当前位置:文档之家› 风电齿轮箱(增速机)基础知识简介

风电齿轮箱(增速机)基础知识简介

风电齿轮箱断齿问题分析

风电齿轮箱断齿问题分析 一、引言 近年来中国的风电产业蓬勃发展,2011年全国新增装机容量达18GW,居世界第一。以华锐风电科技(集团)股份有限公司、金风科技股份有限公司、国电联合动力技术有限公司为代表的一批本土风电装备及关键零部件制造企业正在迅速崛起,推动我国发展成为世界上最大的风电装备制造基地。但我国自主风电装备制造仍然面临着一些深层次的问题,值得深思,且直接体现在以下两方面:一是中国区域气候特点明显,北方具有沙尘、低温、冰雪等恶劣工况,东南沿海具有台风、盐雾等恶劣工况,这与欧洲的标准风况(IEC61400-1)差异明显,使得在引进技术基础上制造的风电装备的可靠性不足,故障率较高。我国北方的大型陆上风场普遍存在的长时间干燥扬尘的低温气候,对风电机组正常运行的影响非常大,会导致叶片表面损伤乃至脆断,而且液压系统密封不良、污染、液压油黏度增大等会产生工作不良及安全问题,齿轮箱密封润滑系统功能退化、低温停机较长时间后变速箱内油温低、黏稠等都会降低系统寿命,而西欧的海洋性暖温带气候则要温和得多,对风电设备的性能影响也小。二是当前国内的风机开发与欧美发达国家还存在着明显代差。欧美风电装备制造企业已经跨域了5—6MW的水平,正在大力推进10MW级风电装备的研制工作,而国产主流机型还处于 1.5—3MW的级别。更重要的是我国风电制造企业在核心技术上基本处于引进吸收和模仿阶段,尚未具备系统性的装备自主研发能力,引进的是产品线及部分生产技术,但是没有形成系统的设计开发能力和生产技术开发能力。这也是我国在风电装备开发、生产和应用上与国际先进水平差距显著的重要原因。分析近年来我国风电装备产业的发展历程,多数风电装备制造企业的技术能力与实际的设备可靠运行要求之间还存在着显著的差距。从风电装备服役运行中的主要技术问题做起,探究相关的设计制造科学理论与先进技术方法,提升自主设计能力及制造技术能力,已成为我国风电装备制造产业健康发展的重大课题。因此,《国家中长期科学和技术发展规划纲要(2006-2020)》和《国务院关于加快培育和发展战略性新兴产业的决定》(2010)中都明确提出了“重点研究开发大型风力发电设备”、“提高风电技术装备水平,有序推进风电规模化发展”等要求。 总体上说,因主传动链机械故障导致停机的时间占据了风机故障停机时间的40%—60%甚至更多,是影响系统性能和可靠服役的关键问题(国产风电齿轮箱的问题更显著一些)。导致这些机械故障产生的主要外在因素可以归纳为极端气候条件、长期交变载荷作用、恶劣工作环境与复杂载荷的综合作用等,而主要的内在原因则可以追溯到传动系统的结构及装配质量技术等问题。目前新一代风机随着单机容量的增大,部件的尺寸、质量、系统复杂程度都在增加,同时包括海上风机在内的装备发展对系统可靠性的要求在进一步提高,因此对传动系统的相关问题如果不给予更大重视,必然会增加系统的故障率,降低服役可靠性。 二、断齿问题分析 1.齿轮损伤 齿轮损伤主要包括轮齿折断(断齿)、齿面疲劳(点蚀)、齿面胶合、齿面磨损等。对齿轮箱中齿轮出现的故障,国内外的观察结果或报告都较为一致,即发生最多的仍为齿面的损坏,从应用初期的微点蚀,到逐步扩展的大面积点蚀、剥落或磨损。断齿常由细微裂纹逐步

齿轮箱操作手册.

用以驱动风力发电机的PPSC1290-MY型齿轮箱 操作手册 Jahnel-Kestermann Getriebewerke 有限公司Hunscheidtstrasse 街116号44789 Bochum市(德国)

操作手册内容目录 技术数据---------------------------------------------------- 安全------------------------------------------------------------100-0003-01 综述------------------------------------------------------------100-0003-02 运输------------------------------------------------------------100-0012-03 结构和功能---------------------------------------------------350-0019-04 装配-------------------------------------------------------------100-0006-05 准备工作-------------------------------------------------------100-0004-06 启动-------------------------------------------------------------100-0001-07 运行-------------------------------------------------------------100-0001-08 维护-------------------------------------------------------------100-0006-11 推荐的润滑剂-------------------------------------------------100-0006-11 在运行之前请仔细阅读并遵守操作手册和安全措施

