的个数,可以增加低频的阻抗,但高频的阻抗会减小。这是因为寄生电容增加的缘故。

G) 铁氧体磁环的安装位置:一般尽量靠近干扰源。对于屏蔽机箱上的电缆,磁环要尽量靠近机箱的电缆进出口。

H) 与电容式滤波连接器一起使用效果更好:由于铁氧体磁环的效果取决于电路的阻抗,电路的阻抗越低,则磁环的效果越明显。因此当原来的电缆两端安装了电容式滤波连接器时,其阻抗很低,磁环的效果更明显。铁氧体磁芯的线圈在频率较低时,仍然是一个电感,对于这种单个电感构成的滤波电路而言,截止频率为:Fco = 1 / (2? RsL),Rs是源电路阻抗与负载电路阻抗的串联值。

小型化片式磁性元件的发展状况

随着微电子电路、表面安装技术(SMT)的采用和不断发展完善,轻、薄、小成为衡量电子整机产品的重要标志。而要使电子设备小型化,首先就要考虑电子元件的小型化。

SMC片式元件不仅能使电子产品小型化,而且能实现整机装配的高度自动化。小型化片式元件的广泛应用,致使电子产品制造方式发生了深刻变化,制造厂商希望所印制电路板全部采用片式元件。最近20年来,三大元源元件中的电阻器和电容器的片式化技术发展十分迅速,产品种类和规格日趋齐全,已达到大批量应用阶段,而小型化片式磁性元件(包括电感器、磁珠、滤波器、微波铁氧体器件等),由于工艺难度较大,故发展相对缓慢。为适应现代通信、计算机、视听设备、电子办公设备、汽车电子系统、军事电子装备以及电磁兼容

(EMC)等的需要,近年来,一些国家投入大量人力财力来研究开发磁性元件的片式化技术,从而有力地推动了小型化片式化磁性元件的发展。

片式电感器及其相关复合元件

我们通常所指的电感器包括广义的电感器件如变压器、线圈、扼流圈、磁珠以及与电感器相关的复合元件。从结构上看,片式电感器可分为绕线型和叠层型两类。前者是将细的导线绕在软磁铁氧体磁芯上制成,外层一般用树脂封固。其工艺继承性强。但体积小型化有限,目前尺寸为2.5×2.0mm的产品已商品化。而叠层片式电感器则不用绕线,是用铁氧体浆料和导体浆料交替印刷、叠层、烧结,形成闭合磁路;它采用先进的厚膜多层印刷技术和叠层生产工艺,实现了超小型表面安装。

近来,在个人电脑的I/O线及液晶显示器外围的总线附近,所使用的众多抑制噪声元件不仅需要小型化,而且要求多连化(像多连片状电阻器一样),目的是为了适合多条线路,并提高安装效率。面对这种日益高涨的需求,国外已出现一种阵列式高损耗型叠层片式电感器,尺寸为3.2×1.6mm,可适用于四条线,它不仅在性能方面具有互换性,而且能有效克服因阵列化产生的发热、串扰等缺憾。与此同时,在叠层片式磁珠的基础上也发展出将若干个磁珠集成到一起的片式磁珠阵列(磁珠排),这是一种能有效抑制电磁辐射和电磁噪声的小型化片式元件。根据相邻磁珠间的不同耦合方式,磁珠阵列分为常模和共模两类产品,主要用于高密度组装、功能强大的笔记本电脑、计

算机主板接口、电源总线母线排以及数据总线时钟信号等多出口位置。

作为电源负载的电子机器,一旦内部产生电磁波干扰信号,它就会变成天线,向外放射噪声,影响周围电子机器正常工作。为此,在电源输出端需使用片式直流电源线路用EMI滤波器。这种滤波器由于大容量四端结构的叠层陶瓷电容器、穿心电容器和磁珠组成,可除去450KHz~1GHz的宽频带噪声。

片式信号线路EMI滤波器由于有陡直的衰减特性,特别适合有效信号频率与噪声频率接近的场合,如用于RGB信号线路和数字机器高速数字信号线路。

小型化片式微波铁氧体器件

小型化片式微波铁氧体环形器、隔离器是为满足军事装备和现代通信整机高可靠性、高度集成化的需要而发展起来的一类新型微小型、超小型铁氧体器件,它们包括单片式微带器件、“落入式”(Drop -in)或“插入式”(Plug-in)器件以及用于微波低频段的薄膜集中器件。国外把它们统称为“落入式”。由于这类器件“没有接头”,靠引线或者中心导体延伸线与其它集成电路连接,具有尺寸小、重量轻、磁屏蔽、可直接贴装到带线或微带是上等优点,因而在雷达、导弹、收发机、导航、数据通信线路、移动通信、电子对抗、测量仪器中得到大量应用。

