当前位置:文档之家› 高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇不等式
高中数学竞赛解题方法篇不等式

高中数学竞赛中不等式的解法

摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1

设1

212...,...n n a a a b b b ≤≤≤≤≤≤,则有

1211...n n n a b a b a b -+++ (倒序积和)

1212...n r r n r a b a b a b ≤+++(乱序积和)

1122 ...n n a b a b a b ≤+++(顺序积和)

其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成

立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和

顺序积和.)

证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式 1212...n r r n r S

a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值

1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有

.n n k n n r k r n n a b a b a b a b +≤+ (1-1)

事实上,

不等式(1-1)告诉我们当n

r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整

好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就

证明了1

212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.

再证不等式左端,

由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,

即 1211...n

n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .

例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3

()

a b c a b c

a b c abc ++≥.

思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有:

以上两式相加,两边再分别加上 lg lg lg a a b b c c ++

有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3

a b c

a b c

a

b c abc ++≥

故 3

()

a b c a b c

a

b c abc ++≥ .

例2 设a,b,c R +

∈,求证:222222333

222a b b c c a a b c a b c c a b bc ca ab

+++++≤

++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设a b c ≥≥,则 2

22a b c ≥≥且111

c b a

≥≥

根据排序不等式,有 两式相加除以2,得 再考虑3

33a

b c ≥≥,并且

111

bc ca ab

≥≥

利用排序不等式, 两式相加并除以2,即得 综上所述,原不等式得证. 例3 设1

2120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列.

求证:

11

11

r s

n

n

n n

i j r s

r s r s a b a b r s r s ====≥++∑∑∑∑. (1-2)

思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.

证明:令 1

s n

j r

s b d r s

==+∑

(r=1,2,...,n )

显然 12...n d d d ≥≥≥ 因为 1

2...n b b b ≤≤≤ , 且

111...(1)1

r n r n r ≤≤≤++-+ 由排序不等式

1

n

s

r s b d r s =≤+∑ 又因为 1

2...n a a a ≤≤≤

所以 11r

n

n

r r i r r r a d a d ==≤∑∑且111

n

n

n

s

r r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0) 故

11

1

1

1

r s

s

r

n

n

n n

n

i j j ir

i r

r s r s r a b b a a d

r s r s =======++∑∑∑∑∑

故 原式得证. 2.均值不等式

定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.

其中,

121()

111

...n

H n a a a =

+++,

()G n =,

12...()n

a a a A n n

+++=

分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.

c =

,令 i i

a b c

=

则 原不等式12...n b b b n ?+++≥

其中 12121

...( (1)

n n

b b b a a a

c =

=

取 12,,...,n x x x 使 1121

2123,,...,,n n n x x x

b b b x x x --=

== 则 1

.n n x b x = 由排序不等式,易证 下证

()()A n Q n ≤

因为 2

22

21

2121...[(...)n n a a a a a a n +++=+++22212131()()...()n a a a a a a +-+-++-

22222

32421()()...()...()n n n a a a a a a a a -+-+-++-++-]

所以

12...n a a a n +++≤

从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.

下面证明 ()()H n G n ≤

对n 个正数

12111

,,...,n

a a a ,应用 ()()G n H n ≤,得

即 ()()H n G n ≤(等号成立的条件是显然的). 例4已知2201,0a x y <

<+=,求证:1

log ()log 28

x y a a a a +≤+

. 证明:由于 01a <<,0,0x

y a a >>,

x

y a

a +≥=

从而

log ()log log 22

x

y a a a x y

a a ++≤=+

下证

128x y +≤ , 即 1

4

x y +≤。 又因为 2

111()244x y x x x +=-=--+≤,等号在x=12(这时y=14

)时取得

所以 1log ()log 28

x y

a a a a +≤+ .

例5(IMO )设a,b,c 是正实数,且满足abc=1.