解答70个风电齿轮箱的问题

https://www.doczj.com/doc/0510447357.html,/topic_1101905_1_1.html机械CAD技术论坛 70 楼主您好,减速机圆柱斜齿轮在运转几个月后就出现了齿面的点蚀和磨损,同时出现了高速轴的断裂,现在想请教齿面的修复一般几种方法,效果如何? 齿面修复一般有两种方法:重磨;或者对于对称的齿轮,可以翻转使用,即以另外一个面作为工作面,当然你的齿轮箱必须是单向工作的。 看你的描述,问题比较严重,应该从设计上开始查起,以确定原因,彻底解决问题。 69 有个问题想请教楼主一下,1.5MW风机的刹车盘是可以作成齿轮结构的,用于风机停机时定位盘锁紧时插入定位销时通过刹车盘带动联轴器进行盘车,我想请问一下将刹车盘作成齿轮结构时,与刹车盘啮合的主动轮与刹车盘之间传动比大约为多大?若主动轮上安装电机带动,电机的功率大约多大呢? ij速比一般在4到5之间,电机的大小需要计算,差入定位销的时候,风机已经顺桨,需要知道转动叶轮需要多大的扭矩,然后根据齿轮箱的速比确定电机的大小。 68 请问:风电齿轮箱的空心输出轴发生变形弯曲,如何修复,机子已吊装好? 空心轴一般指的是输入轴.如高速轴弯曲,机舱内更换, 输入轴弯曲, 换齿轮箱. 67 请问楼主华锐3MW的传动链形式 O型双列圆锥棍子轴承外圈和机架,内圈通过一格过渡法兰和齿轮箱联接. 66请问楼主:风电齿轮箱油低位报警是什么原因啊? 还有齿轮箱的空气滤清器在使用一段时间后全部变蓝是什么原因? 油位报警的原因,要么是缺油, 要么就是齿轮油回油不畅, 导致虚假报警. 空气滤清器中有防止空气中水分进入齿轮箱的物质, 无水硫酸铜. 当硫酸铜吸水后, 就变蓝, 含水的硫酸铜是蓝色的. 65 楼主,能讲讲齿轮箱型试试验吗?具体的分为背背对式和机械式(中国汉森的那种),这两的优缺点是什么? 你的问题比较混乱, 型式试验是指的齿轮箱的载荷试验,寿命试验等. 齿轮箱试验台都是背靠背的,但是能量反馈有两种, 一种是电力反馈, 另一种是机械反馈. 电力反馈的试验台的柔性更大, 测试的速度更快, 而机械的试验台成本更低,但柔性也低. 64 齿轮箱的技术发展倾向,a, The wind turbine gearbox development is depending on the drive train concept development. Hybrid DT concept for large power (>=3MW) turbine, so one or two stage gearbox is designing more and more. b,With the large power turbine was designed, big power gearbox was a direction, like Winery 5/6, 6.5MW MW, Movents 3MW, Bosch 3MW and 6.5 MW, NGC 3MW and Chongqing 3MW and so on. c,The flexible pin design was used on wind turbine gearbox. d,Integrated Planet Bearings on planet stage (CRB/TRB). e,TRB was used on the planet gear more and more. f,Micro pitting was calculated and investigated in gearbox supplier. g,L1 for bearing lifetime rating was calculated. h,TRB x arrangement was used on HSS stage NRE side more and more in China supplier. it is a normal

风力发电机组齿轮箱的故障及其分析

毕业设计(论文)2010 级风能与动力技术专业 题目:风力发电机组齿轮箱的故障及其分析 毕业时间: 学生姓名:X X X 指导教师:X X X 班级:10风电(1)班

目录 一、绪论 (1) (一)风力发电机组齿轮箱故障诊断的意义 (1) 二、风力发电机组齿轮箱的故障诊断 (2) (一)风力发电机组齿轮箱的常见故障模式及机理分析 (2) (二)齿轮箱典型故障振动特征与诊断策略 (6) (三)针对齿轮箱不同故障的改进措施 (9) 三、结论 (12) 参考文献: (12) 致谢 (13)

风力发电机组齿轮箱的故障及其分析 摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词:风力发电机;故障模式;齿轮箱;故障诊断 一、绪论 (一)风力发电机组齿轮箱故障诊断的意义 风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。这些年来,风电机组在我国得到了广泛的安装使用。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。 随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。 风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。当风电机组发生故障时,输往电网的

风电安装手册

风力发电机安全手册编号:FT000320-IT R00

目录 1.责任与义务 2.安全和防护设备 2.1 必备设备 2.2 用于特殊操作的设备2.2.1 用于紧急下降的设备2.2.2 其它特殊操作 3.基本安装注意事项 3.1 概述 3.2 对风力发电机的操作 3.3 在风力发电机附近逗留及活动3.4 访问控制单元和面板 3.5 访问变压器平台 4.安全设备 4.1 紧急停止 4.2 与电网断开 4.3 过速保护设备(VOG) 4.4 机械安全设备 4.4.1 啮合锁 4.4.2 活动元件的保护罩4.4.3 机舱顶的栏杆 4.4.4 机舱后门的栏杆 5.在风力发电机内部检查或工作6.对风力发电机的设备的操作6.1 使用绞盘 6.2 使用紧急下降器 7.风力发电机的固定 8.急救 9.应急计划 10.发生火灾时的应急措施11.发生事故时的措施

1.责任与义务 Gamesa Eólica将安全与健康方向的考虑放在首位并一以贯之,因此在我们生产的风力发电机的设计中体现了防护的需要。 设计是在决不损害人、动物或者财产的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照Gamesa Eólica的设计,就不会出现这方向的问题。 经批准接触或使用风力发电机的人员在《工作场所安全与健康》方面有权得到有效保护。 同样,经批准在风力发电机中进行有关工作的人员必须遵守《工作场所的安全与健康以防工作场所事故》的有关法律及法规,在执行任务时必须正确地使用工作设备和所有防护性设备,在可能遇到的危险情况的出现必须及时报告。 经批准执行安装任务的人员必须已经接收了足够且合适的理论与实践方面的训练以正 确执行任务。 本文档介绍基本的预防,在接触风力发电机时在安全方面必须遵守的义务及程序。不同维护工作的具体安全措施将在有关这些操作的具体文档中介绍。 2.安全及防护设备 2.1必备设备 在对风力发电机进行任何检查或者维护工作之前,每个人至少应该理解如下设备的使用说明: ●安全设备 ●可调的系索 ●系索(1m和2m) ●安全头盔 ●安全手套 ●防护服 除了上面指出的设备外,每个维护或者检查小组必须具有如下物件: ●紧急下降设备 ●灭火器(在运输工具中有) ●移动电话 在任何时候,不管是在风力发电机内部还是在其外部,都应该使用安全头盔。 建议在上升设备中准备手电筒、安全眼镜和保护性耳塞,这取决于要完成的工作(是对正在运行的风力发电机的检查还是维护)。 操作者必须正确使用安全设备并在使用之前和之后都对安全设备进行检查。对安全设备