高磁导率锰锌铁氧体材料的发展

高磁导率锰锌铁氧体材料的发展 软磁铁氧体材料是国民经济中一种非常重要的基础功能材料,广泛应用于各类电子产品中,例如:通信设备,家用电器,计算机,汽车等。近年来,电子产品向轻、薄、短、小方向的发展,对软磁铁氧体材料的性能提出了更高的要求,其中高磁导率锰锌材料是随着市场发展变化最快,市场前景最好的材料之一。高磁导率锰锌铁氧体材料主要用于电子电路宽带变压器,综合业务数字网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明等领域的脉冲变压器,抗电磁波滤波器等领域。这些领域的磁心基本上是在弱场下工作,这时材料的高磁导率就会显示出独特的优越性。 首先,材料的磁导率较高时,较少的线圈匝数就可以获得需求的电感量,进而有效地降低线圈的直流电阻及由其引起的损耗;其次,使用磁导率高的材料能明显减小变压器的体积,有利于器件和系统的小型化、轻量化。这些特点顺应了电子产品的发展趋势,目前其产量已占全部软磁铁氧体总产量的25%以上。随着通信、计算机、网络等电子信息产业的高速发展,其市场需求以年均20%以上的速度高速增长。因此,国内外相关企业对高磁导率MnZn铁氧体的研究都非常重视,研究成果不断涌现。材料研究进展早期高导材料的发展只是片面追求高磁导率和一定的居里温度。然而,这种材料在实际中的应用十分有限,应用市场大量的需求要求材料不仅要具有高的初始磁导率,同时必须具有良好的温度特性、频率特性、低的损耗、高的阻抗和良好的叠加性能等。这就要求在提高磁导率的同时,兼顾其他性

能参数,使材料性能达到一个很好的平衡。 高磁导率领域的研究已经从简单的追求高磁导率方面转移到提高综合性能上来,这是当前高磁导率铁氧体的发展趋势,其市场需求具有以下一些显著特征: 1.普遍的宽温要求目前,市场需求对许多材料性能都提出了宽温的要求。1)磁导率具有宽温特性。现代通信设备的户外设施,如中继器、增音机、微波接力站、海底电缆、光缆水下设备等,不仅要求耐高温,还要承受严寒,要求通信设备都能可靠稳定地工作。因而很多客户都要求材料在-40~+80°C,甚至到125°C的宽温范围,电感都能满足要求,这就要求材料从低温到高温都具有很高的磁导率。TDK公司的H5C4,是这类材料的典型代表。2)具有高居里点。这种材料主要应用在汽车电子中,由于汽车内的特殊条件,要求工作温度在-50~+150℃,一般高磁导率材料的居里温度很难达到这么高,西门子公司为填补这块空白,专门开发了T39等材料,居里温度大于160℃。3)阻抗具有宽温特性。对用于抗电磁干扰的器件共模扼流圈来说最重要的一个元件指标是阻抗,一些客户要求材料在很宽的温度范围内阻抗都能够满足要求。上面提到的T39就是这方面的材料之一。4)低谐波失真(THD)具有宽温特性。随着网络技术的快速发展,xDSL调制解调变压器得到了广泛的应用。这类材料的磁心要求具有低的THD。现在许多下游企业对磁心THD的要求,不再仅仅局限在常温,往往要求材料在-20℃,甚至更宽的温度范围内的都能满足要求。5)高直流叠加具有宽温特性。TDK公司开发出的

测量磁导率

一、测量磁导率 一.实验目的:测量介质中的磁导率大小 二.实验器材:DH4512型霍尔效应实验仪和测试仪一套,线圈一副(N匝)万用表一个三.实验步骤 1. 测量并计算磁场强度H ○1测量线圈周长L。 ○2线圈通电,测的线圈中的电流为I0,则总的电流为I M=N ?I0 ○3由磁介质安培环路定理的积分形式可知:∮c H ?dl=I故H ?L= N ?I0,H=(N ?I0)/L. 2.测量并计算磁感应强度B——利用霍尔效应实验 ○1实验原理: 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X 正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按平均速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e B 式中:e 为电子电量,为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为:f l E

锰锌铁氧体

锰锌铁氧体 本文来自维库电子市场网https://www.doczj.com/doc/061470583.html,/news/, 本文地址:https://www.doczj.com/doc/061470583.html,/news/html/2007-5-24/38340.html 试制高导锰锌铁氧体 试制:氧化物湿法工艺,原材料按下列配方:Fe2O3:52.1mol%,MnO:23.9mol%,ZnO:24mol%,经湿混砂磨一次喷雾造粒(25kg蒸发量)后,850℃预烧,加入少量微量元素如Bi2O3、Zn2O3、MoO3等,再经二次砂磨二次喷雾干燥造粒(25kg蒸发量),压成φ4×2×1.5环形磁芯。在小型钟罩炉中1400℃烧结4~6小时,烧结过程中严格控制氧含量。磁环的磁导率μi通过HP4284ALCR表测量,用电子显微镜SEM观察磁环表面及断面结构,用EDAX分析表面成份。 选择原辅材料及微量添加元素如Bi2O3、In2O3、MoO3等,获得了初始磁导率达32000的高磁导率MnZn 铁氧体材料。经喷雾干燥后铁氧体粉料颗粒外观形状是实心球状,该粉料具有较好的流动性,同时松装比重较高,对铁氧体毛坯成型非常有利。粉料压制特性对毛坯密度及强度的影响,铁氧体粉料颗粒均已破碎,对应毛坯的密度为3.2g/cm3,较高的毛坯密度对于获得较好的电磁性能如高磁导率和低损耗的铁氧体是十分有益的。铁氧体颗粒形态及成型密度对初始磁导率影响还是比较大的。 微量元素是加入0.02wt%的Bi2O3,0.03wt%的Zn2O3,以及0.04wt%的MoO3,材料起始磁导率为32000,测试条件为:f=1kHz,U=0.05V,N=10Ts,25℃,φ4×2×1.5环。平均晶粒直径为45μm。 Bi2O3及ZnO在烧结过程中的挥发性,向铁氧体中加入过量Bi2O3(为0.08wt%,其中主成份及其它微量元素完全相同)后,由于Bi2O3大量挥发,导致铁氧体磁芯表层存在大量不规则气孔。φ4×2×1.5环内表面和外表面EDAX成份谱线。其中内表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=35.36 : 13.27 : 53.60 : 0.40 mol%;外表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=46.62 : 18.82 : 35.28 : 0.09 mol%,经比较不难发现,内表面Bi2O3和ZnO含量分别是外表面的4倍和1.5倍。说明经过1400℃烧结时,Bi2O3的挥发比ZnO更厉害。料浆参数会影响铁氧体喷雾造粒粉料颗粒形状,以及铁氧体粉料的压制特性,从而影响毛坯的密度及机械强度,并最终影响铁氧体的初始磁导率。 通过精心选择原辅材料,添加微量元素Bi2O3、In2O3 以及MoO3等,并通过严格控制烧结工艺参数在小型钟罩炉中烧结,获得了μi=32000的高磁导率MnZn铁氧体材料。对高密度、轻量化、薄型化的高性能电子元器件的需求量大幅度增长。高磁导率MnZn铁氧体材料由于其特殊的电磁性能,在抗电磁干扰(EMI)噪声滤波器、电子电路宽带变压器、脉冲变压器、综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明、汽车电子等领域具有非常广泛的应用。高磁导率MnZn铁氧体材料特性主要体现在以下七个方面:高初始磁导率;在宽频下具有较高的磁导率;低损耗因数;低总谐波失真(THD);在宽温下具有较高的磁导率;磁导率减落系数要小;磁导率的应力敏感性要小。不同的应用领域对高磁导率MnZn铁氧体上述某个或几个方面的性能具有更高的要求。 环形铁心Le和Ae的计算方法 磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe)式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。 下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,这是严格按照标准执行的计算方法。 第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,并可推算叠片系数Sx,这是另外一种计算

磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。然而铁磁质的μr可以大至几万。 非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。所以用铜裹住铁并不能阻断磁力,而且是远远不能。在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。 直截了当地讲,磁场无处不在,是不能阻断的。只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性

高磁导率

DMR18K 高磁导率Mn-Zn铁氧体材料 特点: ·高起始磁导率 u i =18000±25% ·高居里温度 Tc≥120℃ ·高饱和磁感应强度 B S ≥400mT ·用在变压器中可以使器件小型化、轻型化, 可以减少线圈的匝数 参数测试条件DMR18K μ i25℃;10kHz 18000±25% 25℃;10kHz;1200A/m ≥400 mT B s 80℃;10kHz;1200A/m ≥320 mT 25℃;10kHz ≤3*10-6 tgδ/μ i 25℃;30kHz ≤10*10-6 η B 25℃;10kHz 1.5~3mT ≤0.3*10-3T-1 T C >120 ℃

20 40 60 80100120 10000 120001400016000180002000022000240002600028000 P e r m e a b i l i t y μi Temperature(o C) DMR18K 10 100 1000 02000 4000600080001000012000140001600018000 P e r m e a b i l i t y μi Frequency(kHz) DMR18K i u i ~T 曲线

10 100 102030405060708090100 110120 R e l a t i v e l o s s t a n d /u i (X 10_6 ) Frequency(kHz) DMR18K 200 200 400 600 800 1000 1200 220 240260280300320340360380 400420 F l u x d e n s i t y B (m T )Magnetic field H(A/m) 80o C 25o C DMR18K S tan δ/u i ~f 曲线

高磁导率铁氧体磁环生产工艺流程

高磁导率铁氧体磁环生产工艺流程: 一.颗粒料入库检验: 1.松张比重。 2.颗粒含水量。 3.颗粒流动性。 4.颗粒粒度分布。 二.颗粒料调整 1.使用混料调湿机或手工和料。 2.根据具体情况加入一定比例的硬脂酸锌。 3.将颗粒混和均匀,细粉太多用过滤筛处理。 4.颗粒料太湿要进行烘干或晒干。 5.回收压机细粉待处理。 三.成型 1.正确安全操作使用压机和模具。 2.按产品作业指导压制坯件。 3.压制产品要自检。 4.压制检验员要按程序巡检。 5.编制成型批号单。 四.烧结 1.开窑前先由装坯人员按要求将坯件装上窑车,正确装码,认真检查。 2.装坯要先在承烧板上撒上氧化铝粉,有时要先放垫片,再进行装坯。 3.烧结时按钟罩窑操作规定进行,控制升温速度,烧结温度,烧结气氛。 4.掌握窑炉烧结状况,进行记录 5.正确换装硅碳捧,热电偶。 6.烧结完成,待窑温冷却至常温后开炉,由装坯人员将产品御下窑车。 五.产品研磨 1.用振动砂磨机进行操作,把凸出磁环表面的毛刺或氧化层磨掉,也将锐角倒圆和抛光2.按批次进行研磨,掌握磨光程度,进行翻动,注意安全 3.正确使用机器,合理使用研磨石,节约用水 六.喷涂烘干 1.掌握使用操作喷涂设备。 2.按要求做好产品喷涂,保证产品质量。 3.喷涂好的产品,进烘室烘干。 七.分检测试包装 1.对产品进行分档,剔除不合格品

