当前位置:文档之家› 智能配电网自愈控制技术的内涵及其应用

智能配电网自愈控制技术的内涵及其应用

智能配电网自愈控制技术的内涵及其应用
智能配电网自愈控制技术的内涵及其应用

智能配电网自愈控制技术的内涵及其应用

【摘要】文章中主要描述了自愈控制技术的相关研究,仅供同行研究工程技术参考之用,希望可以促进智能配电网自愈控制技术的发展与应用。

【关键词】运行监视;控制技术;智能配电网

前言

智能配电网自愈控制,就是用先进的、技术化的方法控制不同层次和地区的配电网络,目的是让配电网可以自己感知、自己辨别、自己做主、自己复原,确保配电网能够在不同的情况下安全运行。配电网自愈技术能够不依靠人为力量或很少依靠人为力量的情况下准确迅速的判断故障、修复,尽量降低供电中段的时间,减少损失。

1 自愈控制的技术内涵与特征

智能配电网自愈控制技术不仅包含了以往普通的配电自动化技术,最重要的是在原来技术的基础上完成了对自动化技术的改革与扩展。主要体现在下面几方面:首先,此技术的使用对象由普通的配电网升级为智能配电网,这就说明了新型配电系统中必须有分布式电源、储能、电动汽车充放电装置等,这些配置能够帮助系统更好的实现自愈控制,但是在一定程度上也提升了控制的难度;其次,此技术最突出的特点是能够在系统发生故障之前进行预防措施,不是简单的处理故障。这要求配电系统必须具有一定的“智能”,这使得配电快速仿真与模拟(DFSM)成为自愈控制功能实现的基础与核心,它为配电网的运行和控制提供计算方法和依据。对智能配电网自愈控制技术的研究要特别重视DFSM,主要是因为:

(1)未来智能配电系统的接线结构和运行模式将愈来愈灵活多样。DFSM 将成为智能配电网运行控制的“大脑”,并使其具有像人一样的“智慧”以应付不断变化的系统结构与需求;

(2)智能配电系统自愈控制对快速仿真与模拟的要求越来越高。对DFSM 将不仅仅需要一些基本的仿真和计算功能,更迫切地希望其能在诸多可行方案中快速地给出的最佳运行方案,也即要求DFSM 具有优化计算功能;

(3)预测仿真能力(即安全分析),能够避免可能对系统造成较大影响的预想事故发生,若事故发生,通过自愈能力尽量减少损失,恢复正常运行;

(4)支持多馈线网络重构、电压与无功控制、故障定位与各类、自适应保护方案等配电网自愈控制功能。

2 自愈控制目标

车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用 车辆1003 20104043 李琳

车辆智能控制技术的研究与应用 自从汽车被发明以来,人类对于驾驶汽车的看法就一直存在分歧,一部分人热衷于让汽车变得越来越好开,强调驾驶乐趣,让你的双手舍不得离开方向盘;然而另一部分人则更热衷于让汽车变得越来越“傻瓜化”,甚至要将驾驶者的双手从方向盘上解放出来……上世纪80年代开始热播的美剧《霹雳游侠》当中的KITT,正是后者思想的集大成者。正在读这篇文章的您也许就曾经被无敌的KITT 所深深吸引吧?当然人类的科技还根本无法达到科幻电视剧当中的效果,KITT 无与伦比的人工智能、让主人公高枕无忧的自动驾驶、车身超级耐打击的能力以及几乎不用加油的动力科技看上去几乎都是天方夜谭。然而随着汽车技术的发展,现实版“KITT”正在向人们走来,近些年来许多厂商都致力于无人自动驾驶技术的研发,宝马在这领域走在时代的前边。 现阶段的技术成果虽然无法实现《霹雳游侠》或者《钢铁侠》里面那样强大的技术,但是让车子短暂脱离驾驶员的控制而自主驾驶,还是已经成功实现了。宝马将一系列最先进的无人驾驶技术设备集成到了一辆看似非常普通的5系轿车里,这些设备能够在高速公路行驶时,接管驾驶员的所有操作,自主进行油门、刹车甚至超车的动作。 车辆自主变线超车 借助布置在车身四周的传感器,它甚至可以发现从辅路匝道进入主干道的车辆,自主采取加减速或者变道的措施,而具体选择那种操作,也是通过计算当时的行驶条件而决定的,也就是说它具备了自主判断交通状况的能力。而这一切,目前都能够在130km/h以下的车速来完成。

其实这些对于驾驶员来说再容易不过的驾驶操作,对于自动驾驶系统来说可是超级复杂的一件事情。车辆不仅需要随时准确侦测出自己处于道路中的哪一条车道上,更要认出车身周边的车辆或者物体。实现这样的感知,不仅需要普通雷达,更需要激光、超声波以及摄像头的辅助。 若要精确做出判断,上述的集中探测装置至少需要两种协同作用。目前这辆能够自主驾驶的宝马5系轿车已经在驾驶员极少干预的前提下,安全行驶了3000英里。这都要归功于全车所有精良的设备。再有一点就是,这项技术的应用普及速度可能远超过你的想象,有消息称该技术在2014年的宝马i3上就会开始搭载,届时你可要分清路上开车的到底是人还是车自己了。然而一向强调给驾驶者带去驾驶乐趣的宝马开发这么一个产品,缺失会让人觉得有些意外,宝马官方给出的解释是,这项技术并不会完全将驾驶者从眼观六路耳听八方中抽离开来,所以不要指望你能在开车上班的路上睡上一觉…… 1 悬架的研究方法 (1)理论研究[1] 悬架系统的理论研究具有前瞻性和探索性,为智能悬架系统的物理实现奠定理论基础。其主要研究内容: a.悬架力学模型理论研究。悬架力学模型是振动理论中的隔振和减振理论的实际应用,通过振动理论的深入研究,全面综合研究悬架的减振和隔振性能、悬挂系统的非线性特性。 未来几年中,动力学、振动与控制领域的下述研究前沿值重视:①高维非

