当前位置:文档之家› 考研线性代数知识点全面总结资料

考研线性代数知识点全面总结资料

考研线性代数知识点全面总结资料
考研线性代数知识点全面总结资料

《线性代数》复习提纲

第一章、行列式

1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算

一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法

定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

?行列式值为0的几种情况:

Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;

Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q n

a a a ?=∑21t

2

1

1-D )(,t 为n q q q ?21的逆序数

4.行列式性质:

1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则)

7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.

5.克拉默法则:

:若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D

D D D

x D D n =?==

n 2211x ,x ,,。

:若线性方程组无解或有两个不同的解,则系数行列式D=0. :若齐次线性方程组的系数行列式0D ≠,则其没有非零解。 :若齐次线性方程组有非零解,则其系数行列式D=0。

6.

1

1

2

n

r r r n

r r r r ==∏O

()

1

1

(1)2

2

1n

r n n r r n

r r r r -==-∏N

()n a b

a b ad bc c d

c

d

=-O

N N O

, 1232

222

1

231

1111123

1111()n n i j n i j n n n n n

x x x x x x x x x x x x x x ≥>≥----=-∏L L L M M M M L

(两式要会计算)

题型:Page21(例13)

第二章、矩阵

1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算

(1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:

①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A 、B 为同阶方阵,则|AB|=|A|*|B|; ④|kA|=n k *|A|。只有方阵才有幂运算。 (3)转置:(kA )T =kA T , ()TTA B AB T =

(4)方阵的行列式:A A T =,A k kA n =,B A AB =

(5)伴随矩阵:E A A A AA **==,-1

)A

(E A A *=,*A 的行元素是A 的列元素的代数余子式 (6)共轭矩阵:)=(Aij a ,A+B=A+B ,A k kA =,B A AB =

(7)矩阵分块法:???

??

??++++=+sr sr s s r r B A B

A B A B A Λ

M M

Λ11

1111

11B A ,???

?

? ??=T sr r

11s T

11T A A A A A ΛM M

ΛT T 3.对称阵:方阵A A T =。 对称阵特点:元素以对角线为对称轴对应相等。 3.矩阵的秩

(1)定义:非零子式的最大阶数称为矩阵的秩; (2)秩的求法:一般不用定义求,而用下面结论:

范德蒙德行列

矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。

(3)0≤R(n m A ?)≤min{m,n} ; ()()A R A R T = ;若B ~A ,则R(A)=R(B) ;

若P 、Q 可逆,则R(PAQ)=R(A) ; max{R(A),R(B)} ≤R(A,B) ≤R(A)+R(B) ; 若AB=C ,R(C)≤min{R(A),R(B)} 4.逆矩阵

(1)定义:A 、B 为n 阶方阵,若AB =BA =I ,称A 可逆,B 是A 的逆矩阵(满足半边也成立); (2)性质:()111---=A B AB , ()()' A A'1-1-=;(A B 的逆矩阵,你懂的)(注意顺序) (3)可逆的条件:① |A|≠0; ②r(A)=n; ③A->I;

(4)逆的求解:○

1伴随矩阵法A

*

1

-A A =;②初等变换法(A:I )->(施行初等变换)(I:1-A ) (5)方阵A 可逆的充要条件有:○

1存在有限个初等矩阵1P ,…,l P ,使l P P P A Λ21= ○2E A ~ 第三章、初等变换与线性方程组

1、 初等变换:○

1()()B Aji??→??,○2()()BAki?→??,○3()()BAj

i+k??→?? 性质:初等变换可逆。 等价:若A 经初等变换成B ,则A与B等价,记作B ~A ,等价关系具有反身性、对称性、传递性。

初等矩阵:由单位阵E 经过一次初等变换得到的矩阵。

定理:对n m A ?施行一次初等行变换,相当于在A 的左边乘相应的m 阶初等矩阵;对n m A ?施行一次初等列变换,相当于在A 的右边乘相应的n 阶初等矩阵。