浅谈风电齿轮箱

1 前言 纵观社会的发展,科学技术作为第一推动力,当科学技术发展到足够的阶段时,将带来人类社会突飞猛进的发展。这一事实,在二十世纪表现的越来越明显,这一推动力的作用越来越突出。 从能源、电力产业看,二十世纪九十年代,世界能源、电力市场发展最迅速的已不再是石油、煤、天然气,太阳能发电、风力发电等可再生能源异军突起。 全世界风力发电容量在1990年的200万千瓦,2009年一年内全球新增风力发电装机容量就已达到3750万千瓦,而截止到2011年3月7日,我国的风电装机总量有4182.7万千瓦,首次超越美国成为世界上第一风电大国。因此,就新能源、电力方面而言,二十一世纪将是可再生能源的世纪,能源、电力的开发利用将面临历史的变革。为实现可持续发展,适应世界发展趋势,能源产业尤其是电力产业的发展必然选择风能等可再生能源和新能源。 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴藏量巨大,全球风能资源总量约为2万亿千瓦,其中可利用的风能为200亿千瓦。中国可开发利用的风能资源有10亿千瓦,其中陆地2.5亿千瓦,现在仅开发了不到0.2%;近海地区有7.5亿千瓦,风能资源十分丰富。陆上风能资源丰富的地区主要分布在“三北”(东北、西北、华北)地区以及东南沿海地区。三北地区可开发利用的风力资源有2亿千瓦,占全国陆地可开发利用风能的79%。由此可见中国风力资源是十分丰富的,远远超过可开发的水电和火电资源量。 近年来随着风电机组单机容量的不断增大,以及风电机组的投行时间的逐渐累积,由齿轮箱故障或损坏引起的机组停运事件时有发生,由此带来的直接和间接损失也越来越大,因此对分离发电机组的维护保养十分重要。维护人员投入相关工作的工作量也有上升趋势,这就促使越来越多的风电场开始加强齿轮箱的日常监测和定期保养工作。 风力发电场在国内作为一种新兴的发电企业形式因其具有自身的发展和生产性质特点,要求员工必须有较高的专业知识、技术业务水平和必要的技能技巧,因此做好风力发电机组的运行与维护,此论文的书写对本人现在以及今后工作具有重要意义。 2 风电及齿轮箱的发展趋势2.1 风力发电发展的主要趋势 机组单机容量增大风电机组单机容量的增大有利于提高风能利用率,降低风场的占地面积,降低风电场运行维护成本,从而提高风电的市场竞争力。目前,国际上主流的风电机组已达到(2-3)MW,由德国公司研制的最大的5MW风电机组已投入运行,其旋翼区直径达到126米。可以预见,(3-5)MW的风电机组在市场中的比例将日益提高。2008年2月在布鲁塞尔举行的风能会议和风能展上,有与会者甚至提出了2020年前开发出20MW风电机组的概念。