证明:111

(1)(1)(1)1a b c b c a -+-+-+≤ 证明:令 ,,y y z

a b c x z x

===,其中x,y,z 是正实数,将原不等式变形为

()()()x y z y z x z x y xyz -

+-+-+≤ (2-1)

记 ,,u x y z v y z x w z x y =-+=-+=-+,

注意到u,v,w 任意两个之和是一个正数,所以它们中间至多有一个负数. 如果恰有一个负数,那么0uvw xyz ≤<

,(2-1)式成立.

如果这三个数都大于0,由算术—几何平均不等式

y ≤

z ≤ 于是

xyz ≤

即 uvw xyz ≤,(2-1)式得证.

例6 已知12,, 0

a a a >,且12...1n a a a +++=.

求证:

1223131211...1...1 (21)

n n n n a a a n

a a a a a a a a a n -++≥++++++++++++-.

思路分析:左边各项形式较复杂,首先将其化简为112

(1)22n

n

i i i i i

a a a ===---∑∑. 左边为和的形式,但其各项之和难与右边联系,利用算术平均大于几何平均难以求证,而左边各项

2

2i

a -可看为倒

数形式,尝试用调和平均. 证明:不等式左边化为

112

(1)22n

n

i i i i i a a a ===---∑∑, 对

12222

,, (222)

a a a ---,利用

()()A n H n ≥有

即 222

1

1

2211221

22n

i n

i i i a n n n n n n a ==-≥

==--

-∑∑ 所以 2

111222(1)22221n

n n

i i i i i i i

a a n n n a a n ===-=-=-≥----∑∑∑21n n =

- . 3.柯西不等式

例7 设12,,...,n x x x R +

∈,求证:2222

1

1212231

......n n n n x x x x x x x x x x x -++++≥+++.

思路分析:注意到式子中的倒数关系,考虑运用柯西不等式来证明. 证明:因为12,,...,n

x x x >0,故由柯西不等式,得

所以 2222

1

1212231

......n n n n x x x x x x x x x x x -++++≥+++.

例8 已知实数,,,a b c d ,e 满足222228,16a b c d

e a b c d e ++++=++++=,求e 的取值范围.

思路分析:由2

2222a

b c d e ++++联想到应用柯西不等式.

解:因为

222222224()(1111)()a b c d a b c d +++=++++++

即 224(16)(8)e e -≥-,

即 2

5160e

e -≤,所以

(516)0e e -≤,

605

e ≤≤

. 评述:此题十分巧妙地应用柯西不等式求最值,十分典型,它是将重要不等式应用于求最值问题的一道重要题目. 例9 123,,x x x R +

∈满足2

221

231x x x ++=,求

312

222

123

111x x x x x x ++---的最小值.

:容易猜到123x x x ===

312222

123

111x x x x x x ++---

为了证明这一点,利用柯西不等式,得

3

33

32

22111

.(1)11i i

i i i i i i x x x x x ===-≥=-∑∑∑, 只需要证明

3

321

(1)i i i x x =-≤

等价于

3

3

5

31

1

i i i i x x ==≥∑∑ (3-1)

由几何—算术平均不等式,得

25311x x +≥=,

同理可证,

25322

x x +≥=,

253

33x x +≥=, 以上三式相加,(3-1)式得证,进而证得

312222

123

111x x x x x x ++---

的最小值是

2

,当且仅当123x x x ===时。

评述:柯西不等式中的

i i

a b ∑的项i i

a b 如何拆成两个因式i

a 和i

b 的积,可以说是应用此不等式的主要技巧

(上例

3

321

(1)i

i

i x x =-≤

∑,我们将

3

21

i i x =∑中的2i x

的积),正因为i i a b 可以按照我

们的需要加以分解,柯西不等式的应用更为广泛.

例10 试问:当且仅当实数01,,...,(2)n x x x n ≥满足什么条件是,存在实数

01,,...,n y y y 使得

2222012...n z z z z =+++成立,其中k k k z x iy =+,i 为虚数单位,k=0,1,…,n. 证明你的结论.(高中联赛,1997)

思路分析:将2

222

12...n z z z z =+++成立转换到实数范围内求解。根据表达式的特点,结合柯西不等式寻找

(1,2,...,)i x i n =的范围.

