当前位置:文档之家› 希尔伯特数学问题

希尔伯特数学问题

希尔伯特数学问题
希尔伯特数学问题

希尔伯特数学问题:1900年,德国数学家希尔伯特(David Hilert,1862—1943)在巴黎国际数学家大会上作了题为《数学问题》的著名讲演,揭开了20世纪数学的序幕。

希尔伯特是继克莱因之后哥廷根数学的领头人。他在巴黎讲演中,根据19世纪数学研究的成果和发展趋势提出了23个问题,这些问题涉及现代数学的许多重要领域,推动了20世纪数学的发展。以下是希尔伯特数学问题及其进展简况。

一个学科有很多问题说明这个学科还有很强的生命力。

1. 连续统假设。自然数(可数)集基数。与实数集(连续统)基数抟。之间不存在中间基数。1963年,美国数学家科恩(P.Cohen)证明,连续统假设的真伪不可能在策梅洛—弗兰克尔公理系统内加以判别。

产生背景;解决过程;目前状态;历史。

2.算术公理的相容性。1931年,哥德尔(K. G del)证明了希尔伯

特关于算术公理相容性的“元数学”纲领不可能实现。相容性问题至今尚未解决。

3.两等底等高四面体体积之相等。1900年,德恩(M. Dehn)证明了

确实存在着等底等高却不剖分相等,甚至也不拼补相等的四面体。这个问题成为最先获解的希尔伯特数学问题。

4.直线为两点间的最短距离。问题提得过于一般。

5.不要定义群的函数的可微性假设的李群概念。格利森(A. M. Gleason)、蒙哥马利(D. Montgomery)、席平(L. zippin)等在1952年对此问题给出了肯定解答。

6.物理公理的数学处理。在量子力学、热力学等部门,公理化

已取得很大成功。至于概率论公理化,已由科尔莫戈罗夫(A . H .

Колмогоров)等建立起来(1933)。

7 .某些数的无理性与超越性。1 9 3 4 年,盖尔丰德( A .

O.Гельфонд)和施奈德(T. Schneider)各自独立地解决了问题的后半部分,即对于任意代数数α(α≠0,1)和任意代数无理数β,证明了αβ的超越性。

8.素数问题。包括黎曼猜想、哥德巴赫猜想和孪生素数猜想,均未

解决。

9.任意数域中最一般的互反律之证明。已由高木贞治(Takagi Teiji)

和阿廷(E. Artin,1927)解决。

10.丢番图方程可解性的判别。1970年,马蒂雅舍维奇(Ю. B.

Матиясевия)证明:不存在判定任一给定丢番图方程有无整数解的一般算法。

11.系数为任意代数数的二次型。哈塞(H. Hasse,1929)和西格尔(C. L. Siegel,1936,1951)在此问题上获得重要结果。

12.阿贝尔域上的克罗内克定理在任意代数有理域上的推广。尚未解决。

13.不可能用仅有两个变数的函数解一般的七次方程。连续函数情形

在1957年已由阿诺(В. И. Арнолъд)解决。

14.证明某类完全函数系的有限性。1958年被永田雅宜否定解决。15.舒伯特计数演算的严格基础。代数几何的严格基础已由范德瓦尔

登(B. L. Van der Waerden,1938—1940)和韦依(A. Weil,1950)建立,但舒伯特(H. C. H. Schubert)演算的合理性尚待解决。16.代数曲线与曲面的拓扑。有很多重要结果。

17.正定形式的平方表示。已由阿延在1926年解决。

18.由全等多面体构造空间。部分解决。

19.正则变分问题的解是否一定解析。1904年伯恩斯坦(С. H.

Ъepнщтейн)证明了一个变元的解析非线性椭圆型方程的解必定解析,该结果后来被推广到多变元椭圆组。

20.一般边值问题成果丰富。

21.具有给定单值群的微分方程的存在性。长期以来人们一直认为普

莱梅依(J. Plemelj)在1908年已对此问题作出肯定解答,但80年后发现他的证明有漏洞。1989年前苏联数学家鲍里布鲁克(A. A. Bolibrukh)关于此问题举出了反例,使这个问题最终被否定解决。

22.解析关系的单值化。一个变数情形已由寇贝(P. Koebe)解决。23.变分问题的进一步发展

希尔伯特的23个问题-精选教学文档

希尔伯特的23个问题 希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的希尔伯特23个问题。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔 集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