2.检验尺寸和电性能测试, 3,如用自动电感分选机或自动分档机,要正确操作 4.如用参数测试仪,LCR数字电桥等测试,要正确使用。 5.对不用喷涂的产品直截进行包装进盒,进箱,贴上标签入库 6.对需要喷涂的产品,待喷涂完成后再进行耐压测试,抽检后,进行装盒或吸塑,进箱包装入库。 7.如用吸塑包装,要掌握吸塑温度,正确操作。 胡秋贵 2012.3.31

磁导率介绍

中文名称:磁导率 英文名称:magnetic permeability 定义:磁介质中磁感应强度与磁场强度之比。分为绝对磁导率和相对 磁导率,是表征磁介质导磁性能的物理量。 磁导率μ等于中B与磁场强度H之比,即μ=B/H 通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与μ0之比,即μr=μ/μ0 相对磁导率μr与χ的关系是:μr=1+χ 磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。 对于μr>1;对于μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在中,B与 H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非)的磁导率是1,则的磁导率为10,000,即当比较时,以通过磁性材料的是10,000倍。 涉及磁导率的公式:

磁场的能量密度=B^2/2μ 在(SI)中,相对磁导率μr是无量纲的,磁导率μ的单位是/米(H/m)。 常用的真空磁导率 常用参数 (1)初始磁导率μi:是指基本磁化曲线当H→0时的磁导率 (2)最大磁导率μm:在初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一强度下(Hm),磁密度达到最大值(Bm),即 (3)饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo。

(4)()磁导率μΔ∶μΔ=△B/△H。ΔB及△H是在(B1,H1)点所取的增量如图1和图2所示。 (5)微分磁导率,μd∶μd=dB /dH,在(B1,H1)点取微分,可得μd。 可知:μ1=B1/H1,μ△=△B /△H,μd=dB1/dH1,三者虽是在同一点上的磁导率,但在数值上是不相等的。 非磁性材料(如铝、木材、玻璃、自由空间)B与H之比为一个常数,用μ。来表示非磁性材料的的磁导率,即μ。=1(在CGS单位制中)或μ。=4πX10o-7(在RMKS中)。 在众多的材料中,如果自由空间(真空)的μo=1,那△么比1略大的材料称为顺磁性材料(如白金、空气等);比1略小的材料,称为反磁性材料(如银、铜、水等)。本章介绍的磁性元件μ1是大有用处的。只有在需要时,才会用铜等反磁性材料做成使磁元件的磁不会辐射到空间中去。 下面给出几个常用的参数式: (1)有效磁导率μro。在用L形成闭合中(漏磁可以忽略),的有效磁导率为:

磁性材料术语解释及计算公式

磁性材料术语解释及计算公式 起始磁导率μi 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 μi = 01μ× H B ?? ()0→?H 式中 μ0为真空磁导率(m H /7104-?π) ?H 为磁场强度的变化率(A/m ) ?B 为磁感应强度的变化率(T ) 有效磁导率μe 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表示磁芯的性能。 e μ = Ae Le N L 20?μ 式中 L 为装有磁芯的线圈的电感量(H ) N 为线圈匝数 Le 为有效磁路长度(m ) Ae 为有效截面积 (m 2) 饱和磁通密度Bs (T ) 磁化到饱和状态的磁通密度。见图1。

Hc H 图 1 剩余磁通密度Br(T) 从饱和状态去除磁场后,剩余的磁通密度。见图1。 矫顽力Hc(A/m) 从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁感应强度减为零,此时的磁场强度称为矫顽力。见图1。 损耗因子tanδ 损耗系数是磁滞损耗、涡流损耗和剩余损耗三者之和。 tanδ= tanδh + tanδe + tanδr 式中 tanδh为磁滞损耗系数 tanδe为涡流损耗系数 tanδr为剩余损耗系数 相对损耗因子 tanδ/μi 比损耗因子是损耗系数与与磁导率之比: tanδ/μi(适用于材料) tanδ/μe(适用于磁路中含有气隙的磁芯) 品质因数 Q

品质因数为损耗因子的倒数: Q = 1/ tan δ 温度系数αμ( 1/K) 温度系数为T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: αμ= 1 12μμ-μ.12T T 1- 式中 μ1为温度为T1时的磁导率 μ2为温度为T2时的磁导率 相对温度系数αμr(1/K) 温度系数和磁导率之比,即 αμr = 211 2μμ-μ.1 2T T 1- 减落系数 DF 在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 DF = 212 121μ1T T log μμ?- (T2>T1) μ1为退磁后T1分钟的磁导率 μ2为退磁后T2分钟的磁导率 居里温度Tc (℃) 在该温度时材料由铁磁性(或亚铁磁)转变为顺磁性,见图2。

