当前位置:文档之家› 微积分第三章答案

微积分第三章答案

微积分第三章答案
微积分第三章答案

习题 3-1

1. 验证函数()f x =在区间[0,4]上满足罗尔定理的条件,并求出使得结

论成立的点ξ。

解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==

所以函数在区间[0,4]上满足罗尔定理,则有()0

f ξ'=

=,83

ξ=

。 2. 验证函数3

()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使

得结论成立的ξ。

解:函数3

()1f x x =-在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则

有2(2)(1)

321

f f ξ-=-,即ξ=

3. 函数4

()1f x x =-与2

()g x x =在区间[1,2]上是否满足柯西中值定理的所有条

件,如满足,求出满足定理的数值ξ。

解:函数4

()1f x x =-与2

()g x x =在区间上连续,在区间(1,2)上可导,则满足柯西中值

定理,则有3

(2)(1)4(2)(1)2f f g g ξξ

-=-,即ξ=

4. 若4次方程432

012340a x a x a x a x a ++++=有4个不同的实根,证明

3201234320a x a x a x a +++=

的所有根皆为实根。

证明:设432

01234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,

且1234x x x x <<<,则函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,则在

1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。

这说明方程32

01234320a x a x a x a +++=至少有3个实根,而方程为3次方,则最多也只

有3个实根,所以结论得到证明。

5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,

使得

()

()f f ξξξ

'=-

解:构造辅助函数()()F x xf x =,而()()F x xf x =满足罗尔定理的条件,所以有在(0,1),至少存在一点ξ,()()0f f ξξξ'+=即()

()f f ξξξ

'=-。

6. 试用拉格朗日中值定理证明: (1)2121sin sin x x x x -≤-; (2)当0x >时,

ln(1)1x

x x x

<+<+。 解:(1)设()sin f x x =,则()f x 在区间12(,)x x 上满足拉格朗日中值定理,则有

12

1212sin sin cos ,(,)x x x x x x ξξ-=∈-,又因为cos 1ξ≤,则

1212

sin sin 1x x x x -≤-, 1212sin sin x x x x -≤-。

(2)设()ln(1)f x x =+,则()f x 在区间(0,)x 上满足拉格朗日中值定理,则有

ln(1)11x x ξ+=+ (0,)x ξ∈,又因为11111x ξ<<++,则1ln(1)

11x x x

+<<+,即

ln(1)1x

x x x <+<+。

7. 证明等式:arctan arccot 2

x x π

+=

证明:设()arctan arccot f x x x =+,则有()(arctan arccot )0f x x x ''=+=, 所以()f x c ≡,代入0x =,得到arctan arccot 2

x x π

+=

8.设()f x 在[1,2]上具有二阶导数()f x '',且(2)(1)0f f ==。若

()(1)()F x x f x =-。证明:至少存在一点ξ(1,2)∈,使得()0F ξ''=。

证明:因为(1)(2)0F F ==,在[1,2]上应用罗尔定理,有1()0F ξ'=, 又因为(1)0F '=,所以在1[1,]ξ上应用罗尔定理,有()0F ξ''=,1[1,][1,2]ξ?。

9.设()f x 在[,]a b 上连续,在(,)a b 内可导,证明:在(,)a b 内存在点ξ和η,使得 ()()2a b

f f ξηη

+''=

。 证明:构造辅助函数2

()g x x =,()f x 与()g x 在(,)a b 内满足柯西中值定理,即有

22

()()()()()

()()()f b f a f f b f a g b g a g b a ηη'--=='--,(,)a b η∈

而()f x 在(,)a b 内满足拉格朗日中值定理,所以()()()()f b f a f b a ξ'-=-, 即()()2a b

f f ξηη

+''=

习题 3-2

1. 用洛必达法则求下列极限:

(1)0sin lim sin x ax bx →; (2)30sin lim x x x

x

→-; (3)332132lim 1x x x x x x →-+--+; (4)2

tan lim tan 3x x x π→; (5

)2

lim x ; (6)2

ln()2lim tan x x x ππ

+

→-; (7)2

120

lim x x x e

→; (8) 0

lim cot x x x →; (9)2

lim(sec tan )x x x π

-;

(10)11lim()1ln x x x x

→--; (11)tan 0lim x

x x +→; (12)1

lim x x x →+∞; (13)1

lim(1sin )x

x x →+; (14) 111

lim x

x x

-→

解:(1)(

型);000sin (sin )cos lim

lim lim sin (sin )cos x x x ax ax a ax a bx bx b bx b →→→'===';

(2)(0

0型);3320000sin (sin )1cos sin 1lim lim lim lim ()366x x x x x x x x x x x x x x →→→→'---===='; (3)(0

型);

33232322111132(32)3363lim lim lim lim 1(1)321622

x x x x x x x x x x x x x x x x x x x →→→→'-+-+-===='--+--+---; (4)(

∞∞型);2

2

2

2

tan sin cos3cos33sin 3lim lim lim lim 3tan 3cos sin 3cos sin x x x x x x x x x

x x x x x ππππ→→→→

-=?===-;

(5)(

∞型)

;2

1

2ln lim

lim lim 4lim 01x x x x x x →+∞

?