智能控制理论简述

智能控制理论简述 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。智能控制是指驱动智能机器自主地实现其目标的过程,即无需人的直接干预就能独立地驱动智能机器实现其目标。其基础是人工智能、控制论、运筹学和信息论等学科的交叉,也就是说它是一门边缘交叉学科。 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 近20年来,智能控制理论(IntelligentControl Theory)与智能化系统发展十分迅速[1].智能控制理论被誉为最新一代的控制理论,代表性的理论有模糊控制(Fuzzy Control)、神经网络控制(Neural Networks Control)、基因控制即遗传算法(Genetic Aigorithms)、混沌控制[2](Chaotic Control)、小波理论[3](Wavelets Theo-ry)、分层递阶控制、拟人化智能控制、博奕论等.应用智能控制理论解决工程控制系统问题,这样一类系统称为智能化系统。它广泛应用于复杂的工业过程控制[4]、机器人与机械手控制[5]、航天航空控制、交通运输控制等.它尤其对于被控对象模型包含有不确定性、时变、非线性、时滞、耦合等难以控制的因素.采用其它控制理论难以设计出合适与符合要求的系统时,都有可能期望应用智能化理论获得满意的解决。 自从“智能控制”概念的提出到现在,自动控制和人士_智能专家、学者们提出了各种智能控制理论,下面对一些有影响的智能控制理论进行介绍。 (1)递阶智能(Hierarchical IntelligentControl) 阶智能控制是由G.N.Saridis提出的,它是最早的智能控制理论之一。它以早期的学习控制系统为基础,总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。递阶智能控制遵循“精度随智能降低而提高”的原理分级分布。该控制系统由组织级、协调级、执行级组成。在递阶智能控制系统中,

探讨智能配电网自愈控制关键技术

探讨智能配电网自愈控制关键技术 发表时间:2020-01-16T15:01:49.500Z 来源:《当代电力文化》2019年 18期作者:何祥德 [导读] 本文主要从智能配电网自愈控制技术出发, 摘要:本文主要从智能配电网自愈控制技术出发,对在线监测、状态评估、故障诊断三部分内容进行研究。结合工作经验,进行智能配电网自愈控制目标和控制系统的构建,完善系统综合化管理、智能化监测等工作,望在一定程度上提升智能配电网运行的安全性、稳定性和可靠性,为我国电网建设提供相应的参考。 关键词:自愈控制;关键技术;目标分析;系统构建 自愈控制能够从电网运行状态出发,实现智能监测、智能评估和实时控制,减少了人工处理的时间,为配电网安全稳定运行奠定了良好的基础。我国智能配电网建设过程中对自愈控制技术非常重视,依照配电网运行需求合理安装自愈控制装置,对线路、设备、零部件等进行“综合”管理,有效提升了配电网故障“自愈”处理成效,实现了我国智能配电网综合化管理、高效化防控功能的升级。 1 智能配电网自愈控制技术概述 智能配电网自愈控制主要从在线监测、状态评估和故障诊断三方面实现,借助综合系统实现全周期风险管控和实时化故障处理,以提升智能配电网的安全效益和经济效益,其具体状况见表1。 2 智能配电网自愈控制系统的构建 2.1 目标分析 智能配电网构建的过程中需要从可靠性、经济性指标出发实现针对性控制和调整,提升其自愈效果,保证其能够高质量、高效益运行。 一般情况下智能配电网可以选用环网结构,结合具体运行需求做好开环设计,以提升其能够满足各区域的用电负荷。尤其是在稳定性设计时,要对经济指标、可靠系数、安全系数进行综合考虑,确保智能配电网能够实现实时保护、故障分析和快速恢复,使智能配电网在出现故障后能够第一时间进行自我防治、自我愈合、自我免疫,保证区域正常供配电。与此同时,在配电网自愈控制工作开展过程中还需要做好经济性设计,依照实际运行需求对设备性能、经济参数等进行分析,形成符合区域供电实际和区域供电价值的自愈控制体系,在保证自愈控制指标的基础上最大限度降低成本投入,减少不必要的人力、物力,全面优化智能配电网输配电经济效益。 2.2 系统构建 智能配电网自愈控制系统构建时要对物理架构和逻辑架构两部分进行强调。物理架构主要线路设备、控制系统等,逻辑架构主要为自我感知、自我诊断、自我决策等逻辑设定。本次研究过程中主要以某区域智能配电网为例,对其自愈控制系统设计情况进行分析,具体内容如下: (1)物理架构。该区域智能配电网自愈控制体系主要包括技术层、应用层和关键层三部分(见图1)。 关键层主要涉及无线装置、采集装置、输配电装置等,依照区域线路、设备设计状况对用户用电数据进行采集,并将其传输到应用平台层; 应用层主要对采集到的数据进行处理,确定智能配电网运行的安全性、稳定性和可靠性,结合馈线自动化和故障指示迅速形成综合处理结果; 技术层在上述数据基础上响应不同场景的业务需求,形成最优的停电方案和处理体系,保证该区域智能配电网能够安全、稳定运行。

