当前位置:文档之家› 快速凝固技术在铝合金中的应用

快速凝固技术在铝合金中的应用

快速凝固技术在铝合金中的应用
快速凝固技术在铝合金中的应用

铝合金在专用车上的应用

近 生产厂提高竞争能力的关键。据有关数据介绍,专用汽车重量每减少50kg,每升燃油行驶的距离可增加2km;汽车重量每减轻1%,燃油消耗下降0.6%~1%。铝具有密度小、耐蚀性好等特点,且铝合金的塑性优良,铸、锻、冲压工艺均适用,最适合汽车零部件生产的压铸工艺。从生产成本、零件质量、材料利用等几个方面比较,铝合金已成为汽车生产不可缺少的重要材料。 轮毂用铝合金 专用车铝轮毂因为质轻、散热性好,并具有良好的外观,而逐渐取代了钢轮毂。在过去的10年,全球铝合金汽车轮毂以7.6%的年增长率增长,根据分析,到2010年时,汽车轮毂铝化率可达72%~78%[4]。A365是一种铸造铝合金,它具有良好的铸造性能又具有高的综合力学性能,世界各国的铸造铝合金轮毂都是此类合金生产的。我国西南铝加工厂与日本轻金属株式会合作开发了A6061铝合金轮毂。 变形铝合金的应用 变形铝合金在汽车上主要用于制造专用车车门、行李箱等车身面板、保险杠、发动机罩、车轮的轮辐、轮毂罩、轮外饰罩、制动器总成的保护罩、消声罩、防抱死制动系统、热交换器、车身构架、座位、车箱底板等结构件以及仪表板等装饰件。 专用车车身板件用铝合金 板材在轿车上的应用比重不断上升,如经热处理(如:T4、T6、T8)的6000系(AI-Mg-Si 系)铝合金板材,能够很好的满足汽车对壳体的要求,可用做车身框架材料。Audi A8的车身钣金件,即采用了本系合金铝材。另外,2000系(AI-Cu-Mg系)、5000系(AI-Mg系)和7000系(AI-Mg-Zn-Cu系)铝合金也可应用于车身材料。近几年,采用6000系和7000系高强度铝合金开发了“口”、“日”、“目”、“田”字形状的薄板和中空型材,不仅质量轻、强度高、抗裂性能好,而且成型性能好,在汽车上得到了广泛的应用。 其它铝合金结构件

铝合金在汽车上的应用

铝合金在汽车上的应用 近20年来,世界性能源问题变得越来越严重,这使得减轻汽车自重、降低油耗成了各大汽车生产厂提高竞争能力的关键。据有关数据介绍,汽车重量每减少50kg,每升燃油行驶的距离可增加2km;汽车重量每减轻1%,燃油消耗下降0.6%~1%。铝具有密度小、耐蚀性好等特点,且铝合金的塑性优良,铸、锻、冲压工艺均适用,最适合汽车零部件生产的压铸工艺。从生产成本、零件质量、材料利用等几个方面比较,铝合金已成为汽车生产不可缺少的重要材料。目前,美国、日本、德国是汽车采用铝合金最多的国家,如德国大众AudiA8、A2,日本的NXS等车身用铝合金量达80%。我国汽车除上海桑塔纳、一汽奥迪和捷达(均为引进生产线)用铝合金外,国产以红旗较多,约80~100kg。有资料表明,用铝合金结构代替传统钢结构,可使汽车质量减轻30%~40%,制造发动机可减轻30%,制造车轮可减轻50%。采用铝合金是汽车轻量化及环保、节能、提速和运输高效的重要途径之一。因此,研究开发铝合金汽车目前显得十分必要。 1 铝合金在汽车工业中的应用背景 最早把铝材运用到汽车上的是印度人,据记载,1896年印度人率先用铝制做了汽车曲轴箱。进入20世纪早期,铝在制造豪华汽车和赛车上有一定的应用,铝制车身的汽车开始出现,如亨利·福特的Model T型汽车和二、三十年代欧洲赛车场上法拉利360赛车都是铝制车身。 铝具有密度小、耐蚀性好等特点,且铝合金的塑性优良,铸、锻、冲压工艺均适用,最适合汽车零部件生产的压铸工艺。从生产成本、零件质量、材料利用等几个方面比较,铝合金已成为汽车生产不可缺少的重要材料,铝合金作为典型的轻质金属广泛应用于国外汽车上,国外汽车铝合金制部件主要有活塞、气缸盖、离合器壳、油底壳、保险杠、热交换器、支架、车轮、车身板及装饰部件等。。目前,美国、日本、德国是汽车采用铝合金最多的国家,如德国大众AudiA8、A2,日本的NXS等车身用铝合金量达80%。我国汽车除上海桑塔纳、一汽奥迪和捷达(均为引进生产线)用铝合金外,国产以红旗较多,约80~100kg。有资料表明,用铝合金结构代替传统钢结构,可使汽车质量减轻30%~40%,制造发动机可减轻30%,制造车轮可减轻50%。采用铝合金是汽车轻量化及环保、节能、提速和运输高效的重要途径之一。因此,研究开发铝合金汽车目前显得十分必要。 铝合金的主要优点是重量轻,散热性好。随着发动技术的发展,四气阀结构成为发动机的主流设计趋势。与两气阀发动机相比,每缸四气阀的气缸盖比每缸两气阀的气缸盖在工作时要产生更多的热量,采用全铝合金缸盖是最好的解决办法。 目前,轿车发动机部件中不仅活塞、散热器、油底壳缸体采用铝合金材料,而且缸盖、曲轴箱也采用这种材料。在目前的形式下,在发动机上采用铝合金替代铸铁已经成为主流趋势。法国汽车的铝汽缸套已达100%,铝汽缸体达45%。在未来几年里,随着高强度优质铝合金材料的开发成功和制造工艺的不断改进,铝合金材料将愈来愈多的用来制造这一类零部件。 汽车用铝合金可分为铸造铝合金和变形铝合金。铸造铝合金在汽车上的使用量最多,占80%以上,其中又分为重力铸造件,低压铸造件和其它特种铸造零件。变形铝合金包括板材、箔材、挤压材、锻件等。世界各国工业用铝合金材料的品种构成虽然有一定的差异,但大体是相同的。其品种构成:铸件占80%左右,锻件占1%~3%,其余为加工材。美国汽车工业中变形铝合金占较大比例,