初等函数及其连续性

初数研究期末专题论文 教师一班105012013066 邱燕华

初等函数及其连续性 【摘要】:本文主要分为三部分。第一部分利用初等函数的定义及Yanzu 引理重点讨论初等函数的判定方法;第二部分利用初等函数的连续性定义,详细讨论初等函数的连续性;第三部分简要提一下函数连续性在中学中的运用。 关键词:初等函数,连续性,Yanzu 引理 【正文】: 一、初等函数 1、初等函数的定义 定义1:由基本初等函数经过有限次的代数运算及有限次的函数复合所得到的函数叫做[1]初等函数。 注:基本初等函数包括常量函数、幂函数、指数函数、对数函数、三角函数、反三角函数。 2、初等函数的分类 如果一个函数是用基本初等函数f1(x)=x 和f2(x)=c 经过有限次加、减、乘、除、乘方、开方得到初等函数称为代数函数,否则称为超越函数;f1(x)=x 和f2(x)=c 经过有限次加减乘除得到的代数函数称为有理函数,否则称为无理函数;有理函数中,仅经过有限次加、减、乘得到的初等函数称为有理整函数,否则称为有理分函数 [2]。(如下图示) ?????????????????有理整函数有理函数有理分函数代数函数无理函数初等函数超越函数 3、初等函数的判定方法 (1)根据定义判定 例1、判断下列函数是否为初等函数 ①12 2sin (1)x e y g x ??=? ?+?? ,②y lg(1y = 解: ①122sin (1)x e y g x ??=??+?? 可以看成是122sin ,,,1()x v y u u v e w x g w ====+复合而成的复合函数,12 2sin (1)x e y g x ??∴=??+??是初等函数。 ②∵ -1≤cosx ≤1, ∴-2-cosx 无意义, ∴y=-2-cosx 不是初等函数。 ③2lg ,1,1, lg(1y u u v v x y ==+++=∴== 复合而成的复合函数是初等函数 例2、判断下列函数是否为初等函数

希尔伯特空间

一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900 年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。 希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。 大家知道,在一个欧几里得空间R^n 上,所有的点可以写成为:X= (x1,x2,x3,..., xn )。那么类似的,在一个无穷维欧几里得空间上点就是:X= (x1,x2,x3 ,xn,.................................................................... ),一个 点的序列。 欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离),||X||^2= ∑xn^2,可是这一重要性质在无穷维时被破坏了:对于无穷多个xn,∑xn^2 可以不存在(为无穷大)。于是希尔伯特将所有∑ xn^2 为有限的点做成一个子空间,并赋以X*X'= ∑ xn*xn' 作为两点的内积。这个空间我们现在叫做l^2 ,平方和数列空间,这是最早 的希尔伯特空间了。 注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。只有范数的空间叫做Banach 空间,(以后有时间再慢慢讲:- )。 如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。 Hilbert 空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑ xn^2 为有限的点。这个最早的Hilbert space 叫做l^2 (小写的l 上标2,又叫小l2 空间),非常类似于有限维的欧氏空间。

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题 1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题 》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个 讲演的核心部分则是希尔伯特根据19世纪数学研究的成果与发展趋势而提出的23个问题。 ①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。 ②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。数学相容性问题尚未解决。 ③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。 ④直线作为两点间最短距离问题希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 ⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。 ⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。 ⑦某些数的无理性与超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地 解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。 ⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想最佳结果属于陈景润(1966),但离最终解决尚有距离。 ⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。 ⑩丢番图方程可解性的判别1970年,□.В.马季亚谢维奇证明了希尔伯特所期望的一般算法不存在。 11 系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这问题上获得重要结果。 12 阿贝尔域上的克罗内克定理推广到任意代数有理域尚未解决。 13 不可能用只有两个变数的函数解一般的七次方程连续函数情形于1957年由В.И.阿诺尔德解决。解析函数情形则尚未解决。 14 证明某类完全函数系的有限性1958年,永田雅宜给出了否定解决。 15 舒伯特计数演算的严格基础代数几何基础已由B.L.范·德·瓦尔登(1938~1940)与A.韦伊(1950)建立,但舒伯特演算的合理性仍待解决。 16 代数曲线与曲面的拓扑对该问题的后半部分,И.Г.彼得罗夫斯基曾声明证明了□=2时极限环个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。