解:将2

222

12...n z z z z =+++转化到实数范围内,即

22220011

001,n n

k k k k n

k k k x x y y x y x y ===?-=-????=??

∑∑∑ (3-2)

若存在实数

01,,...,n y y y 使(3-2)成立,则2

220

1

()n

k k k x y x y ==∑.

由柯西不等式可得 2222

1

1

()()n

n

k k k k x

y x y ==≤∑∑ (3-3) 如果220

1

n

k

k x

x

=>∑,由(3-2)可知

220

1n

k k y y =>∑,从而

2222

1

1

()()n

n

k k k k x y x y ==>∑∑与 (3-3)矛盾 于是得 220

1

n

k k x

x =≤∑ (3-4)

反之若(3-4)成立,有两种情况:

⑴220

1n

k k x

x ==∑,则取k k y x =,k=0,1,2,…,n ,显然(3-2)成立.

⑵220

1

n

k

k x

x

=<∑,记2

22

01

0n

k k a

x x ==->∑,则1,...,n x x 不全为0.

不妨设0n

x ≠,

0,0,1,2,...,2k y k n ==-,并且取

1n n y y -=

=

易知(3-2)成立.

综上,所求的条件为 220

1

n

k k x

x =≤∑.

4.切比雪夫不等式 定理4 设12,,...,n x x x ,

12,,...,n y y y 为任意两组实数,若12...n x x x ≤≤≤且12...n y y y ≤≤≤或

12...n x x x ≥≥≥且12...n y y y ≥≥≥,则

111

111()()n n n

i i i i i i i x y x y n n n ===≥∑∑∑ (4-1)

若1

2...n x x x ≤≤≤且12...n y y y ≥≥≥或12...n x x x ≥≥≥且12...n y y y ≤≤≤,则

111

111()()n n n

i i i i i i i x y x y n n n ===≤∑∑∑ (4-2)

当且仅当1

2...n x x x ===或12...n y y y ===时,(4-1)和(4-2)中的不等式成立.

证明: 设1212,,...,,,,...,n n x x x y y y 为两个有相同次序的序列,由排序不等式有

…………

把上述n 个式子相加,得 1

1

1

()()n

n n

i i

i i i i i n

x y

x y ===≥∑∑∑

上式两边同除以2

n ,得 111

111()()n n n

i i i i i i i x y x y n n n ===≥∑∑∑

等号当且仅当12...n x x x ===或12...n y y y ===时成立.

例 10 设0(1,2,...,)i a i n >=,

求证:121

21

(...)1

2

12...(...)

n n a a a a a a n

n

n a

a a a a a +++≥

证明:不妨令 12...0n a a a ≥≥≥>,则 1

2lg lg ...lg n a a a ≥≥≥

由切比雪夫不等式,有

11221212lg lg ...lg 1

(...)(lg lg ...lg )n n

n n a a a a a a a a a a a a n

+++≥

++++++ 即 12121

(...)1212lg(...)lg(...)

n n a a a a a a n

n

n a

a a a a +++≥

从而证得 12121

(...)1

2

12...(...)

n n a a a a a a n

n

n a a a a a a +++≥.

例11 已知1

211...0,...0n n n a a a b b b -≥≥≥>≥≥≥>.

求证: 111

n

i

n

i i n

i i

i

i a b n a b

===≥∑∑∑.

证明:取,i i i i x a y b ==,则由2211...0,...0n n n a a a b b b -≥≥≥>≥≥≥>,

可知i x ,i b 满足切比雪夫不等式的条件,故

又由均值不等式,正数12,,...,n b b b 的调和平均数不大于它们的算术平均数,

1

11n

i

i n

i i

b

n n

b ==≤

∑∑.

其中等号仅在12...n b b b ===时成立.