快速凝固技术

快速凝固技术的研究进展 摘要:快速凝固技术是当材料科学与工程中研究比较活跃的领域之一,目前已成为一种金属材料潜在性能与开发新材料的重要手段。快速凝固技术得到的合金与常规合金有着不同的组织和结构特征,对材料科学和其它学科的理论研究以及开展实际生产应用起了重要的作用。介绍了快速凝固技术的原理和特点、主要方法和在实际中的应用和存在的问题。 关键词:快速凝固技术;合金;应用;存在问题

1 引言 随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域[1]。过去常规铸造合金之所以会出现晶粒粗大,偏析严重、铸造性能差等缺陷的主要原因是合金凝固时的过冷度和凝固速度很小,这是由于它们凝固时的冷速很小而引起的。要消除铸造合金存在的这些缺陷,突破研制新型合金的障碍,核心是要提高熔体凝固时的过冷度,从而提高凝固速度,因此出现了快速凝固技术。 目前,快速凝固技术作为一种研制新型合金材料的技术已开始研究了合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。着重于大的温度梯度和快的凝固速度的快速凝固技术,正在走向逐步完善的阶段。 2 快速凝固技术 1960年美国的Duwez等用铜辊快淬法,首次使液态合金在大于107K/S的冷却速度下凝固,在Cu—Si合金中发现了无限固溶的连续固溶体;在Ag—Ge合金中出现新的亚稳相;在Au—Si合金中形成非晶结构。在快速冷却所形成的亚稳结晶组织中,出现了一系列前所未见的重要的结构特征,表现出各种各样比常规合金优异的使用性能[2]。此后,快速凝固技术和理论得到迅速发展,成为材料科学与工程研究的一个热点。 快速凝固是指通过对合金熔体的快速冷却(≥104~106 K/s)或非均质形核被遏制,使合金在很大过冷度下,发生高生长速率(≥1~100 cm/s)凝固[3]。通过快速凝固技术获取的粉末和材料会具有特殊的性能和用途。由于它是一种非平衡的凝固过程[4],详细的说就是凝固过程中的快冷、起始形核过冷度大,生长速率高,促使固液界面偏离平衡,生成亚稳相(非晶、准晶、微晶和纳米晶),从