风电齿轮箱常见故障及处理

风电齿轮箱常见故障及处理 发表时间:2019-12-06T13:39:21.103Z 来源:《科技新时代》2019年10期作者:韩建辉 [导读] 齿轮箱出现故障时,应及时反馈给南京安维士公司,我司会立即安排相关售后人员进行检修。 大唐新能源通辽公司内蒙古通辽市 028000 摘要:风电机组中的齿轮箱是一个重要的机械部件,因此风电场运维人员熟练掌握常见故障分析处理方法,对降低风电机组受累时间,提高发电能力至关重要。 关键词:风电齿轮箱;故障;分析与处理 1主齿轮箱基本结构介绍 1.1 主齿轮箱(增速箱)、偏航齿轮箱(减速机)、变桨齿轮箱(减速机) 1.2 主齿轮箱工作原理:风吹动叶片,叶片吹动轮毂,轮毂带动主轴,主轴驱动主齿轮箱,主齿轮箱的高速轴带动发电机转子转动,发电机发电,与电网并网发电 2 主齿轮箱常见故障 主齿轮箱设计使用寿命为20年,但是这是在理想条件下。现实情况下,实际使用寿命可能与设计寿命会存在差异,而且由于使用方法、实际工况、维护条件等的不同,在齿轮箱运行过程中可能会出现故障。 2.1 渗漏油 2.1.1空气滤清器是否通畅:若空气滤清器不通畅,则会造成齿轮箱内外部存在压力差,从而发生渗漏油故障。 2.1.2 各排油孔是否通畅:若油孔不通畅,则润滑油会在局部位置形成积累,从而出现渗漏油现象。 2.1.3 端盖处密封件损坏:端盖处密封件的主要作用就是防止润滑油从端盖处渗漏,若损坏,则必然导致齿轮箱渗漏油。 2.1.4 油压是否太大:检查润滑系统中溢流阀是否损坏。 2.1.5 箱体及端盖损坏:可检查是否有碰伤,螺栓是否有损坏。 2.1.6 液位:齿轮箱液位太高,导致渗漏现象,正常液位不得低于长形液位计的2/3,不得高于圆油标的1/2。 2.2 外部元器件损坏: 由于使用工况及元器件设计使用寿命问题,可能造成元器件出现某些故障。常见的易损元器件主要有以下几种:PT100、电加热器、压力表、液位传感器、压力传感器、油标 2.3温度报警问题:可检查以下几个方面: PT100是否正常工作、喷油是否正常、高速轴对中有无问题、观测运行时齿轮箱的振动及噪音、检查温控阀是否损坏、检查冷却风扇清洁情况、检查齿轮箱内部情况 2.4油标报警问题: 可能为油位偏低,若油位正常依然报警,观察油标位置,若油浮沉底则可更换油浮或油位传感器,如果没有沉底但依然报警,则可检查控制系统。 3 典型故障处理办法 3.1渗漏油 3.1.1处理总则: (1)对漏油部位进行详细检查。使用清洗剂对漏油部位进行清洗,完全去除原有油迹; (2)原有油迹清除干净后,观察具体的漏油部位及漏油情况。 (3))所有漏油情况,在确认漏油现象后,原则上必须将齿轮箱内部的油液放干净之后,再开始更换;对于部分带密封垫圈且位置位于油位以上的小元器件,允许在不放油的情况下进行更换。 3.1.2平行级盖板漏油 (1)拆下漏油的盖板,并将盖板与箱体结合面的胶层清洗干净; (2)检查盖板止口尺寸是否超差,若超差需研究确定是否需要更换盖板,再进行下一步骤; (3)重新在密封面打胶,并且要求盖板打胶时,利用小铲刀将胶层轻轻的刮平,保证胶层平整、均匀; (4)按照规定力矩扳紧盖板螺栓; 3.1.3行星架透盖处漏油(碳素纤维) (1)将齿轮箱内部润滑油放至风电齿轮箱要求的最高油位,并观察低速级盖板处是否漏油; (2)按照规定力矩重新扳紧所有螺栓。 3.1.4硬、软管管接头漏油 (1)拆下管接头,将管接头内部清理干净;并检查管接头内部卡套是否损坏或变形; (2)重新按力矩扳紧管接头,保证无松动,观察是否还有漏油现象。 3.1.5其他元器件漏油 (1)将原有的元器件拆下,清理结合面或密封螺纹处的原有胶层; (2)重新在密封面打胶,利用小铲刀将胶层轻轻的刮平,保证胶层平整、均匀; (3)重新安装元器件,观察是否还有漏油情况。 3.2外部元器件损坏 更换原则:一般情况下,在液位以上的元器件、接头等,停泵后直接更换;液位以下的,须将齿轮箱内部的油液放干净之后,再开始更换。对于采用密封垫圈密封、位置在液位以下的可在不放油的情况下进行更换,但需做好接油的工作,更换动作要快。 3.2.1更换长形油标 (1)准备好接油工作,更换动作要快。 (2)将原有的油标的固定螺栓逐根拆下,并用同规格的螺栓立刻堵上。清理箱体螺孔及周围,用清洗剂清洗干净,保证箱体和油标结

风电齿轮箱相关问题

采用齿轮传动的风力发电机组中,齿轮箱是主动力轴系重要的机械部件,其功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。风轮的转速很低,远达不到发电机发电的要求,必须通过齿轮箱齿轮副的增速作用来实现。 由于机组受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性,保证齿轮箱平稳工作,防止振动和冲击,保证充分润滑条件,等等。对冬夏温差巨大的地区,还要设置监控点,配置合适的加热和冷却装置。对齿轮箱的性能、制造精度、装配和试验提出了一系列近乎苛刻的要求。 1.齿轮箱在风电机组中的布置形式 风力发电机组轴系最为常见的布置形式如图1所示,与风轮连接的大轴支撑在两个单独设置的轴承上,其末端通过涨紧套与齿轮箱相连。齿轮箱的支架安装在机舱底盘上,而齿轮箱的高速轴则用柔性联轴节与发电机相连。这就是所谓的“一字型”布置。风轮的异常载荷通常由两个大轴轴承承受,齿轮箱受到影响较少,各个主要部件间隔较大,便于安装和维修,只是机舱轴向尺寸较长。但也有的观点认为大轴的 图1. 常见的风力发电机组布置形式:大轴独立支撑,末端与齿轮箱连接 如果省去一个大轴的支撑轴承,使大轴末端直接与齿轮箱输入轴相连,则变为图20-2所示的结构,在这种情况下,虽然能缩短轴向尺寸,但对齿轮箱不利,必须采取措施加强其支撑刚性,同时要尽可能消除风轮通过大轴对齿轮箱施加异常负荷的影响。 图20-2 大轴一端支撑在轴承上另一端直接与齿轮箱连接的结构 有时为了缩短机舱长度尺寸而将发电机反向布置,发电机骑在大轴箱上,这时齿轮箱的输入和输出轴处于同一侧,齿轮箱设计成“ U ”型,大轴箱与主支架做成一体,具有足够的支撑刚性,机舱内各部分重量的集中度较好(见图20-3)。 图20-3 齿轮箱“ U ”型布置形式 为了进一步减小机舱体积,也可以省去大轴,如图20-4所示,将齿轮箱输入轴和风轮轮毂过渡法兰直接连接,过渡法兰用一个特殊的轴承支撑。 图20-5 齿轮箱直接与风轮法兰连接的结构

风电机组齿轮箱规程

风电机组齿轮箱规程 1 简介 1.1 功能 齿轮箱是风机的核心部件,它将主轴传递过来的低速、大扭矩的机械能转换成高速、小扭矩的机械能,实现与发电机的参数匹配。其外形图如下: 1.2 原理 齿轮箱通过涨紧套与主轴相连,经过两级行星齿轮和一级平行轴斜齿轮组成的三级传动系统增速后,由柔性联轴器将高速、小扭矩的旋转机械能传递给双馈式发电机。其内部传动结构图如下: 1.3齿轮箱数据

