当前位置:文档之家› MAPGIS图像配准-图像校正

MAPGIS图像配准-图像校正

MAPGIS图像配准-图像校正
MAPGIS图像配准-图像校正

MAPGIS图像配准

. MAPGIS图像配准

2.1. 栅格图像

1.打开MapGIS主界面,点击“图像处理”----“图像分析”模块。

2.点击“文件”--“数据输入”,将其他栅格图像(bmp,jpg,tif等)转换为msi格式,选择转换数据类型,点击添加文件,添加要转换的文件到转换文件列表中,点击转换即可。

以下操作是在镶嵌融合菜单下进行

2.打开参照图像或者是点、线、面文件

3.系统会自动显示4个控制点,可以对控制点进行修改,也可以删除控制点后自己添加

4.开始添加控制点。

选添加控制点命令。利用右键切换放大和指针,左键选控制点位置,左右键来回切换进行选点,确保精度,用空格确定;然后在参照文件上选与控制点相对应的位置,方法同上,用空格确定,将有对话框提示,确定即可。

5.用以上方法继续添加其它的控制点,控制点数至少四个。可以选控制点预览命令,浏览控制点,保存控制点文件。

6.选中校正预览命令

7.选校正参数命令进行设置,默认即可。

8.选影像精校正命令,即可生成所需文件。

2.2. 矢量矫正

1.打开MapGIS主界面,打开误差校正模块。

2.打开需要配准的图层

3.打开菜单“控制点”->“设置控制点参数”,设置参数,可以选择完控制点之后统一输入理论坐标。

4.打开菜单“控制点”->“选择采集文件”,即控制点从所选择的图层文件中选取。

5.打开菜单“控制点”->“添加校正控制点”,弹出是否新建控制点文件的对话框,选择“是”

6.然后在工作区中添加控制点(一般选择坐标格网交叉点或者道路交叉点,水系交叉点等显著地物),如此重复添加控制点,一般不少于4个控制点。

7.打开菜单“控制点”->“编辑校正控制点”,弹出如下对话框,在理论X,理论Y值中输入对应控制点的理论值

8.点击7步骤中的“保存”按钮,将上面的配准坐标文件保存下来以备以后使用。

9.点击7步骤中的“校正”按钮,弹出如下对话框,然后选择所有要配准的图层。

10.然后右键点击工作区,复位窗体,可以看到新坐标的图幅范围。

11.保存所有图层即完成。

3. MAPINFO软件

3.1. 栅格配准

1. 打开正在编辑的文件.

2. 文件菜单的打开,选择栅格图象格式(raster image),选择jpg图像文件.

3. 出现mapinfo对话窗,其显示有两个按钮,选择配准图像按钮(register).

4.在预览的jpg图像的左上角点击,然后直接确认弹出的对话框。点击添加按钮,点击右上角,直接确认弹出窗口。添加,其余两角点。

5. 在mapinfo窗口的对话窗上选中其中一个配准点,不要关闭该对话框。选mapinf主窗口的表(table)菜单的raster子菜单的从地图上选定控制点。依次完成其它点的定位。

3.2. 矢量配准

MAPGIS几何校正两种方法

MAPGIS几何校的正两种方法 一、mapgis主菜单图像处理中的图像分析, 首先,将JPEG文件转化为msi文件。具体操作如下: 1,文件,数据输入,转换数据类型,选择JPEG文件,添加文件,转换,选择保存位置。 其次,进行坐标校正 2,打开图像分析,文件,打开影像,镶嵌融合,控制点信息,选中控制点,一个一个删除控制点。 3,在四个角有公里网相交的点添加控制点,在弹出的小窗口中较准确的选择控制点位置,按空格键,按照地质图中公里网数值输入X、Y坐标,确定,是。按照上面的步骤再增加两个控制点, 4,镶嵌融合,校正预览,影像校正,选择粗校正的文件保存位置。 5,然后按照第3步骤均匀的增加17个控制点,镶嵌融合,校正参数,选择多项式参数为二次多项式,影像精校正,选择精校正之后的文件存储位置。(选作) 再次,将JPEG文件矢量化 6,mapgis主菜单图像处理中图形处理,新建工程,连着三个确定,添加项目,选择文件型为mapgis图形文件(msi),选择粗校正文件,建立图层对图片进行矢量化。 最后,进行投影变化 7,mapgis主菜单图像处理中实用服务,投影变化,投影转换有两种办法,一种是单个文件进行转换,另一种是成批文件投影转换,首先,介绍第一种方法 7.1,文件,打开文件,选择wp、wt、wl其中的一种,再在矢量化结果中的文件夹中选择其中的某一个图层,P投影转换,设置当前地图参数,进行投影变换。 7.2,P投影转换,B成批文件投影转换,投影文件/目录,选择矢量化的文件,当前投影参数,设置好之后点开始投影,确定,此种方法会覆盖原有的矢量化文件(做好备份)。二、 7,第一种方法精校正完成以后,mapgis主菜单图像处理中图形处理,新建工程,连着三确定,添加项目,选择文件类型为mapgis图形文件(msi),选择精校正文件,建立图层对图片进行矢量化。 8,其他,整图变换,键盘输入参数K,变换类型全打钩,给定原点变换打钩,远点X、Y 输入地质图左下角公里值相交点的坐标,参数输入中,位移参数X、Y为原图的左下角相同点与矢量化的图相同点之间的差值,输入之后,确定。