高磁导率MnZn铁氧体的配方和烧结工艺

高磁导率MnZn铁氧体的配方和烧结工艺 摘要:高磁导率MnZn铁氧体作为现代电子行业和信息产业中的一项基础性材料,在现代信息技术的不断发展中,高磁导率MnZn铁氧体正在向着高频率、低损耗的方向发展,促进着人们对高磁导率MnZn铁氧体配方和烧结工艺研究力度的不断加深。在提高MnZn铁氧体磁导率上,其主要是通过优化配方和改善烧结工艺来实现的,基于此,文章以综述的方法,对高磁导率MnZn铁氧体的配方和烧结工艺进行了阐述。 关键词:高磁导率MnZn铁氧体配方与烧结工艺 随着我国科学技术水平的不断提高,在国外加强对MnZn铁氧体材料的研究基础上,我国加强对MnZn铁氧体配方和烧结工艺的研究,这对我国MnZn铁氧体生产工艺和性能的提高和整个软磁铁氧体材料生产水平的提升都有着重要的价值。 一、高磁导率MnZn铁氧体的配方研究 高磁导率MnZn 铁氧体在设计配方的过程中,其需要遵循三个方面的原则:一、配方必须保证产品的使用要求。在满足产品使用性能需要的前提下,以理论为指导,根据经验确定高磁导率MnZn 铁氧体产品的配方点和配方区,尽量满足稳定性好的要求。二、尽可能采用性能良好的原料。在配方区选择不同的配方点,并在相同的工艺下进行配方实验,已将材料的潜力得到充分发挥。必要时,可对配方点进行调整,采用惨杂方法对配方进行检验。三、生产配方的配置中,对于生产工艺所产生的影响要充分的考虑,并严格的进行生产实践上的验证。在高磁导率MnZn 铁氧体生产配方的配置中,产品配方的物理性能不仅要好,在原料的供应上也要充分,并具备比较低的生产成本,便于生产中进行控制。 总所周知,一个产品性能的好坏是由配方所决定的,这一理论在任何产品的生产中都适用。软磁铁氧体材料中,高磁导率MnZn 铁氧体的结构形式呈现着一种混合型的尖晶石结构,在分子式的表达上为ZnxMn1- xFe2O4。所以,高磁导率铁氧体配方的确定和选择,首先需要对各种成分的磁特征进行充分的研究,并对各种成分的应用特征和各参数关系认真的分析,从参数和各离子的组成关系中来确定制备的配方。一个最佳的铁氧配方是在特定的原料和工艺下确定的,产品制备的过程中,一旦条件发生变化,配方就需要通过实验重新进行调整。因此,在确定高磁导率铁氧配方时,不仅要保证产品的质量能够最大程度的满足产品应用要求,还需要尽可能的采用性能良好、成分稳定的原料,以使配置出的铁氧体,在性能的重复性上更好。 高磁导率MnZn 铁氧体在生产的过程中,为了更好的满足产品的使用性能,提高材料的应用广度,一般都会在配方中加入少量的金属盐类杂质或金属氧化物。高磁导率MnZn 铁氧体配方中,杂质的加入需要从其作用出发,而在便于铁氧体固相反应和烧结情况的促进上,可以加入改善铁氧体磁铁特性的外加剂或

多种材料的磁导率

非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为;铂为;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为、、、、。 铁粉心 磁导率10左右材料以优良的频率特性和阻抗特性良好的温度特性是雷 达和发射机滤波用电感器最佳材料; 磁导率33材料最适合在几十A到上百A的大电流逆变电感器,如果对体积和温升要求不高,可以使用其做频率底于 50KHz的开关电源输出电感器,APFC电感器; 磁导率75材料是做差模电感器和频率在20K左右的滤波电感器储能电感器的高性价比材料。 铁镍50 该材料最适合用做差模电感器但是价格很高,由于原来国内能做铁镍钼 的厂家做的铁镍钼性能很差,所以一些开关电源厂家和军工客户都使用 铁镍50材料做储能电感器,其实这是错误的选择,因为这种材料的损 耗仅好于铁粉心,是铁硅铝的2倍左右,是铁镍钼的三倍左右,但是该 材料同样磁导率下,直流叠加特性好于铁硅铝材料, 虽然它的Bs值达14000Gs,但是由于磁滞回线的形状不一样,所以它的 直流叠加特性并不好于铁镍钼材料(只是原来国内能做的厂家做的性能 较差)。 铁硅铝

高性价比材料,是铁粉心的替代品(不包括低磁导率铁粉心)。 铁镍钼 价格与铁镍50相当(我公司),损耗最低材料,频率特性最好的材料, 如果将您正在使用的国内公司的铁镍50材料换成我公司的铁镍钼材料 将大大提高您的模块效率。不信您可以索要样品适用。 四种金属磁粉心性能和价格对比 磁粉心类型项目 铁粉 心 铁硅 铝 铁镍 50 铁镍 钼 初始磁导率6~125 26、60、 75、90、 125 60、75、 90、125 60、75、 90、 125、 147、 160 饱和磁通密度Bs(mT)100010501400700尺寸(仅以环型为例,外径mm) φ~φ 102 φ~φφ~φφ~φ 损耗(100kHz,100mT,mW/cm2)5000 (磁导 率为 9001100700

磁感应强度和磁导率

磁感应强度B 磁感应强度B可以这样定义,足够小的电流元Idl(I为导线回路中的恒定电流,dl为导线回路中沿电流方向所取的失量线元)在磁场中所受的力最大方向时,所受到的最大力dFmax与Idl的比值: B=dFmax/Idl 恒定磁场中各点的磁感应强度B都具有确定值,它由磁场本身决定,与电流元Idl 大小无关。电流会在其周围产生磁场。一个线圈绕得很紧密的载流螺绕环,总匝数N匝,电流I,利用安培环路定律可以求出螺绕环内离环心O半径r处P点的磁场的磁感应强度B0 B0=μ0NI/2πr 式中:μ0真空磁导率μ0=4πe-7 (N/A^2);N总匝数;I电流,安A。 在SI中,磁感应强度B单位特[斯拉]T,1T=1N/A·m=1Wb/m^2。磁感应强度B的概念比较复杂,有各种定义方法,感兴趣的话可参阅相关参考书1T=10000Gs(高斯) 磁场强度H 磁场强度H与电场中的电位移矢量D相似。 真空中原来的磁场的磁感应强度B0,由于引入磁介质而产生附加磁场,其磁感应强度B’,则磁介质总的磁感应强度B是B0和B’的矢量和,即 B=B0+B’ B与B0的大小比称相对磁导率μr= B/B0 。对于铁磁质磁性很强的材料μr远远大于1。不同的物质对磁场的影响非常大,因此引出了一个辅助矢量——磁场强度H。磁介质内磁场强度H沿闭合路径的环流等于闭合路径包围的所有传导电流的代数和(存在磁介质时的环路安培定理)。 ∮LH·dl=∑LI0i 象电流互感器之类的螺绕环磁场强度H H=NI/2πr r 为到磁环中心的半径。