传动比……………………………………………………………………100.746 额定功率…………………………………………………………………1663 kW 额定输入转速…………………………………………………………… 17.4 rpm 额定输出转速…………………………………………………………… 1753 rpm 1.4结构名称图 齿轮箱结构图如下: 1、数显油压表 2、润滑分配器 3、出气孔 4、齿轮箱前吊装孔 5、涨紧套 6、润滑泵出油口 7、润滑滤清器 8、润滑温控阀 9、滤清器堵塞传感器 10、齿轮箱润滑泵 11、齿轮箱放油阀 12、热交换器 13、输出轴 14、输出轴制动盘 15、齿轮箱后部吊点16、齿轮箱前部吊点 17、齿轮箱加热器18、分配器19、润滑油管20、齿轮箱观察窗 2 维护与维修 注意:首次维护维修应在风机动态调试完毕且正常运行7——10天后进行;以后每6个月进行一次。 1.手册中的这些说明必须特别注意,目的是为了遵守规则、规章和说明并且维持恰当的工作程序; 2. 每个操作人,必须提前阅读《齿轮箱使用手册》,并了解齿轮箱的安装、启动、运转和维护(检查、维修)具体内容,尤其是阅读《MY1.5s安全手册》。所有操作必须严格遵守《MY1.5s

风电齿轮箱操作手册

1.5MW 风电齿轮箱操作维护手册 大连重工·起重集团 通用减速机厂

目录 1.用途与结构 2 2.辅助装置 3 3.性能参数 6 4.安装8 5.运行前的准备工作9 6.起动10 7.运行11 8.常见故障原因分析与处理方法13 9.维护15 10.运输、储存16 11.安全防护17 12.易损件明细18 13.附件1 润滑系统 14.附件2 恒温开关 15.附件3 电阻温度计 16.附件4 加热器

1.用途与结构 该齿轮箱用于PWE1570/1577 型风力发电机,其用途是将风轮在风力作用下所产生的动力传递给发电机,并通过齿轮箱齿轮副的增速作用使输出轴的转速提高到发电机发电所需的转速。 齿轮箱由两级行星和一级平行轴传动以及辅助装置组成。为了传动平稳和提高承载能力,齿轮采用斜齿并精密修形,外齿轮材料为渗碳合金钢,内齿轮为合金钢,一级行星架采用高合金铸钢材料,二级行星架和箱体采用高强度抗低温球墨铸铁。主轴内置于增速机,与第一级行星架过盈连接。齿轮箱通过弹性减震装置安装在主机架上。齿轮箱的轴向空心孔用于安装控制回路电缆。具体结构见图1。 图1

2 辅助装置 2.1 润滑供油系统:润滑供油系统由泵-电机组、过滤器、阀及管路等组成,用于润滑系统所需的压力和流量,并控制系统的清洁度。其工作原理见图2。 油泵上的安全阀设定压力为10bar,以防止压力过高损坏系统元件。 当润滑油温度低或当过滤器滤芯压差大于 4bar 时,滤芯上的单向阀打开,液压油只经过50μ的粗过滤;当温度逐渐升高,滤芯压差低于4bar 时,液压油经过10μ和50μ两级过滤。无论何种情况,未经过滤的液压油决不允许进入齿轮箱内各润滑部位。当油池温度低于30°C时,过滤器的压差发讯器报警信号无效;而当油池温度超过30°C时,当压差达到 3 bar 时,此时报警信号才有效,必须在两天内更换清洁的滤芯。 图2