在Arcgis中配准遥感图像

图像 在ArcGIS中配准(TIF、JPEG)栅格图像 在ArcGIS中配准(TIF、JPEG)栅格图像最好不要压缩,越精确地图的矢量化原精确,使用ArcGIS 9.2 Desktop完成。 栅格图像的校正和坐标系确定 启动ArcMap,新建一个新工程,右键Layers选择Add Data…添加TIF图像,将出现如下提示(如果提示无法加载rester data时请安装ArcGIS Desktop SP3补丁),单击Yes确定,加载图像后提示图像没有进行配准,确定然后配准图像。 图像加载后即可看到图像内容,右键工具栏打开Georeferencing工具条,进行图像的配准工作,在配准之前最好先保存工程。 在File菜单下打开Map Properties编辑地图属性,Data Source Options可设置保存地图文件的相对路径和绝对路径。(这里选择相对路径以确保将工程复制到其他机器可用)。 配准前要先读懂地图,望都县土地利用现状图采用1954北京坐标系,比例尺1:40000,查阅河北省地图发现望都县位于东经115度附近,那么按6度分带属于20带中央经线117度,按3度分带属于38带。从图框看到的公里数发现没有带号,应该是公里数。 这里只找了4个点进行配置(可以找更多的点),从左到右从下到上,逆时针编号为1、2、3、4;在ArcMap中单击Georefercning工具条上的Add Control Ponit工具(先掉Auto Adjuest 选项),添加4个点控制点。 然后编辑Link Table中的4个控制点的代表的公里数,然后单击“Georeferecning下拉菜单的Auto Adjuest”图像即进行校正这时可看到参差值这里是0.00175(Total RMS)非常小说明配准较为精确。单击Save按钮可将控制点信息保存到文件,单击Load按钮可从文件加载控制点坐标。 给校准后的地图选择适合的坐标系,右键Layers打开Properties对话框属性对话框选择投影坐标系,(Prokected Coordinate Systems)展开Predefined/ Prokected Coordinate Systems/Gauss Kruger/Beijing 1954下找Beijing 1954 GK Zone 20坐标系(高斯克里克投影20带无带号),单击确定保存工程;这时配准工作即完成,在状态栏就可以看到正确的坐标单位了。 最后保存校正重新生成采样数据,单击“Georeferencing”工具条的“Rectify”菜单矫正并

地的总结图像配准算法

图像配准定义为:对从不同传感器、不同时相、不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程[2]。图像配准需要分析各分量图像上的几何畸变,然后采用一种几何变换将图像归化到统一的坐标系统中。在配准过程中,通常取其中的一幅图像作为配准的标准,称之为参考图像;另一幅图像作为配准图像。 图1-1 图像配准的基本流程 图1-2 图像配准方法分类

根据配准使用的特征,图像配准的方法大致可分为三类: (1)基于图像灰度的配准算法。首先从参考图像中提取目标区作为配准的模板,然后用该模板在待配准图像中滑动,通过相似性度量(如相关系数法、差的平方和法、差的绝对值法、协方差法)来寻找最佳匹配点。 (2)基于图像特征的配准算法。该算法是以图像中某些显著特征(点、线、区域)为配准基元,算法过程分为两步:特征提取和特征匹配。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。对于非特征像素点利用插值等方法作处理推算出对应匹配关系,从而实现两幅图像之间逐像素的配准。 (3)基于对图像的理解和解释的配准算法。这种配准算法不仅能自动识别相应像点,而且还可以由计算机自动识别各种目标的性质和相互关系,具有极高的可靠性和精度。这种基于理解和解释的图像配准涉及到诸如计算机视觉、模式识别、人工智能等许多领域。不仅依赖于这些领域中理论上的突破,而且有待于高速度并行处理计算机的研制。 从自动化角度来看,可以将配准过程分为自动、半自动和手动配准。 存在问题:如何提高图像的配准速度将是大范围遥感图像自动配准问题的要点;选取何种自动配准方案以保证图像的配准精度将是大范围遥感图像自动配准问题的另一要点。 2(,)[1((, f x y g f h x y 其中,h表示二维空间坐标变换。g表示灰度或辐射变换,描述因传感器类型的不同以及成像时气候等环境的影响所带来的图像灰度的变换。配准问题的实质就是要找到最优的空域变换h和灰度变换g,使得上述的等式成立,从而找到配准变换的参数 特征空间的选择通常要考虑以下几个因素:相似性;空间分布;唯一性。 在自动图像配准中对特征的理解可以分为两类。(1)基于灰度的方法:基于灰度的方法将重点放在特征匹配上,在其过程中并没有真正提取特征。一般所说的模板匹配法就是这种方法的代表。这种方法实际上将图像的灰度分布直接作为特征而构成匹配的基础。(2)基于特征的方法:基于特征的方法需要在图像中提取显著的特征:区域(森林、湖泊、农田等)、线(区域的边界、道路等)和点(区域的角