黎曼ζ函数

黎曼ζ函数 最小值马克斯 再保险-15年15 即时通讯-15年15 黎曼ζ函数是非常重要的特殊函数出现的数学和物理的集成和与周围很深的结果密切相关素数定理。虽然许多这个函数的性质进行了调查,仍有重要的基本猜想(最明显黎曼假设),还有待证实。黎曼ζ函数是为一个复杂的变量定义在复平面,通常表示是哪一个(而不是通常的)考虑到所使用的符号黎曼在他1859年的论文,创立了这个函数的研究(黎曼1859)。它的实现Wolfram语言作为ζ[s]。 上面的图显示了“山脊”为和。山脊的事实似乎减少单调并不是一个巧合,因为它证明,单调减少意味着黎曼假设(Zvengrowski和Saidak 2003;Borwein贝利,2003年,页95 - 96)。 在实线与,黎曼ζ函数可以定义的积分 (1)在哪里是γ函数。如果是一个整数,那么我们的身份 (2) (3)

(4)所以 (5)评估,让这和代入上述身份获得 (6) (7) (8)集成的最后表达(8)给取消的因素并给出了最常见的黎曼ζ函数, (9)这是有时被称为p系列. 黎曼ζ函数也可以定义的多重积分通过 (10)作为一个梅林变换通过 (11)为,在那里是小数部分(Balazard和赛亚于2000)。 它出现在单位平方积分 (12)有效期为(Guillera和Sondow 2005)。为一个非负整数,这个公式是由于Hadjicostas(2002),和特殊的情况和是由于Beukers(1979)。 请注意,ζ函数有一个奇点中,它可以减少发散调和级数. 黎曼ζ函数满足反射函数方程 (13) (哈代1999年,p . 14;“将军”1999,p . 160),一个类似的形式由欧拉猜想(欧拉、读取1749年,1768年出版,Ayoub 1974;Havil 2003,p . 193)。这种函数方程的对称形式给出 (14) (1974年Ayoub),证明了黎曼复杂(黎曼1859)。 如上所述,ζ函数与一个复数被定义为。然而,有一个独特的解析延拓对整个复平面,不包括,对应于一个简单的极与复杂的残渣1(“将军”1999年,p . 1999)。特别是,作为 ,遵循 (15)

几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特—黄变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:希尔伯特—黄变换由经验模态分解(empirical mode decomposition ,简称EMD )和Hilbert 谱分析两部分组成。经验模态分解方法是一种自适应的、高效的数据分解方法。由于这种分解是以局部时间尺度为基础,因此,它适应于非线性、非平稳过程。通过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions ,简称IMF)的线性叠加。通过分解得到IMF 后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度。本文详细对Hilbert-Huang Transform 的过程进行了阐述,并用算例分析指出了其优势所在。 关键词:希尔伯特—黄变换;时频分析技术; 1 希尔伯特—黄变换(Hilbert-Huang Transform ) 1.1 希尔伯特变换与瞬时频率(Hilbert Transform and instantaneous frequency ) 对于任意一个时间序列X(t),它的希尔伯特变换具有如下形式: -1 ()(t)=,-X Y P d t ττπτ ∞∞? 其中,P ——积分的柯西主值; 希尔伯特变换对于任何属于L p 空间中的函数都存立,即上式中X(t)∈L p (— ∞,+∞)。 通过上述定义,X(t)和Y(t)成为一组复共轭对,同时能够构造一个实部和虚部分为X(t)和Y(t)的解析信号(Analytic Signal)Z(t),Z(t)表示为: ()()(t)=(t)(t)=a ,i t Z X iY t e θ+ 其中, ()()1/222 (t)a =(t)+(t),arctan .X(t)Y t X Y t θ????= ????? 理论上讲有无数种方式去定义虚部,但是希尔伯特变换是唯一能够得到解析 信号结果的方法。 X(t)的Hilbert 变换实质上是将X(t)与函数1/t 在时域上做卷积,这就决定了通过X(t)的Hilbert 变换能够考察其局部特性。得到X(t)的瞬时相位函数后,其瞬时频率为: ()() (t).d w t dt θ= 1.2 经验模态分解与固有模态函数(Empiricalmode decomposition/EMD and Intrinsic mode function/IMF ) 固有模态函数需要满足两个条件:(1)极值与零点的数量必须相等或最多相差一个;(2)由局部极大值包络和局部极小值包络定义的平均包络曲线上任何一点的值为0;