浅析智能配电网故障自愈控制技术

浅析智能配电网故障自愈控制技术 李兰哲 (广东电网公司深圳供电局广东省深圳市 518106) 摘要:智能配电网是智能电网的重要组成部分,自愈控制作为智能配电网的“免疫 系统”,是保证智能配电网实现智能化运行的重要环节。本文通过介绍智能配电网自愈控制技术的特点、类型、支撑技术等,分析研究应用智能配电网自愈控制技术将使电网降低故障停电概率,提升供电质量。特别是在较为恶劣的电网环境中,配电网将充分发挥它的主动预防、自我恢复地能力,快速而准确地隔离故障区域,优先保障人民群众的生活用电。 关键词:智能配电网故障自愈控制 0 引言 进入本世纪,伴随着社会的进步,节能减排、绿色能源、可持续发展已成为我们追求的目标,也成为电力行业实现转型发展的核心驱动力。目前,智能电网已经逐渐成为世界各国电力行业应对未来挑战的正确选择。智能电网的特点是能够实现电力系统安全稳定、优质可靠、经济环保的目标,具有优化电网结构、融合设备差异、分布式供电、主动预警缺陷、故障自愈等功能。智能配电网在整个智能电网系统中承担着衔接主网供电端与用户受电测的重要任务。智能配电网有助于提高电网供电可靠性、系统运行效率以及终端电能质量;有助于实现分布式发电、储能与微网的并网与优化运行,实现高效互动的需求侧管理;有助于结合先进的现代管理理念,构建集成与优化的配电资产运行、维护与管理系统。智能配电网与传统配电网相比,具有更为合理、坚强的网络结构,并具有更强的“免疫力”,能够有效抵御设备异常、自然灾害及外力破坏等突发事件给电力系统造成的破坏作用,而且具有强大的“自愈”能力,快速恢复正常运行。所以说,自愈控制是智能配电网的“免疫系统”。 1 智能配电网自愈控制技术的概述 构建智能配电网是为了实现电力系统运行安全稳定、优质可靠、经济环保的需要。深入发展具有优化结构、融合差异、协调预警、分布供电、故障自愈、互动交流等功能的智能配电网,对实施可持续供电战略有着极其重要的意义。智能配电网的“自愈”能力是指智能配电网可以准确预测缺陷状态和及时警报已经发生的故障状态,并实施对应的可靠措施,使配电网不会大范围停止正常供电或将其停电范围降到最低程度。自愈控制技术主要是解决一个问题,即“不间断供电”,通过信息系统及辅助设备实时监测电网的运行状态,及时预测设备缺陷情况,快速消除安全隐患和自主排除电网故障。在可以预见的将来,拥有自愈能力的智能配电网将为我们提供具有更高供电可靠性和更优电能质量的电力服务,同时支持大量清洁的分布式电源接入系统,方便用户进行能源管理,也让供电企业对配电网设备进行基于GIS系统的图像化、信息化管理,从而实现配电网的设备管理、生产管理智能化。 2 智能配电网自愈控制技术的特点 信息技术的革命和配电新技术的应用推动了配电网智能化的进程,智能配电网是将各种配电新技术进行有机的集成、融合,使系统性能发生革命性的变化。“主动”自愈技术是智能配电网自愈的突出特点,其特点如下:

智能配电网自愈控制技术的内涵及其应用

智能配电网自愈控制技术的内涵及其应用 【摘要】文章中主要描述了自愈控制技术的相关研究,仅供同行研究工程技术参考之用,希望可以促进智能配电网自愈控制技术的发展与应用。 【关键词】运行监视;控制技术;智能配电网 前言 智能配电网自愈控制,就是用先进的、技术化的方法控制不同层次和地区的配电网络,目的是让配电网可以自己感知、自己辨别、自己做主、自己复原,确保配电网能够在不同的情况下安全运行。配电网自愈技术能够不依靠人为力量或很少依靠人为力量的情况下准确迅速的判断故障、修复,尽量降低供电中段的时间,减少损失。 1 自愈控制的技术内涵与特征 智能配电网自愈控制技术不仅包含了以往普通的配电自动化技术,最重要的是在原来技术的基础上完成了对自动化技术的改革与扩展。主要体现在下面几方面:首先,此技术的使用对象由普通的配电网升级为智能配电网,这就说明了新型配电系统中必须有分布式电源、储能、电动汽车充放电装置等,这些配置能够帮助系统更好的实现自愈控制,但是在一定程度上也提升了控制的难度;其次,此技术最突出的特点是能够在系统发生故障之前进行预防措施,不是简单的处理故障。这要求配电系统必须具有一定的“智能”,这使得配电快速仿真与模拟(DFSM)成为自愈控制功能实现的基础与核心,它为配电网的运行和控制提供计算方法和依据。对智能配电网自愈控制技术的研究要特别重视DFSM,主要是因为: (1)未来智能配电系统的接线结构和运行模式将愈来愈灵活多样。DFSM 将成为智能配电网运行控制的“大脑”,并使其具有像人一样的“智慧”以应付不断变化的系统结构与需求; (2)智能配电系统自愈控制对快速仿真与模拟的要求越来越高。对DFSM 将不仅仅需要一些基本的仿真和计算功能,更迫切地希望其能在诸多可行方案中快速地给出的最佳运行方案,也即要求DFSM 具有优化计算功能; (3)预测仿真能力(即安全分析),能够避免可能对系统造成较大影响的预想事故发生,若事故发生,通过自愈能力尽量减少损失,恢复正常运行; (4)支持多馈线网络重构、电压与无功控制、故障定位与各类、自适应保护方案等配电网自愈控制功能。 2 自愈控制目标