铝合金及热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。

二、热处理方法1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3

铝合金铸造技术篇

国兴金属制品有限公司教育训练教材 铝合金铸造技术篇 一、前言: 铝合金为目前使用极为广泛的一种金属。在铸造上而言,不论重力铸造,砂模铸造、压铸精密铸造┄等各种铸造方法均可见到大量的铝合金铸件,由于这些方法铸造,其原因乃在于铝合金具有质量轻、机械质优良、耐腐蚀、美观以及机械加工容易等优点。因而不仅大量使用于一般生活用品,例如:运输工具、通信器材、运动器材料、家庭五金┄等商业用途上,亦大量使用于航空太空载具及武器系统等军事装备。 铝合金铸造技术的发展时间,已有数十年历史,由于机械设计及加工观念的改变与要求以及机械设计的日趋复杂,加上新的合金不断的被发展出来,部份的铸造用铝合金机械强度甚至超过一些锻造用铝合金,如A201、A206等,因而铸造的重要性再度被肯定,在铸造一般生活用品时,铝合金的铸造并非一困难工作,但要铸造高品质的铸件时,则铝合金的铸造就非想象中的容易。 影响铸件品质的要素有八点,例如:铸造方案的设计,材料的选择以及铝水的品 质等,其中铝水的品质,则系熔炼的工作。 二、熔炼设备 熔炉: 铝合金熔炼用的炉子,以热源区分,可分为两个主要的种类:燃料及电力。 在使用燃料的熔炉中,则又分为油炉及瓦斯两种。 而电力炉则可区分为反应炉及电阻炉。 在选择炉子时,值得考虑的因素甚多,例如:熔解量的多寡;能源的价格;原始设备的成本,安装的价格,设备维护的难易,厂房设施配合;以及产品的种类。就一般铝合金铸造的:由于铝件的重量有限,为求操作上的方便,以及成本的考虑,绝大部份均系采用坩锅炉(目前已大量改用连续炉)。 以不同加热方式的炉子而言,使用油炉或气炉,或可降低成本。但是,不论油炉或电炉,均有机会增加铝水中的氢气量。一般而言,在使用油炉时,所使用的燃油中带含有10-20%的水气,对气炉而言,例如瓦斯不包含空气之中,因温度而含的水分,而仅计算燃烧所产生水蒸气,至少在消耗气体量的两倍以上。而不论使用燃油或瓦斯气体为热源时,燃烧后产生的水气,必然是包围着熔解炉。因此,可想而知的是氢气 的来源必然可观。 三、铝汤处理之目的: 在铝汤有由原材料在熔解过程中发生的氢气或氧化物等非金属介在物之外,尚含钠碱

铝合金在高速铁路上的应用现状及发展趋势

铝合金在高速铁路上的应用现状及发展趋势 摘要:铁路运输是我国主要的交通运输方式,在国民经济中起着非常重要的作用。而铁路车辆是铁路运输中直接载运旅客和货物的工具,是铁路中的一个主要环节,随着社会的进步,运输对车辆的要求越来越高。车体作为车辆的一个主要部件,其轻量化设计就成为一个关键的问题。高速列车的轻型化对于发展交通运输、改善机车车辆运行平稳性、降低能源消耗、减少轮轨磨耗都是至关重要的。当今世界上,大多数发达国家采用铝合金为材质制造车体结构,介绍目前国内外铁路运输中铝材的应用优势及其主要障碍,通过使用铝材来代替传统的钢铁材料,可大大减轻自重以降低能耗、减少环境污染、提高经济性。并对铝材的发展趋势做了猜测。 关键词铝合金;现状;发展趋势 1引言 铁路运输工业正面临越来越严重的三大课题:能源、环保、安全。减轻火车自重以降低能耗,减少环境污染,节约有限资源已成为火车运输关注的焦点。轻量化是火车发展的一个重要趋势,通过使用轻质材料来替代传统的钢铁材料,可以减轻火车的质量,以达到节省燃料的目的。因此,越来越多的轻质或高比强度的材料受关注,如板、铝合金。本文就高速铁路客车用铝合金材料的现状及发展趋势做些讨论。 2铝合金的特点及其应用优势 2.1铝合金的特点 铝的密度小,仅为2.7(属轻金属),约为钢的1/3。由于铝的表面易氧化形成致密而稳定的氧化膜,所以耐蚀性好。铝有较好的铸造性,由于铝的融化温度低,流动性好,易于制造各种复杂外形的零件。铝中加入一种或几种元素后即构成铝合金,铝合金相对于纯铝可以提高强度和硬度,除固溶强化外,有些铝合金还可以热处理强化,使有些铝合金的抗拉强度可超过600MPa,与低碳钢相比,比强度则胜过某些合金钢。铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 铝合金仍然保持了质轻的特点,但机械性能明显提高。铝合金材料的应用有以下三个方面:一是作为受力构件;二是作为门、窗、管、盖、壳等材料;三是作为装饰和绝热材料。

铝合金

铝合金铸件气孔与预防 引言:在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。 (2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔

洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散的气孔,即平常我们所说的针孔(gas porosity)。在氢气泡形成前达到的过饱和度是氢气泡形核的数目的函数,而氧化物和其他夹杂物则在起气泡核心的作用 在一般生产条件下,特别是在厚大的砂型铸件中很难避免针孔的产生。在相对湿度大的气氛中溶炼和浇注铝合金,铸件中的针孔尤其严重。这就是我们在生产中常常有人纳闷干燥的季节总比多雨潮湿的时节铝合金铸件针