磁感应强度矢量B与磁场强度矢量H的关系: B=μ0H+μ0M μ0真空磁导率;M磁化强度表示磁介质的磁化程度。试验表明,在各向同性均匀磁介质中,M与H成正比,即 M=χmH 真空中没有介质时,M=0,得出: B0=μ0H M磁化强度表示磁介质的磁化程度,μ0真空磁导率 试验表明,在各向同性均匀磁介质中,B与H成正比,即 B=μ0(1+χm)H=μH 设μr=(1+χm),为相对磁导率 螺绕环中有磁介质的载流螺绕环,磁介质内的磁感应强度B B=μH=μ0μrNI/2πr μr磁介质相对磁导率,μ0真空磁导率。 磁场强度H单位是安/米(A/m)。在磁路设计中H矢量有广泛的应用。在互感器中就是励磁安匝与平均磁路长度的比值H=I·n /L ,一般使用安匝每厘米(A/cm)单位。磁性材料刚开始时O点随着电流nI变大,磁感应强度B也开始缓慢变大,当到a点时电时,B开始急剧变大,当到b点,B增加开始变慢,当到c点H再变大时,B几乎不再变大,我们说材料被磁化到了饱和。达到饱和之后,无论H 怎样增大,材料的磁感应强度也不再增大。此时的磁感应强度称为饱和磁感应强度,用Bs来表示。B-H关系画成曲线,就是材料B-H磁化曲线。饱和磁感应强度是磁性材料的一个重要指标。 在SI中,磁场强度H单位是安[培]每米(A/m)。在磁路设计中H矢量有广泛的应用。 磁导率μ 在各向同性的均匀磁介质中,B与H成正比关系: B=μH

磁芯 磁环的磁导率及计算公式 s

磁芯磁环的磁导率及计算公式洋通电 子 nbs 磁芯磁环的磁导率及计算公式? 2011年02月20日 测量单位 由于历史的原因,在此手册中采用了CGS制单位,国际制(SI)和CGS制之间的转换可简化于下表2: 表2单位转换表 在CGS制自由空间磁导率的幅值为1且无量纲。在SI制自由空间磁导率的幅值为4π×10-7亨/米 3.3、电感 对于每一个磁芯电感(L)可用所列的电感系数(AL)计算: (14) AL:对1000匝的电感系数 mH N:匝数 所以:这里 这里L是nH 电感也可由相对磁导率确定,磁芯的有效参数见图 10: (15) Ae:有效磁芯面积 cm2 :有效磁路长度 cm μ:相对磁导率(无量纲) 对于环形功率磁芯,有效面积和磁芯截面积相同。

根据定义和安培定理,有效磁路长度是线圈的安匝数(NI)和从外径到外径穿过磁芯面积的平均磁场强度之比。有效磁路长度可用安培定理和平均磁场强度给出的公式计算: (16) O.D. :磁芯外径 I.D. :磁芯内径 电感系数是用单层密绕线圈测量的。磁通密度和测试频率保持与实际一样低,通常低于40高斯和10KHz或更低。对于各种磁导率和材料,能用'正常磁导率对磁通密度关系'和'典型磁导率对频率关系'的图形来解释低电平测试的条件。 3.4、磁导率 对于每一个磁芯尺寸的电感系数是建立在相对磁导率的增量上的。在没有直流偏置和低磁通密度时,正常磁导率和增量磁导率是一样的。增量磁导率随直流偏置一起减小的情况以及"增量磁导率对直流偏置"的曲线如图11所示。由"增量磁导率对直流偏置" 曲线看到正常磁导率如同峰值磁导率B。许多设计过程包括选择峰值工作磁通密度去帮助决定磁芯的尺寸。磁材的饱和磁通密度限制了峰值工作磁通密度或被磁材的损耗所限制。在选择磁材、工作磁通密度和决定磁芯的尺寸之后,法拉第定理(下面讨论)用于计算匝数N。最后选择磁导率以满足电感的需要。 L=电感 nH =有效磁路长度 cm Ae=有效磁芯面积 cm2 图11正常和增量磁导率 宽范值的磁导率经常能满足不同的电感需要。 安培定理(也在下面讨论)所给的峰值磁化强度H,是建立在匝数、峰值磁化电流(电感总电流和变压器原方的空载电流)和磁芯磁路长度的基础上的。如图11见到那样,在设计过程开始选择磁导率时,要设置与峰值磁通密度值相应的直流磁磁化强度H。对于铁镍钼(MPP),对于所给的磁磁化强度H,下面图12的选择曲线将给出产生最大电感的磁导率。 图12磁导率选择曲线