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

浅谈智能配电网自愈控制技术体系框架

浅谈智能配电网自愈控制技术体系框架 发表时间:2018-04-13T10:31:04.260Z 来源:《电力设备》2017年第31期作者:孙亮 [导读] 摘要:智能配电网是智能电网的重要组成部分,其中智能配电网有一个被称作免疫防御的体系,那就是自愈控制技术体系,这是智能配电网同传统电网的基本特征。 (国网山东省电力公司龙口市供电公司山东龙口 265700) 摘要:智能配电网是智能电网的重要组成部分,其中智能配电网有一个被称作免疫防御的体系,那就是自愈控制技术体系,这是智能配电网同传统电网的基本特征。可以将传统模式下配电网存在的问题于有效地进行解决,避免出现线路可靠性低和线损率过大的问题。本文简要谈论了智能配电网自愈控制技术体系的框架。 关键词:智能配电网;自愈控制技术;体系;框架 电网从当前的安全控制到自愈电网理念的提出、研发和实施,是一个历史性发展。可以说是以世纪为单位,进行积累和发展的过程,智能配电网的“自愈”能力是指智能配电网能够及时检测出已经发生或正在发生的故障,并进行相应的纠正性操作,使其不影响对用户的正常供电或将其影响降至最小,可见这一技术体系对于电网是多么重要。 1、智能配电网自愈控制概述 电网从当前的安全控制到自愈电网理念的提出、研发和实施,是一个历史性发展。自愈控制主要是解决“供电不间断的问题”,也就是在无需或仅需少量人为干预情况下,监测电网的实时运行状态,预测电网运行状态,及时发现、快速诊断和消除故障隐患。具有自愈能力的智能配电网将具有更高的供电可靠性、更高的电能质量、支持大量的分布式电源的接人、支持用户能源管理(需求侧管理)、提高电网资产利用率、对配电网及其设备进行可视化管理、实现配网设备管理、生产管理的自动化、信息化。智能配电网的自愈控制技术体系包括了三个车次,分别为基础层、支撑层、应用层。 2、基础层 自愈控制技术构成框架的基础层包括了电网以及其设备,实体电网作为智能电网的物理载体,是实现智能电网的基础,也是实现自愈控制的基础。但是,与国外先进国家相比,我国配电网整体供电能力和可靠性水平偏低,管理手段相对落后;配电自动化系统覆盖范围小,远远低于先进国家水平;因为技术不成熟、网架结构调整频繁、运行维护力量不足等原因,配电自动化实用化水平较低,部分装置处于闲置状态;部分地区城市配电变压器经济运行水平不高,配网节能降耗技术应用不足。 鉴于这样的原因,我国智能配电网应该以可靠性建设为核心,以配电网高效运行为目标,同时提高负荷管理水平和用户参与水平。而且,未来将有大量的分布式清洁能源发电及其他形式发电接人电网,要求配电网具备灵活重构、潮流优化、清洁能源接纳能力。同时,随着用户侧、配网侧分布式电源增多,特别是随着屋顶太阳能发电、电动汽车大量使用,电网中电力流和信息流的双向互动会逐步增多,对电网运行和管理将产生重大影响。因此,在实体配电网的建设过程中,必须进行前瞻性的探索、规划和构建,以长远的眼光来研究我国配电网的发展,大力推进先进技术创新,积极采用成熟先进技术,使实体电网在架构、技术、装备等方面,都能满足未来智能电网的需求。 3、支撑层 支撑层主要表现在两个方面,数据、通信。覆盖整个电网的信息交互是实现电力传输和使用高效性、可靠性和安全性的基础。而且,自愈控制需要采集大量设备(包括一次、二次设备)的状态数据和表计计量数据,对于这种数量大、采集点多而且分散的情况,就需要在开放的通信架构、统一的技术标准、完备的安全防护措施下建认高速、双向、实时、集成的通信系统。高速、双向、实时、集成的通信系统是实现智能配电网的基础,也是迈向配电网自我预防、自我恢复的关键步骤。这样的通信系统建成后,电网通过连续不断地自我监测和校正,应用先进的信息技术,实现其自愈能力,提高对电网的驾驭能力和优质服务的水平,它还可以监测各种扰动,进行补偿,重新分配潮流,避免事故的扩大。 4、应用层 自愈电网各项功能的实现,有赖于在完善电网、电力设备以及数据通信的基础上,应用监测、评估、预警或者分析、决策、控制、恢复等技术,实现电网的自我预防,自我恢复。各功能模块的关系如图一所示。具有自愈能力的智能配电网将电网运行状态分为正常状态、预警状态、临界状态、紧急状态和恢复状态。 图一智能配电网自愈控制应用层各模块关系 4.1监测 智能配电网是一个复杂的系统,按照现代控制理论的观点,要对一个系统实施有效控制,必须首先能够观测这个系统四。智能配电网自愈控制重点在于提高电网所有元件的可观测性和可控制性,增强对电力设备参数、电网运行状态以及分布式能源的监测作用,这就对传感与量测技术提出了更高的要求。 4.2评估 传统配电网评估方法多是从配电网供电能力和网架结构方面进行评估,由于智能配电网的复杂性,其评估需在传统配电网评估的基础上,电网安全评估、设备状态评估、电网脆弱性评估、电网风险评估以及上网电价适应性评估,以尽可能的反映电网的实际情况,为电网预警或者分析以及自愈决策提供参考。 4.3预警(分析) 智能配电网规模庞大,运行机理复杂,但是电网运行实践表明,除少数突发故障以外,大多数故障发生是有一个渐进过程的,如果早期发现,及时采取恰当的措施是完全可以防止的。为了及时发现电网安全隐患,提高电网自愈能力,根据电网运行信息、环境变化信息,