Mapgis实验报告

地图屏幕数字化 巨鹿整饰 一、实习目的 掌握栅格图像配准、图像格式转换、图例板建立、属性结构建立及地图屏幕数字化的方法和步骤。 二、实习内容 利用给定的土地利用遥感影像图(文件名巨鹿整饰.JPG),转换为MapGIS 的Msi格式,配准并通过鼠标手工跟踪显示在屏幕上的栅格图象来创建矢量地图对象。 三、实习要求 地图屏幕数字化按层进行,地图要素分层及文件名如下: 1.线状地物(线状要素,文件名XZDW) 2.地类界限(线状要素,文件名DLJX) 3.行政界限(线状要素,文件名XZJX) 4.地物注记(点状要素,文件名DWZJ) 5.地类图斑(面状要素,文件名DLTB) 四、实习步骤 1.格式转换 MAPGIS所支持的是MSI影像格式,因此在数字化之前必须将其他格式的数据转换为MSI影像格式。这步工作是在MAPGIS的图像分析模块中进行的。在图像分析模块窗口中,打开文件菜单,鼠标单击数据输入子菜单,在出现的文件转换窗口中添加要转换的图像文件,并在转换数据类型栏中选择JPG文件,点击文件转换命令,图像被转换为MSI格式。 图1 2.影像校正 该操作在图像处理模块中完成。图像配准是进行适量化前非常重要的一个步骤,MapGIS的图像配准是在图像处理的镶嵌配准模块中进行的。 2.1输入控制点

在图像配准对话框的图像上选择一点(经纬线交点)并单击鼠标,按下空格键,然后在弹出的编辑控制点对话框中键入该点对应的实际坐标值(经纬度)(如图所示)。每个控制点有一个标号,指示控制点的名称,如“P t1”等。一般输入4个控制点,但应当注意其中任意三个控制点不能在一条直线上。 图2 图3

MAPGIS图像配准-图像校正

MAPGIS图像配准 . MAPGIS图像配准 2.1. 栅格图像 1.打开MapGIS主界面,点击“图像处理”----“图像分析”模块。 2.点击“文件”--“数据输入”,将其他栅格图像(bmp,jpg,tif等)转换为msi格式,选择转换数据类型,点击添加文件,添加要转换的文件到转换文件列表中,点击转换即可。 以下操作是在镶嵌融合菜单下进行 2.打开参照图像或者是点、线、面文件 3.系统会自动显示4个控制点,可以对控制点进行修改,也可以删除控制点后自己添加 4.开始添加控制点。 选添加控制点命令。利用右键切换放大和指针,左键选控制点位置,左右键来回切换进行选点,确保精度,用空格确定;然后在参照文件上选与控制点相对应的位置,方法同上,用空格确定,将有对话框提示,确定即可。 5.用以上方法继续添加其它的控制点,控制点数至少四个。可以选控制点预览命令,浏览控制点,保存控制点文件。 6.选中校正预览命令 7.选校正参数命令进行设置,默认即可。 8.选影像精校正命令,即可生成所需文件。 2.2. 矢量矫正 1.打开MapGIS主界面,打开误差校正模块。 2.打开需要配准的图层 3.打开菜单“控制点”->“设置控制点参数”,设置参数,可以选择完控制点之后统一输入理论坐标。 4.打开菜单“控制点”->“选择采集文件”,即控制点从所选择的图层文件中选取。 5.打开菜单“控制点”->“添加校正控制点”,弹出是否新建控制点文件的对话框,选择“是” 6.然后在工作区中添加控制点(一般选择坐标格网交叉点或者道路交叉点,水系交叉点等显著地物),如此重复添加控制点,一般不少于4个控制点。 7.打开菜单“控制点”->“编辑校正控制点”,弹出如下对话框,在理论X,理论Y值中输入对应控制点的理论值