快速凝固铝合金的组织与性能

快速凝固铝合金的组织与性能摘要:速凝固技术;过去对凝固过程的模拟只考虑在熔融状态下的热传导和凝固过程中潜热的释放,很少考虑金属熔体在型腔内必然存在的流动以及金属熔 体在凝固过程中存在的流动,目前,快速凝固技术作为一种研制新型合金材料的 技术一开始研究合金在凝固时的各种组织形态的变化以及如何控制才能到符合 实际生活,生产要求的合金着重研究高的温度梯度和快的凝固速度的快速凝固技术正在走向逐步完善阶段。 快速凝固原理及凝固组织:快速凝固是指通过对合金熔体的快速冷却(≥104-106k/s)或非均质形核备遏制,是合金在很大过冷度下,发生高生长速率(≥1-100cm/s)凝固。由于凝固过程的快冷,起始形核过冷度大,生长速率高是古冶界面偏离平衡,因而呈现出一系列于常规合金不同的组织和结构特征,加快冷却速度和凝固速率所应起的组织及结构特征可以近似用表来表示。 本实验利用真空系统下的金属熔液快速凝固装置,获得高真空后,充入一定压力的惰性气体,熔炼铝合金在熔融状态下以细直径金属液柱方式喷射到铜模具中,液流发生横向铺展并在纯铜模具中快速凝固。由于整个过程的浇注时间在很大程度上被分散、延迟,热耗散可以快速、充分进行,从而可获得层状铝合金。关键词:铜模具;射流沉积;亚稳块体材料;层状复合材料 The Study on the Aluminum Alloy by Rapid Solidification Based on Reciprocate Motion Cooling Model Abstract:Rapid solidification is the way to get the non-steady state metal by the rapid cooling much more fast than the cooling rate for the equilibrium materials, and amorphous, nano-crystalline and some limiting structural or functional materials can be obtained. In this work, jet solidification in the cooling model with the computer controlled reciprocating motion protected under vacuum or inert gas was used to obtain the layer Al alloys. After the Al alloy was molten in a quartz tube, the alloy liquid was jet out of

铝合金在汽车上的应用

铝合金在汽车上的应用 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

铝合金在汽车上的应用 近20年来,世界性能源问题变得越来越严重,这使得减轻汽车自重、降低油耗成了各大汽车生产厂提高竞争能力的关键。据有关数据介绍,汽车重量每减少50kg,每升燃油行驶的距离可增加2km;汽车重量每减轻1%,燃油消耗下降%~1%。铝具有密度小、耐蚀性好等特点,且铝合金的塑性优良,铸、锻、冲压工艺均适用,最适合汽车零部件生产的压铸工艺。从生产成本、零件质量、材料利用等几个方面比较,铝合金已成为汽车生产不可缺少的重要材料。目前,美国、日本、德国是汽车采用铝合金最多的国家,如德国大众AudiA8、A2,日本的NXS等车身用铝合金量达80%。我国汽车除上海桑塔纳、一汽奥迪和捷达(均为引进生产线)用铝合金外,国产以红旗较多,约80~100kg。有资料表明,用铝合金结构代替传统钢结构,可使汽车质量减轻30%~40%,制造发动机可减轻30%,制造车轮可减轻50%。采用铝合金是汽车轻量化及环保、节能、提速和运输高效的重要途径之一。因此,研究开发铝合金汽车目前显得十分必要。 1 铝合金在汽车工业中的应用背景 最早把铝材运用到汽车上的是印度人,据记载,1896年印度人率先用铝制做了汽车曲轴箱。进入20世纪早期,铝在制造豪华汽车和赛车上有一定的应用,铝制车身的汽车开始出现,如亨利·福特的Model T型汽车和二、三十年代欧洲赛车场上法拉利360赛车都是铝制车身。 汽车用铝合金可分为铸造铝合金和变形铝合金。铸造铝合金在汽车上的使用量最多,占80%以上,其中又分为重力铸造件,低压铸造件和其它特种铸造零件。变形铝合金包括板材、箔材、挤压材、锻件等。世界各国工业用铝合金材料的品种构成虽然有一定的差异,但大体是相同的。其品种构成:铸件占80%左右,锻件占1%~3%,其余为加工材。美国汽车工业中变形铝合金占较大比例,达36%。 铸造铝合金的应用 铸造铝合金具有优良的铸造性能。可根据使用目的、零件形状、尺寸精度、数量、质量标准、机械性能等各方面的要求和经济效益选择适宜的合金和合适的铸造方法。铸造铝合金主要用于铸造发动机气缸体、离合器壳体、后桥壳、转向器壳体、变速器、配气机构、机油泵、水泵、摇臂盖、车轮、发动机框架、制动钳、油缸及制动盘等非发动机构件。 发动机用铝合金 汽车发动机用铝合金制造轻量化最为明显,一般可减重30%以上,另外,发动机的气缸体和缸盖均要求材料的导热性能好、抗腐蚀能力强,而铝合金在这些方面具有非常突出的优势,因此各汽车制造厂纷纷进行发动机铝材化的研制和开发。目前国外很多汽车公司均已采用了全铝制的发动机气缸体和气缸盖。如美国通用汽车公司已采用了全铝气缸套;法国汽车公司铝气缸套已达100%,铝气缸体达45%;日本日产公司VQ和丰田公司的凌志IMZ-FEV6均采用了铸铝发动机油底壳;克莱斯勒公司新V6发动机气缸体和缸盖都使用了铝合金材料。 轮毂用铝合金 铝轮毂因为质轻、散热性好,并具有良好的外观,而逐渐取代了钢轮毂。在过去的10年,全球铝合金汽车轮毂以%的年增长率增长,根据分析,到2010年时,汽车轮毂铝化率可达72%~78%[4]。A365是一种铸造铝合金,它具有良好的铸造性能又具有高的综合力学性能,世界各国的铸造铝合金轮毂都是此类合金生产的。我国西南铝加工厂与日本轻金属株式会合作开发了A6061铝合金轮毂[5]。