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

配电网自愈控制与设计

配电网自愈控制研究与设计 苏标龙1,杜红卫1,韩韬1,时金媛1,王明磊1,陈国亮1,陈楷2,刘健3(1.国电南瑞科技股份有限公司,江苏南京210061;2.南京供电公司,江苏省南京市210019; 3.陕西电力科学研究院,陕西省西安市710054) 摘要:本文根据配电网结构和运行特点,建立配电网风险评估模型,分别从控制逻辑、 控制结构和控制环节等方面入手,探讨配电网自愈控制的基本智能化框架,明确该框架 各层面各环节的内部逻辑和协调关系。本文探讨配电网在正常、紧急、故障、恢复等状 态下的相关理论与应对控制手段。以连续在线评估优化为手段,以实现配电网的快速故 障恢复、优化配电运行为目标。文中针对非健全信息条件下配电网容错故障定位,配电 网大面积断电快速恢复技术以及批量负荷转移做出深入的研究。提出了配电网故障信息 融合方法在配电网容错故障定位中的使用,研究考虑开关拒动情况的自适应故障自愈情 况;提出配电网大面积断电快速恢复方法,明确自愈控制的风险并给出防范措施,为配 电网的自愈功能提供方法和技术支持。 依据本文提出的配电网风险评估模型及容错控制原理,在OPEN-3200配电自动化管理系 统进行了仿真验证,结果表明,建模方法正确、控制原理可行。 关键词:配电网,风险评估,自愈控制,智能电网 Distribution Network Self-healing Control Research and Design KEY WORDS:Distribution network ,Risk Assessment ,Self-healing control ,Smart Grid 0 引言 智能电网是为实现电力系统安全稳定、优质可靠、经济环保要求而提出的未来电网的发展方向。建设智能配电网是实现智能电网中必不可少的环节,其主要特征是融合、分布、互动和自愈。 配电网自愈是指对配电网的运行状态进行分层控制,使配电网具备自我预防、自动恢复的能力,有效的应对极端灾害和大电网紧急事故,提高配电网供电可靠性。 目前,国内外学者都对电网自愈展开了深入的研究,并根据自己的研究领域对自愈的内涵给出了不同的定义,包括从高电压等级电网自愈[1]、城市电网自愈[2]等角度来描述。 1 配电网自愈控制的基本概念 1.1 配电网自愈控制 自愈是指自我预防和自我恢复的能力。自愈控制的目的为:1、及时发现、诊断和消除潜在隐患,阻止系统的恶化;2、发生故障情况下快速切除故障,维持系统持续运行,避免扩大损失;3、通过优化分析,提高配电网运行安全裕度,降低损耗。 配电网自愈控制涵盖常态监视、事前评估预警、事中诊断决策、事后恢复优化4个连续性过