图像配准技术方法研究

图像配准技术方法研究 摘要随着信息技术的迅猛发展,图像配准技术已经在军事、遥感、医学、计算机视觉等多个领域得到了广泛的应用。图像配准技术是图像处理的一个基本问题,它是将不同时间、传感器或视角下获取的相同场景的多幅图像进行匹配的图像处理的过程。三类图像配准的方法大致如下:基于灰度的图像配准方法。基于变换域的图像配准方法。基于特征的图像配准方法。本文将应用这三种方法对图像配准进行研究。并重点研究基于特征的图像配准方法。 关键词图像配准,特征点匹配,灰度插值,控制点的提取 Abstract The technology of image registration is being widely used in the military, remote sensing , medical, computer, visual and any other fields with the rapid development of information technology. The technology of image registration is a kind of process to match different pictures getting from different periods and different cameras but a same scene, it is a basic point to handle the pictures. There are three kinds of ways to do the image registration:According to the level of the color of gray getting from the pictures.According to transforming domains.According to the features The three kinds of ways will be used to discuss the image registration in the thesis, and the way according to the features will be discussed more in the thesis.

图像配准的方法

图像配准的方法 迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准 研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围 的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位 系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其 所采用的算法称之为图像相关等等。 图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择 多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统 是任意的。绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来 进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。本文 主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射 关系是图像配准的关键。通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制点(RCP)。目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信 息法、变换域法和基于特征法[25],其中基于特征法又可以根据所用的特征属 性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的 各种图像配准方法和原理。 1基于灰度信息的图像配准方法 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而 是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是 实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变 换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多 基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 (1)互相关法

mapgis光栅文件坐标配准

光栅文件坐标配准流程 一、原始纸质图扫描光栅文件 上图为河北西郝庄铁矿区一张纸质1:2000储量估算图扫描后的jpg格式光栅文件(也可为tif、jpg、bmp格式),要在Mapgis中进行光栅文件坐标配准 二、光栅文件坐标配准。 1、生成标准图框。 1)“实用服务”模块→投影变换→系列标准图框→用键盘生成矩形图框,出现以下对话框:

2)以光栅图内图廓左下角X及Y值作为起始公里值,以内图廓右上角X及Y坐标值作为结束公里值,单位为公里。 原图左下角X及Y坐标值为: X=527.65;Y=4084.6; 原图右上角X及Y坐标值为: X=528.60;Y=4085.90;

3)“坐标系”选“国家坐标系”,“矩形分幅方法”选“任意公里矩形分幅” 4)X坐标值前两位38为3度带带号,原图比例尺为1:2000,网格间距xd及yd均为0.2,网格线类型选“绘制实线坐标线”,各参数输入结果如下图所示: 点击确定,图框自动生成如下图。

“确定” 6)指定存放目录→以“图框”名将点、线、区文件全部存在指定的文件夹中 2、生成MAPGIS内部msi影像文件 1)返回MAPGIS主界面→图像处理→图像分析,

2)文件→数据输入,出现如下对话框: 3)“转换数据类型”处选择要转换光栅文件的类型(如JPG、tif、bmp等)→点“添加文件[F]”选择要转换的光栅文件→“目标文件目录”处点“…”指定转换后的msi影像文件存放目录→点“转换[V]”即生成msi影像文件。

3、光栅文件校正 1)文件→打开影像→选定以上生成的msi影像文件→打开,则装入msi影像文件 2)镶嵌融合→打开参照文件→参照点/线/区文件→选定前面

MAPGIS误差校正

误差校正的操作 在实用服务/误差校正,如下图: 单击误差校正,弹出如下图: 选择文件/打开文件,此处已系统自带例子为例,如下图;

误差校正有三个难点; 1 在文件/打开控制点,此处如果第一次进行误差校正,需要打开控制点,此时也支持新建控制点,给控制点起个名字,然后保存。 2 要分清楚理论值和实际值,理论值指图形应该在的位置,实际值是指图形现在在的位置。如果你想把a图校到b图上,a图较实际值,也就是它现在在的位置;b图叫理论值即a 图应该在的位置。 3 采集搜索范围的设置,是根据实际情况设置的,原则是在理论值的参与校正点的某个点在采集搜索范围内只能有一个点参与校正。 误差校正的原理就是计算机根据采集的实际值的控制点与理论值的相应控制点计算出一个平均的偏移系说,参与校正的点越多校正的就