风电机组齿轮箱轴承常见失效模式及解决方案

风电机组齿轮箱轴承常见失效模式及解决方案 1. 引言 风电机组齿轮箱是连接机组主轴和发电机的传动部件,其主要功能是将主轴的低速运转输入,转化成中速或高速发电机所需的输出,是风力发电机中的重要部件之一。由于风力发电机齿轮箱的复杂工况及对可靠性等方面的高要求,风力发电机齿轮箱的设计及应用,尤其是作为关键零部件的轴承的选型、安装及使用显得尤为重要。不恰当的轴承选型或是不当的安装和使用,会导致轴承的各种损伤和失效模式,甚至还可能会损伤到齿轮箱里其他的零部件。这些损伤和失效都会直接或间接的导致机组停机,不但影响生产率,还会产生计划外的更换和维护成本。铁姆肯公司可针对多种常见失效模式提供有效解决方案。 2. 风电机组齿轮箱轴承常见失效模式及解决方案风力发电机齿轮箱设计多种多样,但是基本上都是由行星级和平行级组成。本文以目前比较常见的一种以行星架为输入,内齿圈固定,太阳轮输出并传递到平行级的设计为例,分析说明常见的轴承失效模式及相应的解决方案。 2.1 行星架轴承 2.1.1 常见失效模式 行星架轴承的选型和应用是和主轴的设计相关的。目前常见的行星架轴承是满装滚子的圆柱滚 子轴承。如果主轴轴承选用调心滚子轴承,不论是单个调心滚子主轴轴承的3 点支承设计还是两个调心滚子主轴轴承的4 点支承设计,由于调心滚子轴承径向和轴向游隙的存在,当风力发电机在刹车或是其他出现轴向载荷交替变换方向的工况时,主轴及其后面连接的行星架在轴向可能会有窜动。此时如果使用圆柱滚子轴承作为行星架轴承,由于其内外圈在轴向方向上有一定的相对错位空间,因此来自主轴的轴向窜动会传递到行星架的圆柱滚子轴承,而如果窜动量足够大,则对圆柱滚子轴承会造成冲击。而且,由于内齿圈和齿轮箱箱体是连成一体的,所以行星轮和行星架一起轴向窜动还会对行星轮造成齿面磨损。 2.1.2 解决方案 铁姆肯公司推荐选用单列圆锥滚子轴承跨装,通过对圆锥滚子轴承预紧来解决主轴轴向窜动对行星 轮的影响。而且预紧的圆锥滚子轴承的承载区得到优化,减少了滚道应力,提高了行星轮系的刚性,并可以承受外部传入齿轮箱行星架端的额外轴向力。 2.2 行星轮轴承 2.2.1 常见失效模式 常见的一种行星轮轴承是由一对双列圆柱滚子轴承组成。在轴承外圈和行星轮内孔之间过盈配 合量不足或是由于齿轮变形而使两者接触面积减少的情况下,会出现外圈跑圈和磨损。 对于斜齿行星轮设计而言,由于行星轮与内齿圈和太阳轮同时啮合的时候受到大小相同、方向相反的轴向力,所产生的倾覆力矩使得外侧的两列滚子承载较大,中间两列滚子承载较小。四列滚子之间的载荷分布不均匀使得实际使用寿命有一定差别,在相同设计寿命的前提下,外侧两列会提前出现疲劳剥落。 2.2.2 解决方案 Timken 集成式柔性销行星轮组件是提高行星级可靠性的最佳方案之一。齿轮和轴承外圈集成于一体,杜绝了外圈跑圈的可能性,同时有更多的内部空间设计更多、更大的滚子来提高承载能力。通过预紧两列圆锥滚子使其承载区得到优化,降低了应力和滚子打滑的几率,使载荷更均匀的分布在两列。柔性销设计允许行星轮组件在运行中产生柔性的偏移,保证齿面有很高的啮合率,特别是对多个行星轮的设计,使得各行星轮之间的载荷分布更均匀,而且还可以降低加工和装配的精度要求。 2.3 高速轴轴承 2.3.1 常见失效模式 圆柱滚子轴承及四点接触球轴承组合在高速级的应用中是较为常见的一种。在高速和低载的情 况下,圆柱滚子轴承容易出现滚子打滑和滚道滑伤,而球轴承可能会出现滑伤和微剥落的损伤。 2.3.2 解决方案 铁姆肯公司推出带抗磨涂层的圆柱滚子轴承和单列圆锥滚子定位轴承。带抗磨涂层的圆柱滚子轴承 在整个寿命周期的运行中既能持续地防止滑伤,也可以防止由于润滑剂里含杂质而造成滚道伤害以及润滑不良的情况。单列圆锥滚子定位轴承可以承受径向及双向的轴向载荷,其纯滚动的特性将滑伤的可能性降至最小。 3. 总结

风电机组齿轮箱轴承常见问题及解决方案

风电机组齿轮箱轴承常见问题及解决方案 1. 引言 风电机组齿轮箱是连接机组主轴和发电机的传动部件,其主要功能是将主轴的低速运转输入,转化成中速或高速发电机所需的输出,是风力发电机中的重要部件之一。由于风力发电机齿轮箱的复杂工况及对可靠性等方面的高要求,风力发电机齿轮箱的设计及应用,尤其是作为关键零部件的轴承的选型、安装及使用显得尤为重要。不恰当的轴承选型或是不当的安装和使用,会导致轴承的各种损伤和失效模式,甚至还可能会损伤到齿轮箱里其他的零部件。这些损伤和失效都会直接或间接的导致机组停机,不但影响生产率,还会产生计划外的更换和维护成本。铁姆肯公司可针对多种常见失效模式提供有效解决方案。 2. 风电机组齿轮箱轴承常见失效模式及解决方案风力发电机齿轮箱设计多种多样,但是基本上都是由行星级和平行级组成。本文以目前比较常见的一种以行星架为输入,内齿圈固定,太阳轮输出并传递到平行级的设计为例,分析说明常见的轴承失效模式及相应的解决方案。 2.1 行星架轴承 2.1.1 常见失效模式 行星架轴承的选型和应用是和主轴的设计相关的。目前常见的行星架轴承是满装滚子的圆柱滚 子轴承。如果主轴轴承选用调心滚子轴承,不论是单个调心滚子主轴轴承的3 点支承设计还是两个调心滚子主轴轴承的4 点支承设计,由于调心滚子轴承径向和轴向游隙的存在(如图1 所示),当风力发电机在刹车或是其他出现轴向载荷交替变换方向的工况时,主轴及其后面连接的行星架在轴向可能会有窜动。此时如果使用圆柱滚子轴承作为行星架轴承,由于其内外圈在轴向方向上有一定的相对错位空间,因此来自主轴的轴向窜动会传递到行星架的圆柱滚子轴承,而如果窜动量足够大,则对圆柱滚子轴承会造成冲击。而且,由于内齿圈和齿轮箱箱体是连成一体的,所以行星轮和行星架一起轴向窜动还会对行星轮造成齿面磨损(如图2 所示)。 2.1.2 解决方案 铁姆肯公司推荐选用单列圆 锥滚子轴承跨装,通过对圆锥滚子轴承预紧来解决 主轴轴向窜动对行星轮的影响。而且预紧的圆锥滚风电材料设备 子轴承的承载区得到优化,减少了滚道应力,提高风电材料设备 了行星轮系的刚性,并可以承受外部传入齿轮箱行星架端的额外轴向力(如图3 所示)。