这样就有 111

1n

i

n i

i n i i

i

i a

b n a b

===≥∑∑∑,

即 111

n

i

n

i

i n i i

i

i a

b n a b

===≥∑∑∑, 而且等号仅在12...n b b b ===时成立.

初中数学竞赛:不等式的应用

初中数学竞赛:不等式的应用 不等式与各个数学分支都有密切的联系,利用“大于”、“小于”关系,以及不等式一系列的基本性质能够解决许多有趣的问题,本讲主要结合例题介绍一下这方面的应用.例1已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列. 分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b. 解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy. 因为xy2-xy=xy(y-1)<0,所以xy2<xy. 因为x-xy2=x(1+y)(1-y)<0,所以x<xy2. 综上有x<xy2<xy. 例2若 试比较A,B的大小. 显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B. 例3若正数a,b,c满足不等式组 试确定a,b,c的大小关系. 解①+c得 ②+a得

③+b得 由④,⑤得 所以 c<a. 同理,由④,⑥得b<C. 所以a,b,c的大小关系为b<c<a. 例4当k取何值时,关于x的方程 3(x+1)=5-kx 分别有(1)正数解;(2)负数解;(3)不大于1的解. 解将原方程变形为(3+k)x=2. (1)当 3+k>0,即 k>-3时,方程有正数解. (2)当3+k<0,即k<-3时,方程有负数解. (3)当方程解不大于1时,有 所以1+k,3+k应同号,即 得解为k≥-1或k<-3. 注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。例5已知

求|x-1|-|x+3|的最大值和最小值. |x-1|-|x+3| 达到最大值4.结合x<-3时的情形,得到:在已 说明对含有绝对值符号的问题,无法统一处理.一般情况下,是将实数轴分成几个区间,分别进行讨论,即可脱去绝对值符号. 例6已知x,y,z为非负实数,且满足 x+y+z=30,3x+y-z=50. 求u=5x+4y+2z的最大值和最小值. 解将已知的两个等式联立成方程组 所以①+②得 4x+2y=80,y=40-2x. 将y=40-2x代入①可解得 z=x-10. 因为y,z均为非负实数,所以 解得 10≤x≤20. 于是 u=5x+4y+2z=5x+4(40-2x)+2(x-10) =-x+140.

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈>>?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||22a x a a x a a x ≤≤-?≤?>≤ (2).)0(||22a x a x a x a a x -≤≥?≥?>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 1.比较法(比较法可分为差值比较法和商值比较法。) (1)差值比较法(原理:A - B >0 A > B .) 例1 设a, b, c ∈R +,

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

高中数学竞赛解题策略几何分册勃罗卡定理

第32章勃罗卡定理 勃罗卡()Brocard 定理凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O e 的幂,O e 的半径为R ,则22EG EN EC ED OE R ?=?=-. 22EG GN BG GD R OG ?=?=-. 以上两式相减得() 22222EG OE R R OG =---, 即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-. 又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O e 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠, 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 11180909022BOD BOD BOD ??=?-∠-?=?-∠=∠ ??? , 即知点M 在OBD △的外接圆上. 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD e 与OAC e 的公共弦. 由于三圆O e ,OBD e ,OAC e 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论 推论1凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合. 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心. 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例. 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.

初中数学竞赛专题:不等式(2)