越准确,理论上三个点确定一个平面,但是实际上参与校正的点至少四个。 由于校正的情况不一样,所以方法也不同,如果你手头上有两幅具有共同点的矢量图,只是比例尺或其他因素造成的不能套和在一起,就用下面的方法,前提是两幅图上必须有相同的同名点,比如a上有c 点,b图上也有c点。 下面介绍具体的校正步骤: 1文件/打开控制点,如下图: 选择打开控制点,如下图:

此时如果是第一次校正,给控制点起名,然后打开,如果以前有控制点可以将其打开进行编辑。 单击打开,弹出如下对话框: 单击是,将控制点保存。 2 控制点/设置空制点参数,如下图;

3控制点/选择采集文件,如下;

本例子标准线文件是理论值,方里网是实际值,我就是想通过误差校正将其他的点线面校到标准线文件框里。 4 添加校正控制点

多模图像配准融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支, 并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图 像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解 剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同 的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准 的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及 手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角 度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生 所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息 量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来 自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以 实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖 结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获 取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来, 获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行, 传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。 如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的 依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那 么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而 言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发 展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像 也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可 以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中, 是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设 备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应 组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融 合。

mapgis误差校正(精)

第六讲误差校正 一、误差校正子系统功能概述 机助制图是用计算机来实现制图,将普通图纸上的图件,转化为计算机可识别处理的图形文件。现代计算机技术和自动控制技术的发展,使机助制图技术发展很快。机助制图主要可分为编辑准备阶段、数字化阶段、计算机编辑处理和分析实用阶段、图形输出阶段等。在各个阶段中,图形数据始终是机助制图数据处理的对象,它用来描述来自现实世界的目标,具有定位、定性、时间和空间关系(包含、联结、邻接)的特征。其中定位是指在一个已知的坐标系里,空间实体都具有唯一的空间位置。但在图件数字化输入的过程中,通常由于操作误差,数字化设备精度、图纸变形等因素,使输入后的图形与实际图形所在的位置往往有偏差,即存在误差。个别图元经编辑、修改后,虽可满足精度,但有些图元,由于位置发生偏移,虽经编辑,很难达到实际要求的精度,此时,说明图形经扫描输入或数字化输入后,存在着变形或畸变。出现变形的图形,必须经过误差校正,清除输入图形的变形,才能使之满足实际要求。 图形数据误差可分为源误差、处理误差和应用误差3种类型。源误差是指数据采集和录入过程中产生的误差,如制图过程中展绘控制点、编绘或清绘地图、制图综合、制印和套色等引入的误差,数字化过程中因纸张变形、变换比例尺、数字化仪的精度(定点误差、重复误差和分辨率)、操作员的技能和采样点的密度等引起的误差。处理误差是指数据录入后进行数据处理过程中产生的误差,包括几何变换、数据编辑、图形化简、数据格式转换、计算机截断误差等。应用误差是指空间数据被使用过程中出现的误差。其中数据处理误差远远小于数据源的误差,应用误差不属于数据本身的误差,因此误差校正主要是来校正数据源误差。这些误差的性质有系统误差、偶然误差和粗差。由于各种误差的存在,使地图各要素的数字化数据转换成图形时不能套合,使不同时间数字化的成果不能精确联结,使相邻图幅不能拼接。所以数字化的地图数据必须经过编辑处理和数据校正,消除输入图形的变形,才能使之满足实际要求,进行应用或入库。 一般情况下,数据编辑处理只能消除或减少在数字化过程中因操作产生的局部误差或明显误差,但因图纸变形和数字化过程的随机误差所产生的影响,必须经过几何校正,才能消除。由于造成数据变形的原因很多,对于不同的因素引起的误差,其校正方法也不同,具体采用何种方法应根据实际情况而定,因此,在设计系统时,应针对不同的情况,应用不同的方法来实施校正。 从理论上讲,误差校正是根据图形的变形情况,计算出其校正系数,然后根据校正系数,校正变形图形。但在实际校正过程中,由于造成变形的因素很多,有机械的、也有人工的,因此校正系数很难估算。比如说,数字化后的图是放大了,还是缩小了,放大或缩小了多少倍,是局部变形还是整体变形,是某些图元与实际不符还是整个图形都发生了畸变等等。如果某个图元本是四边形,可由于输入误差,成为三角形,那么这个是不是也该进行误差校正

图像识别匹配技术原理

第1章绪论 1.1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助

Mapgis中光栅文件校正

Mapgis中光栅文件校正 一、原始纸质图扫描光栅文件 上图为河北西郝庄铁矿区一张纸质1:2000储量估算图扫描后的jpg格式光栅文件(也可为tif、jpg、bmp格式),要在Mapgis中进行光栅文件坐标配准 二、光栅文件坐标配准。 1、生成标准图框。 1)“实用服务”模块→投影变换→系列标准图框→用键盘生成矩形图框,出现以下对话框:

2)以光栅图内图廓左下角X及Y值作为起始公里值,以内图廓右上角X及Y坐标值作为结束公里值,单位为公里。 原图左下角X及Y坐标值为: X=527.65;Y=4084.6; 原图右上角X及Y坐标值为: X=528.60;Y=4085.90;

3)“坐标系”选“国家坐标系”,“矩形分幅方法”选“任意公里矩形分幅” 4)X坐标值前两位38为3度带带号,原图比例尺为1:2000,网格间距xd及yd均为0.2,网格线类型选“绘制实线坐标线”,各参数输入结果如下图所示: 点击确定,图框自动生成如下图。Dx的直就等于1cm为多少公

里。如1:5000的比例次,1cm=500m=0。5KM,故dx=0.5! 5)点击“文件”→“另存文件”→选定全部点、线、区文件→“确定” 6)指定存放目录→以“图框”名将点、线、区文件全部存在指定的文件夹中 2、生成MAPGIS内部msi影像文件 1)返回MAPGIS主界面→图像处理→图像分析,

2)文件→数据输入,出现如下对话框: 3)“转换数据类型”处选择要转换光栅文件的类型(如JPG、tif、bmp等)→点“添加文件[F]”选择要转换的光栅文件→“目标文件目录”处点“…”指定转换后的msi影像文件存放目录→点“转换[V]”即生成msi影像文件。

GIS 栅格图配准流程

光栅文件坐标配准流程 王勇毅 一、原始纸质图扫描光栅文件 上图为河北西郝庄铁矿区一张纸质1:2000储量估算图扫描后的jpg格式光栅文件(也可为tif、jpg、bmp格式),要在Mapgis中进行光栅文件坐标配准 二、光栅文件坐标配准。 1、生成标准图框。 1)“实用服务”模块→投影变换→系列标准图框→用键盘生成矩形图框,出现以下对话框:

2)以光栅图内图廓左下角X及Y值作为起始公里值,以内图廓右上角X及Y坐标值作为结束公里值,单位为公里。 原图左下角X及Y坐标值为: X=527.65;Y=4084.6; 原图右上角X及Y坐标值为:

X=528.60;Y=4085.90; 3)“坐标系”选“国家坐标系”,“矩形分幅方法”选“任意公里矩形分幅” 4)X坐标值前两位38为3度带带号,原图比例尺为1:2000,网格间距xd及yd均为0.2,网格线类型选“绘制实线坐标线”,各参数输入结果如下图所示:

点击确定,图框自动生成如下图。 5)点击“文件”→“另存文件”→选定全部点、线、区文件→“确定” 6)指定存放目录→以“图框”名将点、线、区文件全部存在指定的文件夹中 2、生成MAPGIS内部msi影像文件 1)返回MAPGIS主界面→图像处理→图像分析,

2)文件→数据输入,出现如下对话框: 3)“转换数据类型”处选择要转换光栅文件的类型(如JPG、tif、bmp等)→点“添加文件[F]”选择要转换的光栅文件→“目标文件目录”处点“…”指定转换后的msi影像文件存放目录→点“转换[V]”即生成msi影像文件。

3、光栅文件校正 1)文件→打开影像→选定以上生成的msi影像文件→打开,则装入msi影像文件 2)镶嵌融合→打开参照文件→参照点/线/区文件→选定前面生成

基于ICP算法的图像配准的MATLAB实现

function [TR, TT] = icp(model,data,max_iter,min_iter,fitting,thres,init_flag,tes_flag,refpn t) % ICP Iterative Closest Point Algorithm. Takes use of % Delaunay tesselation of points in model. % % Ordinary usage: % % [R, T] = icp(model,data) % % ICP fit points in data to the points in model. % Fit with respect to minimize the sum of square % errors with the closest model points and data points. % % INPUT: % % model - matrix with model points, [Pm_1 Pm_2 ... Pm_nmod] % data - matrix with data points, [Pd_1 Pd_2 ... Pd_ndat] % % OUTPUT: % % R - rotation matrix and % T - translation vector accordingly so % % newdata = R*data + T . % % newdata are transformed data points to fit model % % % Special usage: % % icp(model) or icp(model,tes_flag) % % ICP creates a Delaunay tessellation of points in % model and save it as global variable Tes. ICP also % saves two global variables ir and jc for tes_flag=1 (default) or % Tesind and Tesver for tes_flag=2, which % makes it easy to find in the tesselation. To use the global variables % in icp, put tes_flag to 0. % % % Other usage: % % [R, T] = icp(model,data,max_iter,min_iter,... % fitting,thres,init_flag,tes_flag) % % INPUT: % % max_iter - maximum number of iterations. Default=104 % % min_iter - minimum number of iterations. Default=4 % % fitting - =2 Fit with respect to minimize the sum of square errors. (default) % alt. =[2,w], where w is a weight vector corresponding to data. % w is a vector of same length as data.