智能配电网自愈控制技术体系框架研究

智能配电网自愈控制技术体系框架研究

智能配电网自愈控制技术体系框架研究 关键词: 智能电网自愈控制智能配电网 摘要:智能配电网是智能电网的重要组成部分,自愈作为智能配电网的“免疫系统”,是智能配电网最重要的特征。首先阐述智能配电网自愈控制主要解决的问题及其作用,然后分析智能配电网自愈控制体系的结构及其技术组成,包括基础层、支撑层和应用层。其中,电网及其设备为基础层,数据和通信为支撑层,监测、评估、预警/分析、决策、控制、恢复为应用层。通过研究应用智能配电网自愈控制技术将使电网的供电可靠性明显提高,停电时间显著减少。尤其是在极端天气情况下,配电网将充分发挥它的自我预防、自我恢复能力,优先保障人们的生活,最大限度地为人们提供电力。 关键词:智能配电网;自愈控制;技术体系;基础层;支持层;应用层 进入21世纪以来,随着世界经济的发展,节能减排、绿色能源、可持续发展成为各国关注的焦点,更成为电力行业实现转型发展的核心驱动力,智能电网的理念逐渐萌发形成,成为全球电力工业应对未来挑战的共同选择[1-3]。目前,中国和世界各国已经达成普遍共识,建设灵活、清洁、安全、经济、友好的智能电网,是未来电网的发展方向[4-6]。智能电网能够实现电力系统安全稳定、优质可靠、经济环保,是实施可持续供电战略的重要保障,具有融合、优化、分布、协调、互动、自愈等特征[7-9]。根据目前国际、国内的研究报告,智能电网主要由4部分组成,分别是高级配电运行、高级量测体系、高级输电运行、高级资产管理。在各个部分中,高级配电运行是目前装备较薄弱的环节,所以在国际上关于智能电网的研究报告中,配电网是大家关注的重点[10]。 智能配电网是智能电网中连接主网和面向用户供电的重要组成部分[11]。智能配电网有助于提高电网供电可靠性、系统运行效率以及终端电能质量;有助于实现分布式发电、储能与微网的并网与优化运行,实现高效互动的需求侧管理;有助于结合先进的现代管理理念,构建集成与优化的配电资产运行、维护与管理系统。智能配电网较传统配电网更加坚强并具有更大的“弹性”,可以有效抵御自然灾害及外力破坏等突发事件给电力系统造成的影响,并且具有强大的“自愈”功能,自愈是智能配电网最重要的特征。从本质上讲,自愈是智能配电网的“免疫系统”。 目前,国内外学者都在积极探讨具有自愈能力的电网架构[12-14]、自愈控制体系及控制策略[15-16],但是这些研究还未形成统一的系统理论,也没有针对智能配电网展开自愈控制的研究。本文对智能配电网的控制技术体系进行研究。首先分析智能配电网自愈控制技术体系设计的层次结构,自下而上分为3层,分别是基础层、支撑层和应用层,然后分别分析各层次的技术组成。 1 智能配电网自愈控制概述 电网从当前的安全控制到自愈电网理念的提出、研发和实施,是一个历时以世纪计的积累发展过程[17]。智能配电网的“自愈”能力是指智能配电网能够及时检测出已经发生或正在发生的故障,并进行相应的纠正性操作,使其不影响对用户的正常供电或将其影响降至最小。自愈控制主要是解决“供电不间断的问题”,也就是在无需或仅需少量人为干预情况下,监测电网的实时运行状态,预测电网运行状态,及时发现、快速诊断和消除故障隐

智能控制技术及其发展趋势

智能控制技术及其发展趋势 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。 一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