HP1型高磁导率铁氧体材料

材料特性 MATERIAL CHARACTERISTICS ● HP1型高磁导率铁氧体材料 High permeability ferrite material HP1 特性符号单位条件 HP1 Characteristics Symbol Unit Condition 起始磁导率 μi5000±25% Initial permeability 相对损耗因数 tanδ/μi100kHz<15×10-6 Relative loss factor 饱和磁通密度* Bs mT1194A/m420 Saturation flux density* 剩磁* Remanence*Br mT110 矫顽力* Coercivity*Hc A/m10 相对温度系数 αμr1/K(×10-6) 25~70℃-0.5~2 Relative temp. coefficient 材料磁滞常数 ηB1/mT 1.5~3mT<1.5×10-6 Hysteresis material constant 居里温度 Tc℃>140 Curie temperature 电阻率* Resistivity* ρ?·m1 密度* Density*d kg/m3 4.85×103 注: 1、如无说明,各项数值均在室温下用Φ25×Φ15×10环型磁心测得。 2、*为典型值。 Note: 1.The values were obtained with toroidal core Φ25×Φ15×10 at room temperature unless otherwise specified. 2. * Typical value.

锰锌铁氧体结构性能的研究及发展概况

锰锌铁氧体结构性能的研究及发展概况3 李 雪1,2,张俊喜1,2,刘国平3,颜立成4 (1 上海电力学院电化学研究室国家电力公司热力设备腐蚀与防护重点实验室,上海200090;2 上海大学环境与化学工程学院, 上海200072;3 上海宝钢天通磁业有限公司,上海201900;4 杭州师范大学教务处,杭州310036) 摘要 围绕锰锌铁氧体的尖晶石结构和性能的关系,分析了锌含量、晶粒尺寸、晶界等微观结构参数以及微量 元素掺杂等主要因素对锰锌铁氧体结构性能的影响。介绍了今后软磁铁氧体研究的主要方向、性能要求、国内外的研究情况及最新进展。近期研究表明,目前国内外除注重功率型和高磁导率锰锌铁氧体的研究之外,还比较关注锰锌铁氧体的改性研究及其在纳米科技领域的应用和用废旧材料为原料的环保节能型新工艺;锰锌铁氧体今后将进一步向高频、高磁导率和低损耗方向发展,同时注重材质特性的适应性和生产工艺的优化。 关键词 锰锌铁氧体 结构 性能 发展状况Research on St ruct ure and Properties of Mn 2Zn Ferrite and It s Develop ment L I Xue 1,2,ZHAN G J unxi 1,2,L IU Guoping 3,YAN Licheng 4 (1 Key Laboratory of State Power Corporation of China ,Electrochemical Research Group ,Shanghai University of Electric Power ,Shanghai 200090;2 School of Environmental and Chemical Engineering ,Shanghai University ,Shanghai 200072;3 Shanghai Bao Steel Tiantong Magnetic Materials Co.Ltd ,Shanghai 201900;4 Hangzhou Teachers College ,Hangzhou 310036) Abstract The influences of the content of Zn ,parameters of microstructure such as size and interphase of crys 2tal and the dopants on the relationship between structure and magnetic properties of Mn 2Zn ferrite are analyzed.The requirements are reviewed with reference to the current research situation and development.At present ,researches on modification of Mn 2Zn ferrite and its applictation in nano technology field are concerned besides the developments of power ferrites and high permeability ferrites.In addition ,the investigation on using waste materials especially attracts attention.The trend henceforth is still high power and permeability and low loss as well as adjustability and optimiza 2tion of process. K ey w ords Mn 2Zn ferrite ,structure ,property ,development  3上海市基础重点项目(06J C14033);上海市重点学科建设基金(P1304) 李雪:女,1984年生,硕士 E 2mail :lixue0304@https://www.doczj.com/doc/061470583.html, 张俊喜:男,1969年生,博士,教授,长期从事无机材料合成、电化学的研究 E 2mail :zhangjunxi @https://www.doczj.com/doc/061470583.html, 0 前言 20世纪30年代以来,由于软磁铁氧体固有的特性,人们对 其产生了浓厚的兴趣,并开展了广泛的研究[1,2]。软磁铁氧体 材料作为一种重要的基础功能材料,广泛用于通信、传感、音像设备、开关电源和磁头工业,随着这些行业的快速发展和电子仪器、设备的体积趋于小型化,对高密度化、轻量化、薄型化高性能电子元器件的需求量大幅度增长,使得高性能软磁铁氧体材料的需求量与日俱增,应用市场非常广阔。同时,用户对锰锌铁氧体的质量和性能提出了越来越高的要求,也使软磁铁氧体的制备工艺不断发展。锰锌铁氧体的磁学性能与该材料的成分和组织有着密切的关系,锰锌铁氧体的制备方法也对其性能有着显著的影响[3]。本文从锰锌铁氧体的结构、性能的研究进展及发展趋势等方面对其作了综合介绍。 1 锰锌铁氧体的结构与性能 1.1 软磁铁氧体的结构及性能 锌铁氧体是正尖晶石型,全部二价锌离子都占据A 位,可 以写成Zn 2+[Fe 3+]O 42-([]外阳离子表示A 位,[]内阳离子表示B 位,下同)。锰铁氧体是混合型尖晶石型,分子式为 Mn 1-x -y 2+ Fe 1+x +y 3+O 42-。以转化度δ=0.2的锰铁氧体为 例,δ=0.2是指有80%的Mn 2+占据A 位,剩余20%占据了B 位,而A 位空下来的位置就由Fe 3+占据,分子式可以写成 Mn 0.82+Fe 0.23+[Mn 0.22+Fe 0.83+]O 42-。Zn 2+的加入一般占据A 位,分子式可以写成Zn x Mn 1-x Fe 2O 4,金属离子分布为Zn x 2+Mn y 2+Fe 1-x -y 3+ [Mn 1- x -y 2+ Fe 1+x +y 3+]O 42-,它将A 位 的部分Fe 3+赶到B 位,分子磁矩增大,这在x <0.4时成立。当x 的值增大到0.4时(0K ),磁感应强度可以达到线性上升状态。但是如果x 的数值继续上升(x >0.4~0.5),随x 增加,饱和磁感应强度反而下降。锰锌铁氧体整体也会变成正尖晶石型,即B 位上不再有Mn 2+,A 位上也不再有Fe 3+。由于Zn 2+是非磁性离子,加入较多时,使A 位上的磁性离子数减少,即 A 2 B 位能产生A 2B 超交换作用的磁性离子对数减少,减弱了A 2B 间的超交换作用,而在B 2B 位间增强,居里点下降。B 位上 失去与A 位交换作用的那些磁性离子,受到它邻近B 位磁性