MAPGIS实验五、地形图的镶嵌配准

MAPGIS上机操作练习六:地形图的镶嵌配准内容:将给定的三个地形图分别进行镶嵌配准; 目的:使学生熟练掌握对地形图镶嵌配准的方法、步骤,理解镶嵌配准的意义及其重要性。 步骤: 一、生成与给定地形图的方里网相一致的图框; (1)打开投影变换窗口,点击“参数设置——缺省经纬线参数”, (2)点击“系列标准图框”,根据你要绘制的图幅要求选择比例尺。 输入地形图左下角的经纬度,即起点经纬度,注意:上面是纬度,下面是经度,输入格式是DDDMMSS,即如果是120°30'45〃,

就直接输入1203045,并选择椭球参数,椭球参数的确定查看地形图的坐标说明。 (3)点击“图框文件名”,设置图框存放的路径,注意:图框的生成同时生成3个文件,*.wt,*.wl,*.wp,即同时生成点线面文件。(4)点击确定后,对“图框参数输入”进行设置 注意:一定要深刻理解6项图框参数的选择

使“将左下角平移为原点”、“旋转图框底边水平”两项不选。点击确定。 上面即是1:5万地形图的图幅号,中间即是当前生成的图,上下左右是当前生成图的上下左右的地形图的图幅号。

仔细检查生成的图框的坐标值是否与地形图的坐标一致,如果完全一致,说明生成的图框是正确的,可以进行下一步镶嵌配准。 二、镶嵌配准:打开图像分析窗口 (1)通过打开影像文件;

(2)然后点击“镶嵌融合——打开参照文件——参照点文件、参照线文件”

(3)点击“镶嵌融合——删除所有控制点” (4)点击“镶嵌融合——控制点浏览,添加控制点”,一般要先采源点(需配准的地形图),后采目标点(标准图廓),先采图廓点(先右下

mapgis图像校正

㈠采用PhotoShop预处理图像 1.将实验数据复制,粘贴至各自文件夹内。 2.双击桌面上的PhotoShop快捷图标,启动PhotoShop。 3.在PhotoShop“文件”下拉菜单中,选择“打开”命令,通过浏览方式将“南河镇地形地质图-1”载入PhotoShop程序。注意此图像文件格式是什么?图像质量如何? 4.通过“图像”菜单的“画布大小”命令打开“画布大小”对话框,如图2-1所示。定位选择左上角,将宽度和高度调整为原来的两倍,用来放要拼接的内容。如图2-2所示。 图2-1“画布大小”对话框图2-2设置“画布大小”为原来两倍 5.再打开“南河镇地形地质图-2”,将其通过“移动工具”拖动到同“南河镇地形地质图-1”一个窗口。这时在“南河镇地形地质图-1”窗口中将多出一个图层“图层1”,如图2-3所示。再接着用“移动工具”把图层1中的内容调整到和背景中的图形相接,在调整的过程中可以以某一个关键点为依据,通过键盘上的上下左右方向键进行微调让两部分图像很好的接合在一起。 图2-3图层窗口图2-4含多个图层的窗口6.用同样的方法打开“南河镇地形地质图-3”和“南河镇地形地质图-4”,并将其拼接在“南河镇地形地质图-1”上,形成一张完整的地图。这时将出现“图层2”和“图层3”。如图2-4所示。并单击选择如图2-4中向右三角形,进行“拼合图层”。最终只有一个图层“背景”。 7.在PhotoShop工具条中的“吸管工具”位置处点击鼠标右键,选择“度量工具”,在拼合后的“南河镇地形地质图-1”上水平边框左侧交角处点击鼠标左键并按着不放,沿边框线拖出一条斜线至上边框右上交角处,然后松开鼠标,此时会在标准工具栏中显示此线角