快速凝固技术概述

快速凝固技术国内外发展及其应用 1.快速凝固技术国内外发展 随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域。 快速凝固的概念和技术源于20世纪60年代初Duwez等人的研究,他们发现某些共晶合金在平衡条件下本应生成双相混合物,但当液态合金以足够快的冷却速度凝固合金液滴被气体喷向冷却板时,则可能生成过饱和固溶体、非平衡晶体,更进一步生成非晶体。上述结果稍后被许多研究结果所证实,而且由此发现一些材料具有超常的性能,如电磁、电热、强度和塑性等方面的性能,出现了用于电工、电子等方面的非晶材料。20世纪70年代出现了用快速凝固技术处理的晶态材料,80年代人们逐渐把注意力转向各种常规金属材料的快速凝固制备上,90年代大块非晶合金材料的开发与应用取得重大进展。快速凝固技术是目前冶金工艺和金属材料专业的重要领域,也是研究开发新材料手段。 快速凝固一般指以大于 5 10 ~ 6 10 K/s的冷却速率进行液相凝固成固相,是一种非平衡的 凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。由于凝固过程的快冷、起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。加快冷却速度和凝固速率所起的组织及结构特征可以近似地用图1来表示。从上图我们不难看出,随着冷却速度的加快,材料的组织及结构发生着显著的变化,可以肯定地说,它也将带来性能上的显著变化[1]。 快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。实现快速凝固的三种途径包括:动力学急冷法;热力学深过冷法;快速定向凝固法。由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。 1.1快速凝固技术的主要方法 (1)动力学急冷快速凝固技术 动力学急冷快速凝固技术简称熔体急冷技术,其原理可以概括为:设法减小同一时刻凝固的熔体体积与其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热阻以

铝合金的凝固和组织中的晶粒

铝合金的凝固和组织中的晶粒 一、熔体的凝固过程: 在半连续铸造过程中,熔体的浇铸和凝固是同时连续地进行的。对铸锭而言,冷却是分两次实现的。一次冷却是在结晶器内完成的,熔体进入结晶器后靠结晶器导热,在结晶器内形成一定厚度的凝固壳。此后随着铸造机下降,被拉出结晶器,遇到结晶器底部浇出的冷却水(称之为二次冷却)从此完成凝固的全部过程。这个凝固过程在金属学中称为金属结晶。 二、铸锭的正常晶粒组织 从理论上讲,在工业生产条件下,铸锭的晶粒组织由三个区域组成:即外层表面的细等轴晶区,由此往里的柱状晶区和中心等轴晶区。但在实际铝合金生产中铸锭在强度大的冷却条件下,经过Al-Ti-B的细化处理,铝合金铸锭的组织往往全部是等轴晶。铸锭晶粒的大小将直接影响铝加工制品的力学性能和加工性能,所以它被作为衡量铸锭质量的一个主要指标。 三、影响铸锭晶粒的因素 1、熔体结晶的条件:熔体结晶有两个条件是必不可少的,其一是结晶必需要先形成晶核,熔体中的晶核分两种。自发晶核是在低于结晶温度时,熔体由于能量起伏或液相起伏形成的晶核。非自发晶核是外来粒子进入熔体后而形成的晶核。其二是要有过冷度才可能发生结晶,所谓过冷度就是熔体的温度只有在冷却到低于熔点的温度下才能结晶,温度越低过冷度越大。 2、晶粒的细化:控制过冷度;一般情况下增大过冷度,熔体中的生核率和晶粒的长大速度都增加,但生核速度大于晶粒的增长速度,所以一般情况下金属结晶时过冷度越大,所得到晶粒越细小。在半连续铸造生产中增加过冷度的主要途径是有降低铸造速度使