'====;

(6)(∞∞型);2222ln()(ln())cos 22lim lim lim 0tan (tan )2

x x x x x x x x x πππππ

π+++→→→

'

--==='-

(7)(0?∞型);2

2

2

1

1

1

3

2

00

2

32()lim lim

lim 12x x x x x x e e

x x e x x

→→→-

===∞-; (8)(0?∞型);0

0lim cot lim

1tan x x x

x x x

→→==;

(9)(∞-∞型);

2

2

2

2

1sin 1sin cos lim(sec tan )lim[

]lim lim 0cos cos cos sin x x x x x x x

x x x x x x π

π

ππ→

→→

---=-===;

(10)(∞-∞型);

1111ln (1)ln lim()lim lim

11ln (1)ln ln x x x x x x x x

x x x x x x x

→→→---==---+

11ln ln 11

lim lim ln 1ln 22

x x x x x x x x x →→+===+-+;

(11)(00型);

2tan 0000ln sin lim ln lim tan ln lim

lim

tan 0cot 0

lim 1x

x x x x x

x x x x

x

x x x x e e e

e

e +

+

++→→→→+

→======;

(12)(0

∞型);1

1

ln 1lim

lim

lim ln 0lim 1x

x x x x x x

x x x x e e

e

e →+∞→+∞→+∞

→+∞

=====;

(13)(1∞型);

1

1

ln(1sin )

cos 1sin 0

1

lim ln(1sin )lim ln(1sin )

lim

lim 0

lim(1sin )x x

x

x x

x

x x x x x x x

x x e e e e e ++→→→→++→+=====;

(14)(1∞型);1ln l

111

1

11

limln lim lim 11

1

lim x

x

x

x

x x x x x

x x

e

e e e

---→→→-→====。

2.验证下列极限存在,但不能用洛必达法则求出。

(1)201

sin

lim

sin x x x x →; (2)sin lim x x x x

→∞+。 解:(1)用洛必达法则求:

2220001111

sin

2sin cos ()

11lim

lim lim(2sin cos )sin cos x x x x x x x x x x x x x x x

→→→+-==-,求不出 用一般的方法:200001sin

11lim

lim sin lim lim sin 0sin sin sin x x x x x x x x x x x x x x x

→→→→=?=?=; (2)用洛必达法则求:

sin 1cos lim

lim lim(1cos )1

x x x x x x x x →∞→∞→∞++==+, 求不出

用一般的方法:

sin sin lim

lim(1)101x x x x x

x x

→∞→∞+=+=+=。

3.设()f x 在0x =处二阶可导,且(0)0f =,试确定a 的值使()g x 在0x =处可 导,并求(0)g ',其中

()

()f x g x x a ??

=???

00x x ≠=

解:因为函数()f x 在0x =处二阶可导,则函数在0x =处一定连续,即有

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

微积分试题及答案(5)

微积分试题及答案 一、填空题(每小题2分,共20分) 1. =∞→2 arctan lim x x x . 2. 设函数??? ??=<<-=0 , 10 )21()(1 x k x ,x x f x 在0=x 处连续,则=k 。 3. 若x x f 2e )(-=,则=')(ln x f 。 4. 设2sin x y =,则=)0() 7(y 。 5. 函数2 x y =在点0x 处的函数改变量与微分之差=-?y y d 。 6. 若)(x f 在[]b a ,上连续, 则=?x a x x f x d )(d d ; =? b x x x f x 2d )(d d . 7. 设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。 8. 曲线x x y -=e 的拐点是 。 9. 曲线)1ln(+=x y 的铅垂渐近线是 。 10. 若 C x x x f x ++=? 2d )(,则=)(x f 。 二、单项选择(每小题2分,共10分) 1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( ) (A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( ) (A )x sin (B )2 x x + (C )3x (D )x cos 1- 3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( ) (A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 4. 设函数)(x f 在]0[a , 上二次可微,且0)()(>'-''x f x f x ,则x x f ) ('在区间)0(a ,内是( ) (A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若 C x x x f +=?2d )(,则=-?x x xf d )1(2 。 (A )C x +-2 2)1(2 (B )C x +--2 2)1(2