MN-Zn高磁导率铁氧体材料特性-A-Core(安磁)(精)

Mn-Zn 高磁導率鐵氧體材料特性 Mn-Zn High Permeability Ferrite Material Characteristics 特性單位 JPH–5JPH–7JPH–10JPH–10F Characteristics Unit 初始磁導率μi -5000±25%7000±25%10000±30%10000±30% Initial permeability 比損失因子tanδ/μi 10-6<6.5 (10kHz<6.5 (10kHz<7.0 (10kHz<1.6 (10kHz Relative loss factor 初始磁導率溫度係數–0.5 ~ 3.0–0.5 ~ 3.0–0.5 ~ 2.0–0.5 ~ 2.0 Temperature factor of10-6(20℃ ~ 60℃(20℃ ~ 60℃(20℃ ~ 60℃(20℃ ~ 75℃ initial permeability 飽和磁通密度 Bs mT420410400420 Saturation fluxDensity H=1194A/m 剩磁 Br mT1401359075 Remanence 矯頑力 Hc A/m87.57.54 Coercivity 電阻率ρ Ω-m20.150.10.3 Electrical resistivity

滅落因子 D f 10-6<3.5<3.5<3.0<3.0 Disaccommodation factor 居里溫度 Tc ℃>135>125>120>120 Curie Temperature 密度 kg/m3 4.8x103 4.9x1033 5.0x103 Density 4.9x10 磁芯種類 -EE、EI、UU EE、EI、UU EE、EI、UU EE、EI、UU Core Type RM、EP、OR RM、EP、OR RM、EP、OR RM、EP、OR Test core:OD=25mm TH=8mm ID=15mm JPH-5、JPH-7、JPH-10、JPH-10F材料特性曲線圖 Curve Graph of JPH-5、JPH-7、JPH-10、JPH-10F Material Characteristics

电感系数和初始导磁率

电感系数和初始导磁率 AL:电感系数。ui:初始磁导率。 拿一个物体来做比喻,有质量,密度和体积,铁芯有AL,Ui和体积(看成是磁芯大小), 固定的物体一般密度是固定的,体积越大,质量越大;固定的铁芯材质Ui是固定的,体积越大,AL 越大。 ui值决定AL值,可以这样说吗? 不能这么说的绝对。UA/L就是AL。也就是说影响AL的还有截面积和磁路长度,ui只与材料有关.而AL不仅与材料有关.而且与尺寸有关.如R5材质.其UI值为5000.但他的AL可以是2000,3000NH等.而且AL值是可以调的.所以.各磁环供货商可以跟据不同要求做出不同的AL值出来.这是我个人的认识. 一般的CORE制造商都会依照国际标准来制作产品,所以其CORE的AL值和UI值也是参照国际标准而制定的。 AL值是可以用公式来计算的,例一个简单的IRON COIL之L值计算公式为:L=AL×N2,其反过来就是AL=L/N2 而ui值也是有公式可套用的:ui={[L(uh)×Le]/(4N2×Ae)}×103 ui是材料的初始磁导率,是材料固有特性,每种材料都有一个ui值。 AL:磁芯的单匝电感值。单位nH/N^2。 ui=C1*L/(4πN^2) C1:磁芯常数,一般磁芯产品目录上有。N^2,即N的平方 AL=0.4л*μi*Ae/Le 其中μi为初始磁导率Ae为磁芯中柱的横截面积Le为磁路的平均长度 体积大不一定代表AL大.你拿T13*7*5和T16*12*8的AL做比较你就知道了 ui 是初始磁导率,AL 是磁芯的单圈感量,AL值是由磁芯的初始磁导率和其形状尺寸所决定的。大多磁芯厂家的产品目录上都有详细介绍! 简单的例子: AL=K*ui与I=U/R类似==>K系数为假设的某个参数。代表AL值与ui之间的某种关系大家都知道想要提高电流只有提高电压或减小电阻。如果公式这样写呢?R=U/I如果这样写会不会出现原本是10欧的电阻因为电压的改变而导致电阻的弯化呢?相信大家知道R是材料本身的特性。不管如何改变U与I其都不会改<不考虑温升而导致的变化>。

相关主题
文本预览
相关文档 最新文档