单位时间内铸锭冷却量增加;降低冷却水的温度使单位时间内铸锭的温降增加;加大冷却水的水压使单位时间内浇到铸锭上的水量增加使铸锭的温降增加;降低铸造温度使铸锭的结晶过程缩短。 3、动态细化晶粒:对熔体采用机械搅拌、电磁搅拌、超声波振动等,这样一方面可以靠输入的能量使晶核提前生成,另一方面可以使成长中的树枝状晶破碎增加晶核的数目(在这里就要讲一下晶粒的形成,晶粒是先有一个晶核、晶核按多个方向晶轴成长,象树枝一样称之为枝晶,当众多的枝晶共同生长到一定程度互相顶撞,此时熔体添补到枝晶中,围绕它形成了一个枝晶粒) 4、变质处理细化晶粒:向熔体中加入少量的活性物质,促进熔体内部生成晶核或改变晶粒的成长过程,在变形铝合金中一般选用Ti、Zr、B、C等作为晶粒细化剂,我公司铸造时加入Al-Ti-B 丝就属于变质处理的方法。 四、粗大晶粒 在宏观组织中出现的均匀或不均匀的大晶粒均称为粗大晶粒。 1、粗大晶粒的宏观组织:粗大晶粒在铸锭的低倍试片检查时很容易发现,为了便于区别根据其直线尺寸,分别为五个级别:一级晶粒 1.17mm、 二级晶粒1.59mm、三级晶粒2.16mm、四级晶粒2.78mm、五级晶粒3.76mm。正常情况下铸锭的晶粒度一般控制在二级以上。有时由于工艺控制不当,铸锭中可出现超大晶粒,其尺寸有时可以超过正常晶粒的几倍,乃至几十倍。 2、粗大晶粒产生的原因:主要原因是,当铸造冷却速度慢时过冷度小,生成晶核的数量小,晶粒成长速度快则会产生均匀的粗大晶粒。其次是熔铸工艺的影响,如熔体过烧或局部过热使熔体中的非自发晶核急剧熔解,结晶核减少;熔体在炉内停留时间过长,

常见铝合金特性及其主要用途[指南]

常见铝合金特性及其主要用途[指南] 常见铝合金特性及其主要用途 一、1000系列,,纯铝系 1、 1060 作为导电材料IACS保证61%,需要强度时使用6061电线 2、 1085 1080 1070 1050 1N30 1085 1080 1070 1050? 成形性、 表面处理性良好,在铝合金中其耐蚀性最佳。因为是纯铝、其强度较低,纯度愈高其强度愈低。日用品、铝板、照明器具、反射板、装饰品、化学工业容器、散热片、溶接线、导电材 3、 1100 1200 1100 1200 AL纯度99.0%以上之一般用途铝材,阳极氧化处理后之外观略呈白色外与上记相同。一般器物、散热片、瓶盖、印刷板、建材、热交换器组件 1N00, 强度比1100略高,成形性良好,其化特性与1100相同。 二、日用品 2000系列,, AL x Cu系 1、 2011快削合金,切削性好强度也高。但耐蚀性不佳。要求耐蚀性时,使用6062系合金音量轴、光学组件、螺丝头 2、 2018 2218 2018 2218锻造用合金。锻造性良好且高温强度较高,因此使用於需要耐热性之锻造品。耐蚀性不佳。汽缸头、活塞、 VTR汽缸 3、 2618锻造用合金。高温强度优越但耐蚀性不佳。活塞、橡胶成形用模具、一般耐热用途组件 4、2219 强度高,低温及高温特性良好,溶接性也优越,但耐蚀性不佳。低温用容器、航太机器 5、2025 锻造用合金。锻造性良好且强度高,但耐蚀性不佳。螺旋桨、磁气桶 2N01, 锻造用合金。具耐热性,强度也高,但耐蚀性不佳。航空器引擎、油压组件

三、 3000系列,,AL x Mn系 1、3003 3203 3003 3203强度比1100约高10%,成形性、溶接性、耐蚀性均良好。一般器物、散热片、化?板、影印机滚筒、船舶用材 2、 3004 3104 3004 3104强度比3003高,成形性优越,耐蚀性也良好。铝罐、灯炮盖头、屋顶板、彩色铝板 3、3005强度比3003高约20%,耐蚀也比较好。建材、彩色铝板 4、3105 强度比3003略高,其他之特性与3003类似。建材、彩色铝板、瓶盖 四、4000系列,,AL x Si系 1、4032 耐热性、耐摩俄性良好,热膨胀?数小。活塞、汽缸头 2、4043 汤流良好,凝固收缩少,用硫酸阳极氧化处理呈灰色之自然发色。溶接线、建筑嵌板 五、5000系列,,AL x Mg系 1、 5005, 5005 5050强度与3003相同,加工性、溶接性、耐蚀性良好,阳极氧化后之修饰加工良好,与6063形材?色相称。建筑用内外装、车辆之内装、船舶之内装 2、5052 ?中程度强度之最具代表性合金,耐蚀性、溶接性及成形性良好,特别是疲劳强度高,耐海水性佳。一般怆金、船舶、车辆、建筑、瓶盖、蜂巢板 3、5652 限制5052之不纯物元素,并抑制过氧化氢分离之合金,其他特性与5052同过氧化氢容器 4、5154 强度比5052约高20%,其他特性与5052相同与5052同样、压力容器 5、5254 限制5154之不纯物元素,并抑制过氧化氢分解之合金,其他特性与5154相同。过氧化氢容器