等价的充要条件:○

1 R(A)=R(B)=R(A,B) ○

2n m ?的矩阵A、B等价?存在m 阶可逆矩阵P 、n 阶可逆矩阵Q ,使得PAQ=B 。 线性方程组解的判定

定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;

(3)r(A,b)=r(A)

特别地:对齐次线性方程组AX=0,(1) r(A)=n 只有零解;(2) r(A)

(1)解的情况:r(A)=n ?只有零解 ; r(A)

①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。 (4)性质:

1若1ξ=x 和2ξ=x 是向量方程A*x=0的解,则21ξξ+=x 、1ξk x =也是该方程的解。 ○

2齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。 ○

3若r A n m =?)(R ,则n 元齐次线性方程组A*x=0的解集S 的秩r -=n R S 。 3.非齐次线性方程组

(1)解的情况:○

1有解? R(A)=R(A,b)。○2唯一解? R(A)=R(A,b)=n 。○3无限解? R(A)=R(A,b)<n 。 (2)解的结构: X=u+r n r n a c a c a c --++Λ2211。

(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。

(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。 (5)○1若1η=x 、2η=x 都是方程b Ax =的解,则21ηη-=x 是对应齐次方程0=Ax 的解

2η=x 是方程b Ax =的解,ξ=x 是0=Ax 的解,则ηξ+=x 也是b Ax =的解。 第四章、向量组的线性相关性

1.N 维向量的定义(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a 为列向量)。 2.向量的运算:

考研线性代数知识点全面汇总

考研线性代数知识点全面汇总

————————————————————————————————作者:————————————————————————————————日期: 2

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则:

考研数学线性代数知识点梳理

从近几年的真题来看,数学线性代数出题没有过多的变化,2014年的考研[微博]学子们,如何做到在千军万马中胜出,需要我们提前准备,更要做到心中有数,下面跨考教育[微博]数学教研室张老师就考研中线性代数部分的复习重点 在考前再给大家梳理一遍。 一、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练 掌握。 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计 算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初 等矩阵的性质等。 二、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式:(1)矩阵形式,(2)向量形式。 1)齐次线性方程组与线性相关、无关的联系 齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。 齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成 立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线 性方程组问题而提出的。

2019考研数学知识点总结

2019考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点 科目大纲章节知识点题型 高等数学函数、极限、 连续 等价无穷小代换、洛必达法则、泰勒展开式求函数的极限 函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型 一元函数微 分学 导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连 续的关系 函数的单调性、函数的极值讨论函数的单调性、极值 闭区间上连续函数的性质、罗尔定理、拉格 朗日中值定理、柯西中值定理和泰勒定理 微分中值定理及其应用 一元函数积 分学 积分上限的函数及其导数变限积分求导问题 定积分的应用用定积分计算几何量 多元函数微 积分学 隐函数、偏导数、全微分的存在性以及它们 之间的因果关系 函数在一点处极限的存在性,连续 性,偏导数的存在性,全微分存在 性与偏导数的连续性的讨论与它们 之间的因果关系 二重积分的概念、性质及计算二重积分的计算及应用 无穷级数 级数的基本性质及收敛的必要条件,正项级 数的比较判别法、比值判别法和根式判别 法,交错级数的莱布尼茨判别法 数项级数敛散性的判别 常微分方程 一阶线性微分方程、齐次方程,微分方程的 简单应用 用微分方程解决一些应用问题 线性行列式行列式的运算计算抽象矩阵的行列式