初中数学竞赛专题:不等式(2) §5.4 不等式的证明和应用 5.4.1★设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P .若a b c >>,则M 与P 的大小关系是( ) A.M P = B.M P > C.M P < D.不确定 解析 因为3a b c M ++= ,2a b N +=,224N c a b c P +++==,212 a b c M P +--=,因为a b c >>,所以2201212 a b c c c c +-+->=,即0M P ->,所以M P >.故选B. 5.4.2★若a 、b 是正数,且满足12345(111)(111)a b =+-,则a 与b 之间的大小关系是( ) A.a b > B.a b = C.a b < D.不能确定 解析 因为 12345(111)(111)a b =+- 2111111()a b ab =+--, 所以 2111()1234511124a b ab ab -=-+=+. 由于0a >,0b >,所以0ab >. 所以240ab +>,即0a b ->,a b >.故选A. 5.4.3★若223894613M x xy y x y =-+-++(x 、y 是实数),则M 的值一定是( ). A.正数 B.负数 C.零 D.整数 解析 因为223894613M x xy y x y =-+-++ 2222(2)(2)(3)0x y x y =-+-++≥, 且3x y -,2x -,3y +这三个数不能同时为0,所以0M >. 故选A. 5.4.4★设a 、b 是正整数,且满足5659a b +≤≤,0.90.91a b <<,则22b a -等于( ). A.171 B.177 C.180 D.182

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1 2 12...n r r n r S a b a b a b =+++。 不等式 1 2 12...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到 最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不 变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理

第32章勃罗卡定理 1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四 4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 5 图321 F O L G N E D C B A 6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ?=?=-. 7 22EG GN BG GD R OG ?=?=-. 8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-. 11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥. 13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥. 16

同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥. 18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 23 90(180)90BCD BCD =?-?-∠=∠-? 24 11180909022BOD BOD BOD ?? =?-∠-?=?-∠=∠ ??? , 25 即知点M 在OBD △的外接圆上. 26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论 30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合. 35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 36

初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组) 5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π y 与 10 31 y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π 31 <,所以110π 31 y y > 5.1.2★解关于x 的不等式 233122x x a a +--> . 解析 由题设知0a ≠,去分母并整理得 (23)(23)(1)a x a a +>+-. 当230a +>,即3 (0)2 a a >-≠时,1x a >-; 当230a +=,即32 a =-时,无解; 当230a +<,即32 a <-时,1x a <-. 评注 对含有字母系数的不等式的解,也要分情况讨论. 5.1.3★★已知不等式(2)340a b x a b -+-<的解为49 x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知 20, 434.29a b b a a b -等价于 721 ()2028 a a x a a -+->, 即5528ax a ->,解得14 x >-. 所求的不等式解为14 x >-.

5.1.4★★如果关于x 的不等式 (2)50a b x a b -+-> 的解集为10 7 x < ,求关于x 的不等式ax b >的解集. 解析 由已知得 (2)5a b x b a ->-,① 710x ->-.② 由已知①和②的解集相同,所以 27, 510, a b b a -=-?? -=-? 解得 5, 3. a b =-?? =-? 从而ax b >的解集是3 5 x <. 5.1.5★求不等式 111 (1)(1)(2)326 x x x +---≥ 的正整数解. 解析 由原不等式可得1736x ≤,所以72 x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90, 80x a x b -?? -