镁合金在汽车材料上的应用及发展前景

镁合金在汽车材料上的应用及发展前景 摘要:介绍了镁及镁合金的类型和它们的基本性能,国内外在汽车材料方面对其的应用情况,镁合金在汽车轻量化方面的应用,展望了镁合金在未来的应用前景。 1、镁及镁合金的特性 镁是银白色的金属元素,常温下镁的密度为 g/cm ,约为钢的1/4,铝的2/3。在金属镁中添加其他元素可以形成各种镁合金。镁合金是现在大量使用的工程结构材料中最轻的,其比强度明显高于铝合金和钢,比刚度与铝合金和钢相当。同时,镁合金还具有良好的减振性,在相同载荷下,减振性是铝的100倍、钛合金的 300~500倍。镁合金还具有良好的切削加工性及尺寸稳定性,其耐凹陷性、铸造成型性及表面装饰性俱佳,加之具有易回收利用、导热优良性、抗电磁干扰及屏蔽性能等特点,镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动及风动工具和医疗器械等领域。金属镁主要用于:铝基合金的重要添加元素,用量约占镁的总消耗量的43%左右;制造各种零部件的用量已达到镁消耗量的35%左右;炼钢脱硫约占13%;阴极保护材料、金属还原剂和化工行业等。 当今,钢铁、铝合金和塑料是汽车上使用最多的三大类材料,按重量计算,三类材料占整车比例合计约为80%,其中钢铁约占62%,铝合金和塑料大体相当,均占8%-10%。镁合金在汽车上的应用比例为%,平均重量约5kg,但近几年的增幅却较大。镁的比重为cm3,是铝的2/3,钢的2/9,和塑料相当,是最实用的减重轻金属材料。镁合金也具有比强度、比刚度高等优良性能。正因为如此,镁合金有利于汽车轻量化、有利于节能和减排。据资料介绍:轿车质量每减轻100kg,油耗可降低5%。如果每辆汽车使用70kg镁合金,CO2年排放量能减少30%以上。汽车减重可以提高其加速性能;顶部和车门减重,可以降低汽车重心,增强稳定性;前部减重,可以使汽车重心后移,改善操纵性能。 同时,镁的减振系数远高于铝和钢铁,具有优良的抗冲击性能,有利于减振降噪,选用镁合金作为汽车结构材料能有效降低汽车振动和噪声,受冲击时能吸收更多的能量。镁合金的散热性好,抗电磁干扰性高,使汽车更为安全舒适。 2、常用镁合金类型及其性能 由于交通工具轻量化的推动,世界各国都展开了对镁合金的研究,而限制镁合金发展的一个主要原因是镁合金的高性能——抗蠕变能力和高温疲劳性能较差,因此新材料的研发主要是针对这一问题进行,概括的说主要包括两个方面,一是对现有合金的优化,主要是针对现有的商业镁合金,特别是对AZ、ZK系合金进行改性,通过添加合金元素以期改善合金的高温性能;二是新合金系的开发,主要是指新型Mg-RE系的研发。 镁合金可分为铸造镁合金和变形镁合金。镁合金按合金组元不同主要有 Mg-Al-Zn-Mn系(Az系列)、Mg-Al- Mn系(AM)和Mg- Al-Si-Mn系(AS)、

铝合金铸造工艺

铝合金铸造工艺 一、铸造概论 铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性 能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。 ②线收缩 线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。 对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据具体情况而定。