风电齿轮箱常见故障及原因分析

风电齿轮箱常见故障及原因分析 发表时间:2019-04-23T11:22:16.550Z 来源:《基层建设》2019年第2期作者:郭金伟 [导读] 摘要:根据多年来制造和检修风力发电机齿轮箱的经验,总结了风力发电机齿轮箱的常见故障,分析了各种故障模式。 弗兰德传动系统有限公司天津市 300400 摘要:根据多年来制造和检修风力发电机齿轮箱的经验,总结了风力发电机齿轮箱的常见故障,分析了各种故障模式。目的是快速准确地确定风力发电机变速箱运行维护人员的故障点,并采取相应的处理方法,提供技术指导。 关键词:风电齿轮箱;常见故障;原因 引言 目前,世界能源供应主要依靠煤炭和石油等常规能源,但这些都是不可再生资源,给人们的生活带来了好处,但也造成了大气和水资源的严重污染,并日益威胁着人们的身体健康。和心理健康。寻找和开发替代清洁能源已成为全世界关注的焦点。风能是一种可再生资源,存在于自然界的每个角落。用它来发电将具有清洁无污染,投资回报高,取之不尽,建设周期短等优点,已被世界各国广泛采用。 近年来,中国还在海南和内蒙古建立了几个风力发电厂。根据制定国家发展计划的“十一五”规划,中国计划到2010年底使用国产设备建设1000万千瓦的大型风力发电机组。由于风资源的限制,风力涡轮机通常建在人口稀少的地方,长时间经受恶劣的自然环境,造成频繁的故障和经济损失。动力传动机构 - 风力齿轮箱是发电机组的重要组成部分,也是故障概率最高的部分。如何进行日常检查,提前预测运行中的工作状态和异常类型,合理安排设备零件的更换和维护,提高发电机组的运行效率并确保供电非常重要。 1、风电齿轮箱结构形式 风力齿轮箱是适用于恶劣环境的高速变速箱,由于风和风资源的影响,其动力非常复杂。在早期设计阶段,应充分考虑负荷,风速,风向突变,强风,地理环境等因素对变速箱的影响。目前,风力发电机齿轮箱的整体设计:一级行星+两级平行轴设计,两级行星+平行一级轴设计,内齿轮NW型旋转齿轮,一级行星+一级平行轴设计。变速箱主要由内齿轮,行星齿轮,太阳能轴,齿轮,齿轮轴,轴承,箱体等组成,输出功率由各种传动结构提供。 2、风电齿轮箱常见故障 2.1、齿面磕碰、划伤、胶合、点蚀 初始变速箱操作具有异常振动或声音并具有一定的规律性。振动频率与齿轮箱的旋转速度和齿轮齿数成数字匹配。这种类型的破损是由于在组装过程中刮擦牙齿表面引起的。您必须根据振动频率判断变速箱的特定部件是否有缺陷。齿面的粘接和点腐蚀也是在齿轮箱操作期间引起振动和声音异常的缺陷,这通常在一段操作之后发生。由于润滑不良,传动啮合位置的油膜受损,因此接触表面的金属焊接到齿面上的金属上。长期加载时,齿轮接触面上的疲劳剥落会导致精确腐蚀并出现凹坑。牙齿表面点蚀的主要原因是牙齿表面的疲劳强度不足。此外,材料,硬度,缺陷,齿轮精度差,润滑不良和油温高都会导致齿面点蚀,根据齿面的粘接程度和点蚀程度,可以通过磨削,更换润滑油系统,提高系统的过滤精度等来改善,并且应该认真对待塔架。 大量研究和观察表明微点蚀主要发生在低速,而其他品种很少见,通常认为其原因与风力涡轮机齿轮箱的运行状态有关,例如改变速度和负载,此外,油的表面粗糙度和表面光洁度,水含量,粘度,润滑性等也具有微点蚀,直接影响牙齿表面的润滑不足也会使牙齿表面之间的润滑剂状况恶化,这将加剧牙齿表面上的摩擦发生和微点蚀。齿轮强度设计不足,齿轮热处理质量不能满足要求,齿面硬度不足,可能导致点腐蚀的发生。 2.2、齿轮箱的振动及声音异常 相对运动是变速箱产生的振动和声音的来源。齿轮和轴承是变速箱传动的主要部件。因此,齿轮箱的振动和异常声音主要是由齿轮断裂,齿面碰撞和齿轮引起的。在操作过程中产生胶合和点蚀,长时间齿轮箱的齿面生锈,轴承质量问题,联轴器未对准,动态平衡过大严重影响齿轮箱内部零件的运动。 2.3、轴承失效 作为旋转部件,轴承受到齿轮箱结构尺寸的限制,并且必须承受复杂的负载和各种恶劣的工作环境。特别是承受高速和重载的输出级轴承通常成为变速箱中最薄弱的环节。轴承故障也是风力涡轮机齿轮箱振动和噪音的主要原因。 齿轮箱清洁度差,异物进入轴承工作表面,导致轴承表面之间产生相对滑动摩擦,导致工作表面金属连续磨损。局部摩擦产生热量,导致摩擦表面局部变形和摩擦微焊。相对运动引起磨损,外圈或滚动元件呈槽状磨损,润滑性差,滚动元件的不规则滚动导致磨损失效。轴承断裂失效的主要原因是缺陷和过载的两个主要因素。当主机突然失效或安装不正确时,施加的载荷超过材料强度限制并且轴承过载和损坏。轴承材料本身具有诸如微裂纹,缩孔,气泡,超标的夹杂物,过热结构和局部烧伤等缺陷,在冲击过载或剧烈振动的情况下将导致缺陷处的缺陷断裂。 2.4、润滑与密封系统 2.4.1、油温和油压异常 变速箱油的高温是风力齿轮箱中的常见故障,主要原因是油泵温度控制阀出现故障,因此润滑油不会通过冷却风扇而是直接返回变速箱,另外,需要检查变速箱的油位是否正常,油位传感器是否损坏,油冷却器是否工作或设定值是否过高。齿轮箱润滑油的入口压力低,这通常是由润滑系统的过滤元件堵塞引起的,因此润滑油不能通过过滤元件有效地送到冷却风扇或齿轮箱,从而产生润滑油不足和差压传感器报警,通过清洁或更换相关部件来消除问题。 2.4.2、润滑油黏度变化 风电润滑油工作时间长,每天运行,负载大,油温高,润滑油比其他润滑油易氧化,氧化形成的污泥和在强负荷作用下破裂的油链会改变油。产品的粘度导致油的粘度先下降然后再次上升。如果油的粘度低,则承载能力不足,这将增加齿轮和轴承的磨损。油分析中的粘度变化和污染程度增加,元素中的金属超标。当润滑油粘度高时,机械操作阻力增大,流动不顺畅,油温和油压过高,润滑不及时,齿面胶合并且轴承被加热和变形。 2.4.3、磨损检测 由于当齿轮啮合时齿面接触是渐开线接触,因此几乎不会发生相对滑动,并且由于润滑油的作用,具有更高精度的齿轮非常小,异常