山西省太原市高中数学竞赛解题策略-几何分册第25章九点圆定理汇总

第25章 九点圆定理 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆. 如图25-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D 、E 、F ,三边BC 、CA 、AB 的中点分别为L 、M 、N ,又AH 、BH 、CH 的中点分别为P 、Q 、R ,则D 、E 、F 、L 、M 、N 、P 、O 、R 九点共圆. H O Q L R N M P F E D C B A 图25-1 证法1联结PQ ,QL ,LM ,MP ,则1 2 L M B A Q P ∥∥,即知L M P Q 为平行四边形,又LQ CH AB LM ⊥∥∥,知LMPQ 为矩形.从而L 、M 、P 、Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L 、M 、N 、P 、Q 、R 六点共圆,且PL ,QM ,NR 均为这个圆的直径. 由90PDL QEM RFN ∠∠=∠=?=,知D ,E ,F 三点也在这个圆上,故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法2如图25-1,由1 1801802NQD BQD BHD ∠=?-∠=?-∠,以及注意到DE 是N 与R 的公共弦, 知 NR DE ⊥,有1 2 N R D D R E C ∠= ∠=∠,亦即180NRD EHD ∠=?-∠,从而知 ()360180NQD NRD BHD EHD ∠+∠=?-∠+∠=?. 因此,N 、Q 、D 、R 四点共圆. 同理,Q 、L 、D 、R 四点共圆.即知N 、Q 、L 、D 、R 五点共圆. 同理,L 、D 、R 、M 、E 以及R 、M 、E 、P 、F ;E 、P 、F 、N 、Q ;F 、N 、Q 、L 、D 分别五点共圆. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法3如图25-1.联结PL 、PN 、PQ 、PF 、LQ 、LF 、QN 、FL ,则90PDL ∠=?.注意到PN BH ∥,NL AC ∥,BE AC ⊥,则PN NL ⊥,即90PNL ∠=?. 又PQ AB ∥,QL CH ∥,而CH AB ⊥,则QL PQ ⊥,即90PQL ∠=?. 注意到PF PH =,则PFH PHF CHD ∠∠∠==. 由LF LC =,有CFL HCD ∠∠=. 因90CHD HCD ∠+∠?=,则90PFL PFH CFL ∠∠+∠?==. 同理,PM L ∠、PEL ∠、PRL ∠皆等于90?.即D 、N 、Q 、F 、M 、E 、R 各点皆在以PL 为直径的圆周上. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法4如图25-1,注意到LQHR 为平行四边形,QP BA ∥,RP CA ∥,则么180180QLR QHR A QPR ∠=∠?-∠?∠==-,即知L 、Q 、P 、R 四点共圆. 又180180QDR QDH RDH QHD RHD QHR A QPR ∠∠+∠∠+∠∠?∠?-∠====-=(注意QP BA ∥,

初中数学竞赛专项训练不等式

初中数学竞赛专项训练 (不等式与不等式组)及参考答案 1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A. 111 B. 1000 C. 1001 D. 1111 2、若2001 119811198011 ??++= S ,则S 的整数部分是____________________ 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。 4、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把 零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 5、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值 为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 6、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 7、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 8.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

数学竞赛选讲不等式证明

§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈> >?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ΛΛ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函 数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更 为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法. 例题讲解 1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 2.0,,>c b a ,求证:.) (3 c b a c b a ab c c b a ++≥ 3.:.222,,,3 33222222ab c ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤ ++∈+ 求证 4.设* 21,,,N a a a n ∈Λ,且各不相同, 求证:.321312112 23221n a a a a n n ++++≤+ +++ΛΛ.

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

人教版七年级下册数学期末专项复习题:不等式(组)【含答案】

人教版七年级下册数学期末专项复习题:不等式(组)【含答案】 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的

山西太原市高中数学竞赛解题策略-几何分册第1章直角三角形

第一编 点击基本图形 第1章 直角三角形 直角三角形是含有内角为90?的特殊三角形,它是一类基本图形. 直角三角形的有趣性质在处理平面几何问题中常发挥重要作用. 性质1 一个三角形为直角三角形的充要条件是两条边长的平方和等于第三条边长的平方(勾股定理及其逆定理). 性质2 一个三角形为直角三角形的充要条件是一边上的中线长等于该边长的一半. 推论1 直角三角形的外心为斜边的中点. 性质3 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为D 时,下列五个等式之一成立. (1)2AC AD AB =?. (2)2BC BD AB =?. (3)2CD AD DB =?. (4)22 BC AB CD AD =. (5)22AC AB CD DB = . 事实上,由2AC AD AB =?,有 AB AC AC AD = .注意到A ∠公用,知ACB △∽ADC △.而90ADC ∠=?,故90ACB ∠=?.即可得(1)的充分性. 我们又由 22222BC AB BC CD AB AD CD AD CD AD --=?= 22 DB DB CD AD ?=,即2CD AD DB =?. 即可证得(4)的充分性. 其余的证明略. 推论2 非等腰ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射 影为D 时,22AC AD BC DB = . 事实上,由性质3中的(1)、(2)相除或(4)、(5)相除即证.下面,另证充分性.由 222 222 AD AC AD CD DB BC CD DB +== +, 有 2()()0CD AD DB AD DB -?-=. 而AD DB ≠,即有2CD AD DB =?.由此即可证. 性质4 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为点D ,过CD 中点P 的直线AP (或BP )交BC (或AC )于E ,E 在AB 上的射影为F 时,2EF CE EB =?(或2EF = CE EA ?) . 证明 必要性.如图11-,过D 作DG AE ∥交BC 于G ,则