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况 已有 95 次阅读2011-10-3 21:02|个人分类:Mathematics&Statistics|系统分类:科研笔记|关键词:数学世纪亚历山大希尔伯特全世界 希尔伯特(HilbertD.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪 的数学家们去研究,这就是著名的“希尔伯特23个问题”。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项 就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: (1)康托的连续统基数问题。 1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF 集合论公理系统的无矛盾性。1963年,美国数学家科恩(P.Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。 (2)算术公理系统的无矛盾性。 欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。 根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的

希尔伯特23个问题

连续统假设
提示:本条目的主题不是连续体假设。 在数学中,连续统假设(英语:Continuum hypothesis,简称 CH)是一个猜想, 也是希尔伯特的 23 个问题的第一题,由康托尔提出,关于无穷集的可能大小。 其为:
在一个基数绝对大于可列集而绝对小于实数集的集合。
康托尔引入了基数的概念以比较无穷集间的大小, 也证明了整数集的基数绝对小 于实集的基数。康托尔也就给了出连续统假设,就是说,在无限集中,比自然数 集{0,1,2,3,4......}基数大的集合中,基数最小的集合是实数集。而连续 统就是实数集的一个旧称。 更加形式地说,自然数集的基数为 为 。而连续统假设的观点认为实数集的基数
。由是,康托尔定义了绝对无限。
等价地,整数集的序数是 出不存在一个集合 使得
("艾礼富数")而实数的序数是
,连续续假设指
假设选择公理是对的, 那就会有一个最小的基数 连续统假设也就等价于以下的等式:
大于
, 而
连续统假设有个更广义的形式,叫作广义连续统假设(GCH),其命题为:
对于所有的序数 ,
库尔特·哥德尔在 1940 年用内模型法证明了连续统假设与 ZFC 的相对协调性, 保罗·柯恩在 1963 年用力迫法证明了连续统假设不能由 ZFC 推导。也就是说连 续统假设成立与否无法由 ZFC 确定。
作为希尔伯特第一问题
主条目:希尔伯特的 23 个问题

1900 年, 大卫· 希尔伯特以 “连续统假设是否成立” 作为 “希尔伯特第一问题” 。 Kurt Godel 和 Paul Cohen 确定了连续统假设在 ZFC 系统下,加上了选择公理, 也不能证明或证否。 Cohen 的结果并没有被广泛认同作为连续统假设问题的解决,而希尔伯特的问题 依然为当代研究的热门课题。(见 Woodin 2001a).
集合的大小
主条目:基数 要正式地列出这个猜想, 我们需要一些定义:假如两个集合 S 与 T 之间存在着一 个双射,我们会说这两个集合拥有相同的基数。直观的意思是在“T 的每个元素 只能配上仅仅一个 S 的元素,反之亦然”这个前提下,把 S 与 T 的元素拿出来配 对是可能的。因此,集合{蕉, 苹果, 橙}与集合{黄, 红, 绿}拥有相同基数。 当情况去到如整数集或有理数集等无穷集的情况时,事件就变得复杂得多。当考 虑所有有理数的集合时, 有些门外汉可能会天真地认为有理数理所当然地多于整 数,而有理数又显然少于实数,因此把连续统假设证否。但透过简单集合论的方 法, 我们能证明有理数集能与整数集形成一双射,因此有理集跟整数集有着一样 的大小, 而它们都被称为可列集。 对角论证法则证明了整数集跟连续统 (实数集) 的基数并不一样。 连续统假设亦指出,实数集中每一个子集,要么和整数集有相同的基数,要么和 实数集有相同的基数。
证明或证否的不可能性(在 ZFC 系统下)
康托尔相信连续统假设是对的,花了很多年尝试证明它,结果徒劳无功。它成为 了希尔伯特那重要难题名单中的第一条,并在 1900 年巴黎的国际数学家大会上 宣布此事。在那个时候,还没有公理化集合论的概念。 库尔特·哥德尔在 1940 年指出连续统假设不能在 ZFC 系统下证否,即使接受了 选择公理为前提。这个定理称为哥德尔定理。Paul Cohen 在 1963 年证明了连续 统假设同样不能在 ZFC 下被证明。因此,连续统假设“逻辑地独立于”ZFC。这 些结果都是以 ZFC 的公设系统本身并不存在自相矛盾(相容性)为假设大前提, 而这个大前提是被广泛接受为对的。 连续统假设并非被证明跟 ZFC 互相独立的第一个命题。 哥德尔不完备定理一个立 即的结论在 1931 年被发表,那是“‘存在着一个正式命题表达 ZFC 的相容性’ 乃独立于 ZFC”。有别于纯粹数学的,这个一致的命题乃是有着在数学之上的特 性。连续统假设和选择公理乃是最先被证明跟 ZF 集合论独立的命题。在 Paul Cohen 在 1960 年代发展出力迫法以前,这些独立性的证明并没有完成。