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

微积分第4章习题解答(上)

第四章 习题参考解答 习题4-1 1、下列各方程中,哪些是微分方程,哪些不是微分方程?若是微分方程,请指出其阶数 (1)是一阶微分方程; (2)不是微分方程; (3)是一阶微分方程; (4)是二阶微分方程; (5)是一阶微分方程; (6)是一阶微分方程。 2、在下列各题所给的函数中,检验其中哪个函数是方程的解?是通解还是特解? (1)(B )是特解 (C )是通解; (2)(A)是特解 (B )是通解; (3)(A )是通解(B )是特解 3、求下列各微分方程在指定条件下的特解 (1)解:x x x y xe dx xe e dx ==-?? (1)x y e x C ∴=-+ 将(0)1y =代入上式,得2C = 故满足初始条件的特解为:2)1(+-=x e y x (2)解:C x x dx y +==? ln 将(1)1y =代入上式,得1C = 故满足初始条件的特解为:1ln +=x y 4、写出由下列条件确定的曲线所满足的微分方程 (1)解:设曲线为)(x y y = 由条件得2x y =' (2) 解:设曲线为)(x y y =,则曲线上点),(y x P 处的法线斜率为y k '- =1 由条件知PQ 中点的横坐标为0,所以Q 点的坐标为)0,(x -,从而有 01 ()y x x y -=-' --

即:20yy x '+= 注:DQ PD k = 习题4-2 1、求下列微分方程的通解 (1)sec (1)0x ydx x dy ++= 解:原方程变形为:cos 1x ydy dx x =- + 积分:11 cos 1 x ydy dx x +-=-+?? 得:sin ln 1y x x C =-+++ 所求的通解为:C y x x =++-sin 1ln (2) 10x y dy dx += 解:原方程变形为: 1010 x y dy dx = 积分:1010x y dy dx =? ? 得:1111010ln10ln10 y x C -=+ 所求的通解为:1010x y C --= (3)ln y y y '= 解:原方程变形为: ln dy dx y y = 积分:1ln dy dx y y =? ? 得:ln ln y x C =+,2ln x y C e = 所求的通解为:x Ce y e = 注:21,2C C e C e C ==; (4)tan cot ydx xdy = 解:原方程变形为:cot tan ydy xdx =

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

微积分试卷及答案

微积分试卷及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号 一、填充题(共5小题,每题3分,共计15分) 1.2 ln()d x x x =? . 2.cos d d x x =? . 3. 31 2d x x --= ? . 4.函数2 2 x y z e +=的全微分d z = . 5.微分方程ln d ln d 0y x x x y y +=的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设()1x f e x '=+,则()f x = ( ). (A) 1ln x C ++ (B) ln x x C + (C) 2 2x x C ++ (D) ln x x x C -+

2.设 2 d 11x k x +∞=+? ,则k = ( ). (A) 2π (B) 22π (C) 2 (D) 2 4π 3.设()z f ax by =+,其中f 可导,则( ). (A) z z a b x y ??=?? (B) z z x y ??= ?? (C) z z b a x y ??=?? (D) z z x y ??=- ?? 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0 y f x y '=成立,则( ) (A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ). (A) 211(1)n n n ∞ =-∑ (B) 1 (1)n n ∞ =-∑ (C) 1 3(1)2n n n n ∞ =-∑ (D) 11(1)n n n ∞=-∑ 三、计算(共2小题,每题5分,共计10分) 1.2d x x e x ? 2.4 ? 四、计算(共3小题,每题6分,共计18分)

微积分试题及答案

微积分试题及答案

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 21x y x =+函数是有界函数 ( ) 2、 有界函数是收敛数列的充分不必要条件 ( ) 3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin x y x =求函数 的导数 2、 21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、31)x x +计算( 6、21 0lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2 )100R x x x =-(,总成本函数为2 ()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21 y x x =+的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01lim (),lim ()x x f x A f A x + →+∞→==则 2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题

1、C 2、C 3、A 4、B 5、D 6、B 二、填空题 1、0x = 2、6,7a b ==- 3、18 4、3 5、20x y +-= 三、判断题 1、√ 2、× 3、√ 4、× 5、× 四、计算题 1、 1sin 1sin 1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )x x x x x x y x e e x x x x x x x x x x x '='='??=-+??? ?=-+(( 2、 22()112(arctan )121arctan dy f x dx x x x dx x x xdx ='=+-++= 3、 解: 2222)2)22230 2323(23)(23(22)(26) (23x y xy y y x y y x y y x y x y yy y x y --'+'=-∴'=--'----'∴''=-