初中数学竞赛专题训练之不等式含答案

初中数学竞赛专项训练(4) (不等式) 一、选择题: 1、若不等式|x+1|+|x-3|≤a 有解,则a 的取值范围是 ( ) A. 0<a ≤4 B. a ≥4 C. 0<a ≤2 D. a ≥2 2、已知a 、b 、c 、d 都是正实数,且 d c b a <,给出下列四个不等式:①d c c b a a +>+ ②d c c b a a +<+ ③d c c b a b +>+ ④d c d b a b +<+其中正确的是 ( ) A. ①③ B. ①④ C. ②④ D. ②③ 3、已知a 、b 、 c 满足a <b <c ,ab+bc+ac =0,abc =1,则 ( ) A. |a+b |>|c| B. |a+b|<|c| C. |a+b|=|c| D. |a+b|与|c|的大小关系不能确定 4、关于x 的不等式组???????+<+->+a x x x x 2 3535 2只有5个整数解,则a 的取值范围是 ( ) A. -6 a C. 7 2- 无解 ③若a ≠0,则方程b ax =有惟一解 ④若a ≠0,则不等式b ax >的解为a b x >,其中 ( ) A. ①②③④都正确 B. ①③正确,②④不正确 C. ①③不正确,②④正确 D. ①②③④都不正确 7、已知不等式①|x-2|≤1 ②1)2(2≤-x ③0)3)(1(≤--x x ④03 1≤--x x 其中解集是31≤≤x 的不等式为 ( ) A. ① B. ①② C. ①②③ D. ①②③④ 8、设a 、b 是正整数,且满足56≤a+b ≤59,0.9<b a <0.91,则b 2-a 2等于 ( ) A. 171 B. 177 C. 180 D. 182 二、填空题: 1、若方程 12 2-=-+x a x 的解是正数,则a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚),一个小孩走进会场,他数得人脚和凳脚共有33条(不包括小孩本身),那么开会的队员共有____名。

数学竞赛历年的不等式题

(2006年全国)2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A . 112x << B .1 , 12 x x >≠且 C . 1x > D . 01x << 【答】( B ) 【解】因为2 0,1210 x x x x >≠?? +->?,解得 1 ,12x x >≠. 由2log (21)log 2 1x x x x +->- 32log (2)log 2x x x x x ?+-> 32 01 22 x x x x <? ? +->? 解得 1x >,所以x 的取值范围为 1 , 12x x >≠且. 1.(05)使关于x k ≥有解的实数k 的最大值是( ) A 解 : 令 6, y x =≤≤ 则 2(3)(6)2[(3)y x x x =-+-+≤- (6)] 6.x +- =0y k ∴<≤实数 D 。 (2004年全国)3.不等式2log 21 1log 32 12++ -x x >0的解集是( C ) A .[2,3] B .(2,3) C .[2,4] D .(2,4) 解:原不等式等价于2 2331log 0222 log 10 x x ++>?-≥? 解得20log 11,24x x ≤-<∴≤<.故选C . (2003年全国)5已知x ,y 都在区间(-2,2)内,且xy =-1,则函数 u =244 x -+2 99y -的最小值是D (A) 58 (B)11 24 (C)712 (D)512 (2003年全国)7不等式|x |3-2x 2-4|x |+3<0的解集是__________.7、}2 5 133215| {-<<-<<-x x x 或; (2003年全国)13已知 52 3 ≤≤x ,证1923153212<-+-++x x x

相关主题
文本预览
相关文档 最新文档