风电主齿轮箱使用说明书(南高齿)

风电主齿轮箱使用说明书 Edtion:2008 南京高速齿轮制造有限公司

目录 1 前言 (5) 2 开箱 (6) 3技术参数 (7) 3.1 铭牌 (7) 3.2 应用领域 (8) 4 安全事项 (9) 4.1正常使用 (9) 4.2客户义务 (9) 4.3环境保护 (10) 4.4特殊危险 (11) 5 运输和储藏 (12) 5.1运输 (12) 5.2 储藏 (13) 6齿轮箱的安装 (15) 6.1 拆箱 (15) 6.2 排油、去除防腐剂 (15) 6.3 收缩盘的安装 (15) 6.4高速轴连轴器的安装 (16) 6.5 加油 (16) 6.6 连接电路 (16) 6.7 机舱试车前的检查 (17)

6.9 齿轮箱随机舱的运输 (17) 7齿轮箱拆卸 (19) 7.1拆除主轴 (19) 7.2拆除高速轴连轴器 (19) 7.3防腐防锈处理 (19) 8启动与停机 (20) 8.1.1 检查油 (20) 8.1.2启动 (20) 8.1.3润滑系统 (20) 8.1.4启动时监测项目 (21) 8.2齿轮箱的停机 (21) 9监控要求 (22) 9.1 电机泵的控制 (23) 9.2 风扇或水冷的控制 (24) 9.3运行温度 (25) 9.4 油位检查 (27) 9.5 取油样 (27) 9.6油压 (28) 9.7 齿轮箱内部检查 (28) 10维护和修复 (29) 11润滑系统 (33)

11.2 换油 (33) 11.3更换滤芯 (34) 11.4安装滤芯 (35) E12技术说明书(具体数值见附件) (36) 说明: 该使用手册适用于3000KW以下风力发电机用主齿轮箱,齿轮箱具体技术参数另见附件。

风电齿轮箱操作手册

1.5MW风电齿轮箱 操作维护手册 大连重工·起重集团 通用减速机厂

目录 1.用途与结构 2 2.辅助装置 3 3.性能参数 6 4.安装 8 5.运行前的准备工作 9 6.起动 10 7.运行 11 8.常见故障原因分析与处理方法 13 9.维护 15 10.运输、储存 16 11.安全防护 17 12.易损件明细 18 13.附件1 润滑系统 14.附件2 恒温开关 15.附件3 电阻温度计 16.附件4 加热器

1.用途与结构 该齿轮箱用于PWE1570/1577型风力发电机,其用途是将风轮在风力作用下所产生的动力传递给发电机,并通过齿轮箱齿轮副的增速作用使输出轴的转速提高到发电机发电所需的转速。 齿轮箱由两级行星和一级平行轴传动以及辅助装置组成。为了传动平稳和提高承载能力,齿轮采用斜齿并精密修形,外齿轮材料为渗碳合金钢,内齿轮为合金钢,一级行星架采用高合金铸钢材料,二级行星架和箱体采用高强度抗低温球墨铸铁。主轴内置于增速机,与第一级行星架过盈连接。齿轮箱通过弹性减震装置安装在主机架上。齿轮箱的轴向空心孔用于安装控制回路电缆。具体结构见图1。 图1

2 辅助装置 2.1润滑供油系统:润滑供油系统由泵-电机组、过滤器、阀及管路等组成,用于润滑系统所需的压力和流量,并控制系统的清洁度。其工作原理见图2。 油泵上的安全阀设定压力为10bar,以防止压力过高损坏系统元件。 当润滑油温度低或当过滤器滤芯压差大于4bar时,滤芯上的单向阀打开,液压油只经过50μ的粗过滤;当温度逐渐升高,滤芯压差低于4bar时,液压油经过10μ和50μ两级过滤。无论何种情况,未经过滤的液压油决不允许进入齿轮箱内各润滑部位。当油池温度低于30°C时,过滤器的压差发讯器报警信号无效;而当油池温度超过30°C时,当压差达到 3 bar时,此时报警信号才有效,必须在两天内更换清洁的滤芯。 图2

相关主题
文本预览
相关文档 最新文档