代数 矩阵 矩阵的运算求矩阵高次幂等 矩阵的初等变换、初等矩阵与初等变换有关的命题 向量向量组的线性相关及无关的有关性质及判 别法 向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示 线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通 解 矩阵的特征值和特征向 量实对称矩阵特征值和特征向量的性质,化为 相似对角阵的方法 有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题 二次型 二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵 概率论与数理统计随机事件和 概率 概率的加、减、乘公式事件概率的计算 随机变量及 其分布 常见随机变量的分布及应用常见分布的逆问题 多维随机变 量及其分布 两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性 随机变量 的数字特征 随机变量的数学期望、方差、标准差及其性 质,常用分布的数字特征 有关数学期望与方差的计算 大数定律和 中心极限定 理 大数定理用大数定理估计、计算概率 数理统计的 基本概念 常用统计量的性质求统计量的数字特征 参数估计点估计、似然估计点估计与似然估计的应用

考研数学三必背知识点:线性代数

线性代数必考知识点 一、行列式 1、逆序数 一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质 (1) 行列式行列互换,其值不变,即T A A (2) 行列式两行或两列互换,其值反号。 (3) 行列式某行或某列乘以k 等于行列式乘以k 。 (4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。 (5) 行列式两行或两列对应成比例,则行列式为零。 (6) 行列式某行或某列元素为零,则行列式为零。 (7) 上、下三角行列式其值为主对角线上元素乘积。 (8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理 (1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式 33211232231131221332211331231233221133 32 3123222113 1211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵 1、矩阵运算 (1) 矩阵加减法即是将对应元素进行加减。 (2) 矩阵乘法是将对应行与对应列元素相乘再相加。 (3) 矩阵除法是乘以逆矩阵。 (4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。 (5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式 (1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置 (1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A

2020考研数学复习:线代知识点

2020考研数学复习:线代知识点 考研数学中的线性代数试题,从难易程度上其实要远低于高数,却依然困扰了很多考生。究其原因,我们就不得不从线性代数的学 科特点及命题方向着手分析。线性代数从内容上看纵横交错,前后 联系紧密,环环相扣,相互渗透,因此解题方法灵活多变。而且线 性代数的命题重点,除了对基础知识的注重外,还偏向于知识点的 衔接与转换。考生在复习的时候要结合这两个方向进行有针对性的 复习。 举例来说,设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解 系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即 r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。 再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理 P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无 关的特征向量所构成,再由特征向量与基础解系间的联系可知此时 若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni 个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相 似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A) 又比如,对于n阶行列式我们知道:若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当 |A|≠0时,可用克莱姆法则求Ax=b的惟一解;可用|A|证明矩阵A 是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量 α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否为零 来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的 最高阶数来定义的,若r(A) 凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接 与转换。复习时应当常问自己做得对不对?再问做得好不好?只有不

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

考研线性代数核心知识点和易错点总结

考研线性代数核心知识点和易错点总结

————————————————————————————————作者:————————————————————————————————日期:

2018考研线性代数核心知识点和易错 点总结 通过7-9月这三个月时间的复习,大家应该做到把所学的知识系统化综合化,尤其是考研数学中的线性代数。在考研数学中线性代数只占分值的22%,所占比例虽然不高,但是对每位考研学子来说同样重要。线性代数部分的内容相对容易,从历年真题分析可知考试的时候出题的套路也比较固定。但是线性代数的知识点比较琐碎,记忆量大而且容易混淆的地方较多;另外这门学科的知识点之间的联系性也比较强,这种联系不仅指各个章节之间的相互联系,更重要的是不同章节中的各种性质、定理、判定法则之间也有着相互推导和前后印证的关系。因此,在复习线性代数的时候,要求考生做到“融会贯通”,即不仅要找到不同知识点之间的内在联系,还要掌握不同知识点之间的顺承关系。为了使广大考生在暑期强化阶段更好地复习线性代数这门学科,下面为大家总结了本门课程的核心考点和易错考点,希望对大家的复习能有所帮助! 一、核心考点 1、行列式 本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出与的结构。对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的相关知识出题的。对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值特征向量等相关考点,对考生能力要求较高,需要考生有扎实的基础,对线性代数整个学科进行过细致而全面的复习。抽象行列式的计算常见的方法有三种:一是利用行列式的性质;二是使用矩阵运算;三是结合特征值与特征向量。 2、矩阵 矩阵是线性代数的核心内容,它是后续章节知识的基础,矩阵的概念、运算及其相关理论贯穿着整个线性代数这门学科。这部分的考点较多,重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。另外,这几年还经常出现与初等变换与初等矩阵相关的命题。本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。 3、向量 本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联