智能控制及其在机电一体化系统中的应用 张惠

智能控制及其在机电一体化系统中的应用张惠 发表时间:2019-06-10T14:14:59.703Z 来源:《防护工程》2019年第5期作者:张惠李春生郭慧洁连丽锋 [导读] 智能控制技术弥补了传统控制技术的缺点,并将其自身优点发扬光大,使机电一体化系统更加完善,其作用运用在各个领域。 摘要:目前我国科技发展的十分迅速,智能控制被广泛应用于机电一体化系统中。本文分析机电一体化系统中智能控制的应用,它改变了传统的生产效率低,质量差等问题,节省了人工,提高工作效率,备受各行各业青睐。以推动工业发展为前提,阐述机电一体化系统中智能控制的应用,有效地促进企业的现代化发展。 关键词:智能控制;机电一体化系统;应用 引言 机电一体化系统的重要组成包括驱动、机械、测试、控制、信息等方面,随着经济科技的飞速发展,这些综合技术也要随着时代去改变、去创新。其中在机电一体化系统中融入智能控制技术就是信息化的体现。智能控制技术弥补了传统控制技术的缺点,并将其自身优点发扬光大,使机电一体化系统更加完善,其作用运用在各个领域。 1机电一体化系统 我们通常所说的机电一体化系统,就是指最近兴起的一种用于微电子方面的技术,这个系统有机地对多项技术进行融合,其中就包括了机械、信息、电工、微电子、传感器等多项技术,依靠包括机械设备、计算机设备与电子元件在内的多项硬件构成,并依赖电子、微机还有通信等多项操作用于系统的软件构成,管控用于生产的系统还有设备。 我们将大部分应用于机电一体化成品和执行一体化的系统称为机电一体化系统,这个系统主要由五个部分构件所构成,一是信息处理的构件,二是控制的构件,三是用于供应电力的构件,最后还有机械的构件和用于执行的构件。这个系统的应用在于可以很大程度的减少能源损耗,提高生产的精细程度。所以可以说是一种综合性的功能性技术。 2智能控制技术 2.1数字控制技术 数字控制主要是应用数字化、智能化设备,将其应用在机电一体化系统中,是对预定的产品精密的加工,加工过程中的问题可以进行自动处理,除此之外还可以检测作业环境。 2.2智能数控机床设备 数控机床在机电一体化系统中是不可缺少的一部分,通过智能控制技术,直接提高机床设备运行效率,保证精准性。将智能控制技术和数控机床相结合,芯片、CPU控制系统会在智能控制的作用下得到优化,提高产品质量。由此可见,将智能控制技术应用于机床设备,为其赋予智能性特点,全面提高机床工作效率,保证生产过程的安全性与准确性,这对于机电一体化系统运行有重要作用。 2.3智能机器人(机械臂) 机器人技术在我国已经有一些研究成果,相关技术的实际应用十分复杂。例如应用在动力领域,不仅具有多变性,还呈现出使用领域的限制,对于环境感受传导,会应用到诸多传感器,增加接收的信息以及传感任务。如果应用智能控制技术,便可以将机器人技术进行优化,获得更好的效果。 3机电一体化系统中智能控制的应用 3.1机电一体化系统中智能控制在机械制造中的应用 智能控制是当下机电一体化的发展方向。智能控制可以模拟人的脑力劳动、动作以及专家的一系列智能活动,为我们提供更好的服务。机械制造是机电一体化系统中的重要环节之一,在机械制造中对智能控制的应用,可有根据智能控制中的数据得出相关的结论,可以利用数学理念以及神经网络系统监控整个机械制造的过程,构建动态、立体的环境建设模型。智能控制在机械制造中的应用,实现了智能学习、智能诊断、智能监控、智能传感器等方面技术的融合,推动了机械制造的数字化进程。 3.2应用在GPS农业机械系统中 随着机电一体化系统的不断完善,农业机械领域也运用了智能控制技术,使农业作业效率大大提升。要想农业机械的工作更加完美,绝对离不开GPS的应用。使用GPS定位系统,同时利用信息技术,可以将各种气候、各种地区的农作物的产量和农作物的其他信息采集起来,制作数据表格来作为农业方面的研究。将信息技术与GPS相结合,使GPS有着更加强大的功能,它可以将农业机械的位置坐标、农业现场的三维图像等等以电子信息的形式展现出来。有时候大型农业作业需要很多的农业机械来集体运作,GPS定位将在这个过程当中发挥极大的作用。 3.3机电一体化系统中智能控制在机器人研发中的应用 智能控制在机器人研发中的应用越来越广泛,机器人技术是当下高端技术之一。对机器人行为的控制,核心是要实现动力学控制,动力学理论具有非线性、实时变化性、高内聚性的特点。比如对于双足行走的机器人,我们可以将其看作动态二级倒立摆,体现了非线性的特点。在机器人的研发中还涉及繁杂的传感器信息数据,而机器人的控制系统属于多变量系统,具有较高的复杂性,要想机器人的平衡行动得到保障,就要同时执行多个命令,比如平衡调整命令、躲避障碍命令、规划动作命令等。传统的控制系统由于自身限制无法实现对机器人的全方位控制,而机电一体化系统中智能控制有效地弥补了传统控制系统存在的不足。 3.4在数控领域的应用 对于数控领域需求来说,数控机床的控制需求主要是依赖于传统的经典控制来建立部分模型,然而在模糊信息中,对于以往的经典控制离乱,没办法通过其进行建模,就是因为建模的一个条件是需要高准确度的信息,模糊推理规则的构建,模糊控制的实现,数据精确程度的降低,还有对加工步骤的不断改善,降低机床对运行环境的条件都是智能控制的应用。模糊理论,能够在数控系统中,通过轻微调节参数,有效地提高数控机床的性能,尤其是在适应性这一方面。而这一理论的基础,就是一体化系统中的一个部分,即智能控制。数控加工在算法方面有许多妙处,而插补计算就是其核心之一,然而在现实的计算过程中我们往往需要取点加工信息,见的最多的加工信息就是包括多个方面,即起点,终点、线型等,在以往的加工系统中,位置软件在调控增益方面的表现往往不尽人意依据现有的技术条件,我们

智能控制理论及其应用论文

智能控制理论及其应用 [摘要] 本文回顾了智能控制理论的提出与发展过程,介绍了智能控制的特点,给出了智能控制理论的主要类型及其特点,列举了智能控制理论与技术的主要应用领域,最后总结了智能控制理论的发展趋势。 [关键词] 智能控制模糊控制神经网络专家控制[abstract] this paper reviewed the development of intelligence control, and introduced its main methods and characteristics, and particularized their mostly application fields, and pointed out the prospects of intelligent control development trend and put forward the study direction. [key words] intelligent control fuzzy control net neural expert control 0.引言 随着工业和自动化技术的发展,控制理论的应用日趋广泛,所涉及的控制对象日益复杂化,对控制性能的要求也越来越高,控制对象或过程的复杂性主要体现在系统缺乏精确的数学模型、具有高维的判定空间、多种时间尺度和多种性能判据等,要求控制理论能够处理复杂的控制问题和提供更为有效的控制策略。现代控制理论从理论上解决了系统的可观、可控、稳定性以及许多复杂系统的控制。但实际中的许多复杂系统具有非线性、时变性、不确定性、多层次、多因素等热点,难以建立精确的数学模型,因此需要引入新