铝合金凝固组织的细化方法和机理概述

qiyekejiyufazhan 目前,铝型制品在工业中的需求量逐渐增加,因为铸造铝合金的密度比铸铁和铸钢小,比强度较高,熔点低,液态流动性能良好。在承受相同载荷条件下,采用铸造铝合金可以减轻设备重量,所以在现代航天航空工业及动力设备和交通运输设备制造中,铸造铝合金得到广泛应用。 人们在研究中发现,细化晶粒是改善金属材料性能最有效、最直接的方法,孕育是铸造金属晶粒细化的重要手段。传统的孕育处理方法是在液态金属中加入孕育剂或变质剂,通过试剂与金属液发生反应有的生成了异质形核的核心,这种反应增加了金属的形核率,同时部分试剂分布于晶界处,使晶核难以继续长大,以实现细化晶粒的目的。但这种传统的处理方法有一定缺陷:存在污染并且孕育处理时效产生。 细化晶粒是改善铝合金质量的重要方法,为了获得铸造金属最佳性能,需要把晶粒控制为细小均匀的等轴晶。对此,可以采用多种方法进行晶粒细化,包括机械物理细化晶粒法、物理场细化晶粒法、化学细化晶粒法。 1机械物理细化晶粒法 实验证明,金属的晶粒尺寸与晶粒成核速率和晶粒长大速率密切相关。为了获得细晶粒尺寸的金属,需要控制成核率大于晶粒尺寸,相反,将获得粗晶粒金属。相关实验还表明,过冷度会影响晶粒的成核速率和晶核的生长速率,成核速率和生长速率随过冷度的增加而增加。如果过冷度持续增大到一定程度,晶核的增长速度将小于晶粒的形核率,此时会出现明显的细化晶粒作用。 在铸造铝合金制备的浇注和结晶过程中,采用机械物理(如机械振动、机械搅拌)是一种细化晶粒的方法。机械物理(振动和搅拌)为液态铝合金提供了充足的能量,增加了成核能力和晶粒的成核速率。同时,结晶晶体受到机械物理(振动和搅拌)产生的对流冲击的影响。在这种作用下,晶体被破坏,破碎的晶体形成新的晶核。可见,晶粒细化是由成核速率 的增加而产生的。机械振动和机械搅拌是较为传统的两种方法,在工业生产中应用较广。但是,由于其操作控制具有一定难度,人为影响因素比较大,因此在铸造铝合金中,尤其是在制备高品质的铝材工业生产中存在很大缺陷。 2物理场细化晶粒法 对金属凝固组织施加物理场的科学研究在20世纪30年代首先被提及,但当时科学技术水平有限,无法支持物理场对晶粒细化作用的科学研究。直到20世纪末,全球科学技术水平得到飞速发展,使得人们可以有效地制备超声波、电磁场和大功率电流等物理场。就目前来看,物理场可以有效地控制晶粒的尺寸,达到细化晶粒的作用,使金属产品的质量得到明显改善。现阶段最主要的3种物理场细化晶粒的方法包括电流方向、磁场方向、超声波方向。 2.1电流方向 20世纪60年代初期,W.GPFANN 等首先研究了电场作用下的传输行为。1987年,MelTon.C.Fleming 研究发现,采用高压电场对液态金属进行大电流放电处理,金属的组织明显细化,得到具有光滑表面的准球状或球状的晶粒形貌。顾根达在实验中也发现,在电流小于750A 、电压小于10kV 的作用下,铸态金属组织得到细化。1996年,Li Hui 等人研究了Al-Si 亚共晶铝合金的组织结构。实验结果表明,亚共晶铝合金的伸长率和拉伸强度在电流处理后明显改善。初级a-Al 逐渐从粗树状枝上细化,最终形成粒状形态。 目前,在电场对铝及合金晶粒细化的影响领域,其细化机理有如下两种看法:1〇在铝熔体中存在着原子集团,对铝熔体施加电场后,迁移作用会产生,促使原子集团发生移动,在移动过程中原子集团势必会发生摩擦。此外,电场还削弱了原子团的电子云,从而有效地降低了电子云的屏蔽效应。因此,在这种电场力和摩擦力的交互影响下,原子集团破碎成一个个更 【作者简介】徐博聪,男,辽宁辽阳人,硕士,辽宁省机电工程学校讲师,研究方向:焊接技术与应用金、属熔炼技术与应用。 铝合金凝固组织的细化方法和机理概述 徐博聪 (辽宁省机电工程学校,辽宁辽阳111000) 【摘要】铸造铝合金比铸铁和铸钢密度小,具有比强度较高、熔点低、流动性能好的特 点。铝合金的需求随着工业生产的增加而增加。为了提高铝合金的应用范围,提高铝合金的强度是一个重要课题。目前,晶粒细化是提高工业省份铸造铝合金性能的最直接也是最经济的方式。文章介绍了3种铝合金凝固组织的细化方法和机理:机械物理细化晶粒法、物理场细化晶粒法、化学细化晶粒法。【关键词】铝合金;凝固组织;晶粒细化【中图分类号】TG11【文献标识码】A 【文章编号】1674-0688(2018)08-0077-02 77

快速凝固技术的应用

快速凝固技术的应用 机103班田玉之 1010012084 摘要:快速凝固指的是在比常规工艺过程中快得多的冷却速度下,金属或合金以极快的速度从液态转变为固态的过程。快速凝固技术得到的合金与常规合金有着不同的组织和结构特征,对材料科学和其它学科的理论研究以及开展实际生产应用起了重要的作用。 Rapid solidification refers to than conventional process much faster cooling rate, metal or alloy in order to speed the transition from the liquid state to the solid state process. Rapid solidification technology of alloy and the conventional alloy has different organization and structure features, materials science and other disciplines of theoretical research and practical application of production 关键词:快速凝固;镁合金;铝合金 引言:随着科学技术的发展,对金属凝固技术的重视和深入研究, 形成了许多种控制凝固组织的方法, 其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段, 同时也成了凝固过程研究的一个特殊领域。过去对凝固过程的模拟考虑了在熔融状态下的热传导和凝固过程潜热的释放, 不考虑金属在型腔内必然存在的流动以及金属在凝固过程中存在的流动。目前快速凝固技术作为一种研制新型合金材料的技术已开始研究了合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。 各种应用: 一快速凝固技术在镁合金中的应用 镁合金是所有结构金属中最轻的一种, 具有比重小, 比强度、比刚度高,耐冲击等一系列优点, 在汽车、电子电器、航空航天等领域具有广阔的应用前景, 但镁合金的加工成形性能及耐蚀性能较差, 大大限制了其发展. 目前, 国内在 高性能镁合金的管、棒、板、型材及一些结构件方面基本上还是空白, 而传统的

相关主题
文本预览
相关文档 最新文档