2020考研数学线性代数考点.pdf

2020考研数学线性代数考点 2017考研数学线性代数考点 1、行列式的重点是计算,利用性质熟练准确的计算出行列式的值。 2、矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外, 主要也是运算,其运算分两个层次: (1)矩阵的符号运算。 (2)具体矩阵的数值运算。 3、关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。 4、向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量 组的极大无关组及向量组和矩阵秩的有效方法。 5、于特征值、特征向量,要求基本上有三点: (1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用 特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。 (2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的 条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A 是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可 以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。

(3)相似对角化以后的应用,在线性代数中至少可用来计算行列 式及An。 6、将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题 主要有两个: (1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。 (2)二次型的正定性问题,对具体的数值二次型,一般可用顺序 主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证 明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

考研数学线性代数题型归纳.doc

三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。 四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。 五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。 2019考研数学线性代数知识点总结 【行列式】 1、行列式本质——就是一个数 2、行列式概念、逆序数 考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算 考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。 4、余子式和代数余子式 考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。 5、行列式展开定理 考研:核心知识点,必考! 6、行列式性质 考研:核心知识点,必考!小题为主。 7、行列式计算的几个题型 ①、划三角(正三角、倒三角) ②、各项均加到第一列(行) ③、逐项相加 ④、分块矩阵 ⑤、找公因 这样做的目的,在行/列消出一个0,方便运用行列式展开定理。 考研:经常运用在找特征值中。

⑥数学归纳法 ⑦范德蒙行列式 ⑧代数余子式求和 ⑨构造新的代数余子式 8、抽象型行列式(矩阵行列式) ①转置 ②K倍 ③可逆 ③伴随 ④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型 (这部分内容放在第二章,但属于第一章的内容) 考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。 【矩阵】 1、矩阵性质 考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。 2、数字型n阶矩阵运算

2017考研数学线性代数知识点及例题

2017考研数学线性代数知识点及例题 线性代数是考研数学比较重要的部分,需要各位同学用心去对待,以下为大家梳理线性代数知识框架,希望能对各位同学复习备考有帮助! 线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。 考研数学重点题型备考之线性代数,供考生参考: 考研数学中线性代数的概念很多,往年常有考生没有准确把握住概念的内涵,也没有 注意相关概念之间的区别与联系,导致做题时出现错误。线性代数中运算法则多,应整理清 楚不要混淆,基本运算与基本方法要过关.使知识形成网,努力提高综合分析能力。 考研数学备考要早计划、早安排、早动手.因为数学是一门思维严谨、逻辑性强、相对 比较抽象的学科.和一些记忆性较多的学科不同,数学需要理解的概念多,方法又灵活多变, 而理解概念,特别是理解比较抽象的概念是一个渐近的过程,它需要思考、消化,需要琢磨、 需要从不同的角度、不同的侧面的深入研究,总之它需要时间,任何搞突击,搞速成的思想 不可取,这对大多数考生而言,不可能取得成功;另一方面,早计划、早安排、早动手是采 取笨鸟先飞之策,这是考研的激烈竞争现实所要求的,早一天准备,多一分成绩,多一份把 握,现在不少大一、大二的在校生已经在准备2~3年后的考研,这似乎是早了点,但作为 一个目标、作为一个追求,无可非议.作为2001年的考生,从现在开始备考,恐怕已经不算 太早了. 此外,就是要认真研究考试大纲,要根据考试大纲规定的考试内容、考试要求、考试样 题有计划地、认真地、全面地、系统地复习备考,加强备考的针对性. 由于全国基础数学教材(高等数学,线性代数,概率论和数理统计)并不统一,各学校、 各专业对这些课程要求的层次也各不相同,因此教育部并没有指定统一的教材或参考书作为 命题的依据,而是以教育部制定的《全国硕士研究生入学统一考试数学考试大纲》(下称《大 纲》)作为考试的法规性文件,命题以《大纲》为依据,考生备考复习当然也应以《大纲》 为依据. 为了让广大考生对考什么有一定的了解(不是盲目的备考),教育部考试中心命制的试 题,每年都具有稳定性、连续性的特点.《大纲》提供的样题及历届试题也在于让考生了解 考什么.历届试题中,从来没有出过偏题、怪题,也没有出过超过大纲范围的超纲题.当然,