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

高等数学(同济大学版)第四章练习(含答案)

第四章 不定积分 一、学习要求 1、理解原函数与不定积分的概念及性质。 2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。 二、练习 1.在下列等式中,正确的结果是( C ). A. '()()f x dx f x =? B.()()df x f x =? C. ()()d f x dx f x dx =? D.[()]()d f x dx f x =? 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2 x 3.设()f x 的一个原函数是2x e -,则()f x =( B ); A. 2x e - B. 22x e -- C. 24x e -- D. 24x e - 4.'' ()xf x dx =? ( C ). A.'()xf x C + B. '()()f x f x C -+ C. '()()xf x f x C -+ D. '()()xf x f x C ++. 5 .将 化为有理函数的积分,应作变换x =( D ). A. 3t B. 4 t C. 7 t D. 12 t 6.dx = 1/7 ()73d x -, 2cos 2dx x = 1/2 ()tan 2d x ,2 19dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =1 3 3x e c ++. 8.设()f x 是可导函数,则'()d f x x ?为()f x C +. 9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+ 10.已知()cos xf x dx x C =+?,则()f x =sin x x - 11.求下列不定积分 解: (1) 22 32tan 1tan tan tan 1sin 3 x dx xd x x c x ==+-?? (2) 22arctan 11 x x x x x x x dx e dx de e c e e e e -===++++??? 5 34 2 (3)t a n s e c t a n s e c s e c x x d x x x d x ? =??? 22 2(s e c 1)s e c s e c x x d x =-?? ()642sec 2sec sec sec x x x d x =-+?753121 sec sec sec 753 x x x c = -++

大学高等数学上考试题库及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( B ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( B ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( D ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( C ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( A ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( A ).

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

微积分刘迎东编第四章习题4.6答案

微积分刘迎东编第四章习题4.6答案

4.6 有理函数的积分 习题4.6 求下列不定积分: (1)3 3 x dx x +? 解: ()()()33223227939272727ln 33239327327ln 3.32 x t t dxx t t t dt t t C x t x x x x C ??+=-+-=-+-+ ?+?? ++=-++-++?? (2)223310 x dx x x ++-? 解:()2222231310ln 310.310310 x dx d x x x x C x x x x +=+-=+-++-+-?? (3)2125x dx x x +-+? 解: ()()()()22222222511122412252252251211ln 25arctan .22 d x x d x x x dx dx x x x x x x x x x x C -+-+-+==+-+-+-+-+-=-+++???? (4)() 21dx x x +? 解:()()()()22 222222211111ln .2212111d x dx x d x C x x x x x x x ??==-=+ ?++++????? (5)331 dx x +? 解:

( )( )322222223121213ln 1111211131ln 1212121ln 1ln 1.2x x dx dx x dx x x x x x x d x x x dx x x x x x x C ---??=+=+- ?++-+-+?? -+=+-+-+??-+ ?? ???=+--+++????? (6)()() 221 11x dx x x ++-? 解:()()()222211111122ln 1.1121111x dx dx x C x x x x x x ?? ?+=+-=-++ ?-+++-+ ??? ?? (7)()()() 123xdx x x x +++? 解: ()()()13222123123132ln 2ln 1ln 3.22 xdx dx x x x x x x x x x C ??-- ?=++ ?++++++ ??? =+-+-++?? (8)5438x x dx x x +--? 解: ()()542233232 8811184332118ln 4ln 13ln 1.32x x x x dx x x dx x x x x x x x x dx x x x x x x x x x C ??+-+-=+++ ? ?-+-?? ??=+++-- ?+-?? =+++-+--+??? (9)()() 221dx x x x ++?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

微积分总复习题与答案

第五章 一元函数积分学 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写 出cos t a == 邻边斜边,于是21arcsin(/)22a x a C =+ 例3:求不定积分sin x xdx ? 分析:如果被积函数()sin f x x x =中没有x 或sinx ,那么这个积分很容易计算出来,所以可以考虑用分部积分求此不定积分,如果令u=x ,那么利用分部积分公式就可以消去x (因为' 1u =) 解令,sin u x dv xdx ==,则du dx =,cos v x =-. 于是sin (cos )(cos )cos sin x xdx udv uv vdu x x x dx x x x C ==-=---=-++???? 。熟悉分部积分公式以后,没有必要明确的引入符号,u v ,而可以像下面那样先凑微分,然后直接用分部积分公式计算: sin cos (cos cos )cos sin x xdx xd x x x xdx x x x C =-=--=-++???

相关主题
文本预览
相关文档 最新文档