医学图像配准技术 综述

医学图像配准技术 A Survey of Medical Image Registration 张剑戈综述,潘家普审校 (上海第二医科大学生物医学工程教研室,上海 200025) 利用CT、MRI、SPECT及PET等成像设备能获取人体内部形态和功能的图像信息,为临床诊断和治疗提供了可靠的依据。不同成像模式具有高度的特异性,例如CT通过从多角度的方向上检测X线经过人体后的衰减量,用数学的方法重建出身体的断层图像,清楚地显示出体内脏器、骨骼的解剖结构,但不能显示功能信息。PET是一种无创性的探测生理性放射核素在机体内分布的断层显象技术,是对活机体的生物化学显象,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。将不同模式的图像,通过空间变换映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。而求解空间变换参数的过程就是图像配准,也是一个多参数优化过程。图像配准在病灶定位、PACS系统、放射治疗计划、指导神经手术以及检查治疗效果上有着重要的应用价值。 图像配准算法 可以从不同的角度对图像配准算法进行分类[1]:同/异模式图像配准,2D/3D图像配准,刚体/非刚体配准。本文根据算法的出发点,将配准算法分为基于图像特征(feature-based)和基于像素密度(intensity-based)两类。 基于特征的配准算法 这类算法利用从待配准图像中提取的特征,计算出空间变换参数。根据特征由人体自身结构中提取或是由外部引入,分为内部特征(internal feature)和外部特征(external feature)。

【作者简介】张剑戈(1972-),男,山东济南人,讲师,硕士 1. 外部特征 在物体表面人为地放置一些可以显像的标记物(外标记,external marker)作为基准,根据同一标记在不同图像空间中的坐标,通过矩阵运算求解出空间变换参数。外标记分为植入性和非植入性[2]:立体框架定位、在颅骨上固定螺栓和在表皮加上可显像的标记。Andre G[3]等将该方法用于机器人辅助手术,对于股骨移植,位移误差小于1.5mm,角度误差小于3°,由于计算量小,可以实现实时配准。但是标记物必须事先被固定好,不能用于回顾性配准,而且该方法只适用刚体配准。 2. 内部特征 从医学影像中可以提取出点、线和面:血管的交点、血管、胸腹之间的横膈膜等,这些特征作为内标记点(internal marker) ,利用其空间位置同样可以求解出空间变换参数。Hill DL[4]用11个形态点对脑部配准,误差<1mm,方差为1.73mm。Meyer CR[5]除了血管树的交点,还使用了左右脑之间的间隔等特征。Maurer CR[6,7]赋予点、线、面等几何特征不同的权重(weighted geometrical features, WGF),进一步改进了算法。内标记点配准是一种交互性的方法,将3D图像配准简化为点、线和面的匹配,可以进行回顾性研究,不会造成患者的不适。但是医生对特征位置的判断影响到配准精度,为了克服人为误差,需要多次重复操作,以平均值作为最终结果。 表面匹配算法也利用了内部特征[8]:进行图像分割,提取出轮廓曲线、物体表面等内部特征,使2D/3D图像配准简化为2D曲线和3D曲面的匹配,不再考虑物体内部像素。典型的应用是刚体配准的“头帽”算法[9],从头部的3D图像中分割出表面轮廓,分别作为头模型和帽模型。配准的目标函数是头表面和帽表面之间的均方距离,该距离是空间变换参数的函数。表面匹配算法是一种自动算法,在物体表面轮廓相似并且清晰的情况下,配准效果很好。其不足之处在于:准确地进行图像分割很困难;不同模式的图像,如CT/PET图像,由于器官的轮廓差异较大,难于精确地匹配。 3. 在非刚体配准中的应用 进行非刚体配准前要确定物理模型,常见有弹性模型、粘稠液体模型、生物力学模型。通过在感兴趣区域中提取参考点、2D或是3D轮廓线,使待配准图像

图像配准算法综述

杭州电子科技大学 毕业设计(论文)文献综述 毕业设计题目SIFT特征研究及应用 文献综述题目图像配准算法综述学院生命信息及仪器工程学院 专业电子信息技术及仪器 姓名 班级 学号 指导教师

图像配准算法综述 一.前言 图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。 目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。图像配准的研究是计算机视觉中最困难也是最重要的任务之一。不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。 随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。 图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。 本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。 二.图像配准算法的研究现状 图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。当时他讨论的图像配准技术主要还是著眼于医学图像处理、遥感图像处理等传统应用领域。图像配准是图像镶嵌技术的核心问题。 微软研究院的Richard Szeliski在1996年SIGGRAPH上提出了基于运动模型的全景图拼接算法[7]。Szeliski采用了非线性优化的方法来最小化像素两幅图像的亮度差以确定变换参数。该方法使用了全部像素进行优化处理,所以配准精度较高,但是计算速度较慢,且稳健性不佳。 国内的赵向阳。杜立民在2004年提出了一种基于特征点匹配的图像自动拼接算法[2],其中使用了Harris算法[3]提取角点并进行匹配。赵的算法采用了鲁棒变换估计技术,在一定程度上提高配准算法的稳健性,但是计算速度依然较慢,且无法配准重

相关主题
文本预览
相关文档 最新文档