线性代数知识点总结

《线性代数》复习提纲第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

线性代数章节知识点总结

考研线性代数的六大考点 博研堂专家通过对最近几年考研数学真题以及学生考研分数的分析,得出结论:首先,线性代数的得分率总体要比高等数学和概率论高5%左右;其次,在对考研学生的调查中,70%以上的学生认为线性代数试题难度低,容易取得高分;再次,线性代数侧重的是方法的考查,考点比较明确,系统性更强。鉴于此,博研堂专家认真归纳整理线性代数的主要考点,供同学们分享: 总体来说,线性代数主要包含行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型六章内容。按照章节,博研堂专家总结出线性代数必须掌握的六大考点。 一是行列式部分,强化概念性质,熟练行列式的求法。 在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。 二是矩阵部分,重视矩阵运算,掌握矩阵秩的应用。 通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩。此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。 三是向量部分,理解相关无关概念,灵活进行判定。 向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 四是线性方程组部分,判断解的个数,明确通解的求解思路。 线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。 五是矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解。 矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。 六是二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理。 二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方

考研数学之线性代数知识点以及重要性质指导

线性代数(经管类)重点难点指导 线性代数这门课程的概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。下面就对线代每章中一些具体知识点以及重要性质作如下总结: 一、行列式 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和n 阶两种类型。主要方法是使用行列式按行或者列展开定理和化为上下三角行列式求解,还可能用到的方法包括:行列式的定义(n 阶行列式的值为取自不同行、不同列的n 个元素的乘积的代数和)、性质12 n A λλλ=(其中i λ为矩阵A 的特 征值)、行列式的性质。对于抽象行列式的求值,主要在于考虑* 1 T A A A -、、等的相关性质。 二、矩阵 矩阵中除可逆阵、伴随阵、分块阵、初等阵、矩阵的秩等重要概念外,主要也是运算,其运算分两个层次,一是运用矩阵的性质对抽象矩阵进行运算,二是具体矩阵的数值运算。矩阵计算中最主要的工具是初等变换。下面的表格分类列出了* 1 T A A A -、、的性质以供区别记忆(λ 为A 的特征值): 行列式性质 特征值性质 运算性质 秩的性质 和A 的特征值 相同 ()T T A A = ()T T kA kA = ()T T T AB B A = ()T T T A B B A +=+ ()()()T T r A r A r A A == 1 1A A --= 1111 ();();()A AB kA ----

伴随矩 阵 有特征值 数乘矩 阵 、 矩阵之 积 及矩阵 之和 有特征值 有 特征值 则有: 若是可逆矩阵则有 ;同样,若 可逆则有 三、线性方程组 向量和线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。学习本章必须彻底弄清楚诸多知识点之间的内在联系,只有这样才能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。以下给出这部分主要知识点:三个双重定义: 1.秩的定义 a.矩阵秩的定义:矩阵中非零子式的最高阶数。 b.向量组秩定义:向量组的极大线性无关组中的向量个数。

考研数学线性代数的知识点怎么复习

考研数学线性代数的知识点怎么复习 考生们在进行考研数学的复习时,需要把线性代数的知识点掌握好。小编为大家精心准备了考研数学复习线性代数的重点,欢迎大家前来阅读。 考研数学复习线性代数的要点 线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟

练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。 线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。 考研数学复习的解题思路 考研数学题海战术的正确用法 我们在数学的学习上都有自己的一套方法,那么做题多些到底是不是会有利于数学成绩的提高呢?多做题是很有好 处的,什么题型都见过了,考场上才不会慌张,正确率也会提高,数学总分为150分,在初试中的比重加大了,拉分也正在于此,一定要引起重视。但是大家在做题时一定要注意不要陷入“题海战术”中,多做题的要求有两点,一个是数量,另一

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲 第一章、行列式 1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。 (1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法 定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; ?行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。 奇排列变为标准排列的对换次数为基数,偶排列为偶数。 n 阶行列式也可定义:n q q q n a a a ?=∑21t 2 1 1-D )(,t 为n q q q ?21的逆序数 4.行列式性质: 1、行列式与其转置行列式相等。 2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。 3、行列式某行(列)乘数k,等于k 乘此行列式。行列式某行(列)的公因子可提到外面。 4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。 5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。 6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则) 7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则: :若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解D D D D x D D n =?== n 2211x ,x ,,。

考研数学《线性代数》考点知识点总结

第一章 行列式 二元线性方程组: ?? ?=+=+222211 1211b y a x a b y a x a 22211211a a a a D = ,222121 1a b a b D = ,2 211 112b a b a D = D D x 1= ,D D y 2= 排列的逆 序数: ∑== n t i t t 1 (i t 为排列n p p p 21中大于i p 且排于i p 前的元素个数) t 为奇数奇排列,t 为偶数偶排列,0=t 标准排列。 n 阶行列 式: nn n n n n ij a a a a a a a a a a D 21 22221 11211 )det(===n np p p t a a a 2121)1(∑- t 为列标排列的逆序数. 定理1: 排列中任意两个元素对换,排列改变奇偶性 推论:奇(偶)排列变为标准排列的对换次数为奇(偶)数 定理2: n 阶行列式可定义为n p p p t n a a a D 2121)1(∑-==n np p p t a a a 2121)1(∑-. 行列式的 性质: 1.D =D T ,D T 为D 转置行列式.(沿副对角线翻转,行列式同样不变) 2.互换行列式的两行(列),行列式变号. 记作:j i r r ?(j i c c ?)?D D -→. 推论:两行(列)完全相同的行列式等于零. 记作:j i r r =(j i c c =)?0=-=D D . 3.行列式乘以k 等于某行(列)所有元素都乘以k . 记作:k r kD i ?=(k c kD i ?=). 推论:某一行(列)所有元素公因子可提到行列式的外面. 记作:k r kD i ÷=(k c kD i ÷=). 4.两行(列)元素成比例的行列式为零.记作:k r r i j ?=(k c c i j ?=)?0=D . 5.?'+'+'+= nn n n ni ni n n i i i i a a a a a a a a a a a a a a a D 2121 2 222211 11211)()()(nn n n ni n n i i nn n n ni n n i i a a a a a a a a a a a a a a a a a a a a a a a a D 212 1 2 2221 1 12112121 22221 11211 '''+ = 上式为列变换,行变换同样成立. 6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变. 记作:j i i kc c c +→(j i i kr r r +→),D 不变. 注:任何n 阶行列式总能利用行运算r i +kr j 化为上(下)三角行列式. 对角行列式 n n λλλλλλ 212 1 =, n n n n λλλλλλ 212 ) 1(2 1 )1(0 --= 上D (下D T )三角形行列式 nn nn n n a a a a a a a a a D 221121 22 2111 == 若对kk k k kk k k kk k k b b b b c c c c a a a a D 111111111111= 设 nn n n ij kk k k ij b b b b b D a a a a a D 1111211111)det()det(====, 则有D =D 1D 2. 若2n 阶行列式 n n d d c c b b a a D 22= , 有D 2n =(ad-bc )n .

相关主题
文本预览
相关文档 最新文档