电力系统配电网自愈技术及评估方法

电力系统配电网自愈技术及评估方法 【摘要】本文对实现配电网自愈的关键技术进行了简单介绍,对几种配电网接线方式的自愈性进行了分析,最后介绍了基于节点收缩法的配电网自愈能力评估方法。 【关键词】配电网;自愈控制;评估方法 前言 自愈功能是智能电网的特征之一。世界各国对智能电网研究的侧重点不同。美国主要通过通信技术、分布式电源并网技术的运用来提高电网的可靠性;欧洲国家比较重视分布式电源并网技术的研究和运用;我国提出的智能电网是以特高压电网为骨干的网架结构,集成信息技术、决策支持技术、自动控制技术,适应各类电源与用电设施的接入与退出,能与用户进行友好交互,具有系统自愈能力,显著提高系统的可靠性和运行效率。电网自愈控制使得系统能不间断供电,避免故障发生,若发生了故障,故障后不丢失负荷且可以抵御下一次故障的冲击。 1 配电网自愈的关键技术概述 配电网自愈技术建立在智能电网灵活运行方式的基础上,完成主动解列、灵活分区,实现自适应的分布控制,需要智能硬件装置以及相关软件系统的协调控制来实现,涉及继电保护控制、自动控制装置、计算机软硬件以及应用数学等多个领域,实现对系统实时或超时的监测。 配电网自愈包括以下几个主要方面:(1)坚强灵活的电网物理结构,灵活的配电网结构能根据实际运行情况提供多条供电路径。正常情况下通过网络的优化以平衡负荷、减少网损;故障后通过网络快速重构将故障快速隔离和恢复。(2)智能馈线自动化系统。智能馈线自动化技术实现对整个网络的监控和操作,要求开关装置等设备具有良好的选择性和“四遥”功能,能自动识别、检测故障。(3)可靠的通信网络。提高系统输电、配电和用电效率必须要有高效、实时、可靠的网络来进行信息的交互,由智能调配中心进行统一控制。配电网可以通过网络通信进行自我检测,对潮流进行重新分配缩小故障范围。(4)监测系统和软件处理系统。强大的监测能力和快速仿真能力的软件处理系统是实现配电网自愈的关键。监测系统实时地对电力设备进行监测和诊断,仿真软件根据实时的系统数据对系统状态做出仿真,预测电网状态。 2 典型的配电网接线及自愈性分析 配电网的结构与系统的供电容量、供电可靠性和经济性关系密切,配电网的网架结构要与所在城市的负荷水平、电源规划相适应,因此,各个配电系统的负荷密度、接地方式、地形地势、运行方式各不相同。中低压配电网的接线方式主要有:单电源辐射型接线、单环网接线、多分段多联络接线等形式。

智能配电网自愈控制技术分析

智能配电网自愈控制技术分析 自愈是智能配电系统的重要特征。智能配电网自愈控制是解决中国配电网长期以来存在的设备利用率低、供电可靠性低、线损率高等关键问题的核心技术。首先介绍了智能配电网自愈控制的目标、技术方案与实施条件,在此基础上介绍了自愈控制研究与示范中的关键科学问题,包括智能配电网仿真、分析与试验,智能决策与网络重构,故障特性与保护,关键负荷保障等技术。最后,分析了智能配电网自愈控制技术研究与应用面临的问题与挑战。 标签:智能配电网;自愈控制;分布式电源 随着经济社会的发展,人类面临的能源、环境和气候问题日益突出,发展“低碳、高效”经济成为国际社会的广泛共识。电力作为最广泛应用的二次能源供应方式,在“低碳、高效”经济建设中承担着极为核心的角色。“智能电网(smartgrid)”以其可靠、优质、高效、兼容、互动等特点,成为现代电网的发展方向 1.体系架构 1.1自愈控制目标 智能配电网自愈控制的目标是在含DG的配电网运行过程中及时发现、预防和隔离各种潜在故障和隐患,优化系统运行状态并有效应对系统内外发生的各种扰动,抵御外部严重故障冲击,具有在故障情况下维持系统连续运行、自主修复故障并快速恢复供电的能力,可通过减少配电网运行时的人为干预,降低扰动或故障对电网和用户的影响。配电网直接面向用户,其自愈能力的高低直接影响供电质量。针对配电系统的不同运行状态,自愈控制的目标与控制策略完全不同,可分为正常运行状态、控制区域内部故障和控制区域外部故障3种情况。首先,在电网正常运行状态下,自愈控制的目标主要是在满足系统安全稳定约束的前提下,尽可能优化系统运行状态,充分利用系统中的可再生能源并降低损耗,提高资产利用效率;其次,在自愈控制区域内部发生故障时,自愈控制应快速切除故障并确定故障类型与故障位置,尽可能减少或消除非故障段停电范围与区域,在故障段则应当通过网络重构和快速抢修尽快恢复供電;最后,在控制区域外部发生不可逆转的严重故障时,应断开与外部电网的连接,依靠区域内的DG及储能装置,维持系统的自治运行,保证部分关键负荷的持续供电。智能配电网自愈控制目标是自愈策略与控制手段实施的基础,同时也是评价自愈控制实施效果的依据。 1.2方案设计 智能配电网自愈控制技术实施方案是自愈控制策略的具体体现,直接决定了自愈控制的实施效果与代价。智能配电网自愈控制功能的实现主要包括以下3种方式。1)集中控制方式主要依靠具有高级分析计算功能的系统主站来完成,它需要系统在发生故障后将量测信息发送到主站,通过分析计算确定故障类型、

相关主题
文本预览
相关文档 最新文档