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

希尔伯特_黄变换谱及其在地震信号分析中的应用

第34卷第2期福州大学学报(自然科学版)Vol.34No.2 2006年4月Journal of Fuzhou University(Natural Science)Apr.2006 文章编号:1000-2243(2006)02-0260-05希尔伯特-黄变换谱及其在地震信号分析中的应用 陈子雄,吴琛,周瑞忠 (福州大学土木建筑工程学院,福建福州350002) 摘要:介绍了希尔伯特-黄变换(HHT)这一非线性、非平稳信号处理方法,并利用HHT处理了地震工程中 常用的El Centro地震波,得到了该信号的Hilbert谱、边际谱和能量谱,提取了该信号的主要动力特性,并与 该信号的Fourier分析结果进行了对比,显示出HHT这一方法的优越性. 关键词:希尔伯特-黄变换;经验模态分解;固有模态函数;地震信号 中图分类号:TU311.3文献标识码:A Hilbert-Huang transform spectru m and its application in seismic signal analysis CHEN Zi-xiong,W U Chen,ZHOU Rui-zhong (College of Civil Engineering and Architecture,Fuzhou University,Fuzhou,Fujian350002,China) Abstract:HHT is a ne w method to deal with non-linear and non-stationary data.El Centro earth- quake wave is analyzed by HHT.Through the way,Hilbert spectrum,marginal spectrum and energy spec trum are got and dynamic property is extrac ted.The comparison between HHT spectrum and Fourier spec trum is made and the superiority of HHT is demonstrated. Keyw ords:Hilbert-Huang transform;empirical mode decomposition;intrinsic mode function;seismic signal 地震信号具有短时、突变等特点,是一种典型的非平稳随机信号,必须对其进行分析与处理,才可以提取信号的主要特征.传统的Fourie r变换能够表述信号的频率特性,但不提供任何时域信息[1],而小波分析虽然在时域和频域都具有很好的局部化性质,但本质上仍是一种窗口可调的Fourier变换,在小波窗内的信号必须是平稳的,因而没有根本摆脱Fourier分析的局限[2].小波基的选择也是信号分析中的一个重要问题,另外,小波基的有限长会造成信号能量的泄漏,使信号的能量-频率-时间分布很难定量表述. Hilbert-Huang变换(HH T)的信号处理方法被认为是近年来对以Fourier变换为基础对线性和稳态谱分析的一个重大突破[2].它由经验模态分解(E mpirical Mode Decomposition,E MD)方法和Hilbert变换(H T)两部分组成,其核心是E MD分解.该方法采用了固有模态函数(Intrinsic Mode Function,I MF)概念以及将任意信号分解为I MF组成的思想,即E MD法,使得瞬时频率具有实际的物理意义[3].它不受Fourier分析的局限,可依据数据本身的时间尺度特征进行模态分解,分解过程中保留了数据本身的特性,再对各I MF分量进行Hilbert变换,得到信号能量在时间尺度上的分布规律,实现地震动力特性的提取. 1Hilbert-Huang变换 1.1经验模态分解和固有模态函数 经验模态分解(EMD)的目的是通过对非线性非平稳信号的分解获得一系列表征信号特征时间尺度的固有模态函数(I MF),使得各个I MF是窄带信号,可以进行Hilbert分析.首先设定两个条件:1整个时间序列的极大极小值数目与过零点数目相等或最多相差一个;o时间序列的任意点上,由极大值确 收稿日期:2005-07-27 作者简介:陈子雄(1981-),男,硕士研究生;通讯联系人:周瑞忠,教授. 基金项目:教育部博士点专项科研基金资助项目(20040386004)

希尔伯特的23个问题

希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力

用希尔伯特黄变换(HHT)求时频谱和边际谱

用希尔伯特黄变换(HHT)求时频谱和边际谱 1.什么是HHT? HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert变换,得到信号的时频属性的一种时频分析方法。 2.EMD分解的步骤。

EMD分解的流程图如下:

3.实例演示。 给定频率分别为10Hz和35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t) (1)为了对比,先用fft对求上述信号的幅频和相频曲线。 代码: function fftfenxi clear;clc; N=2048; %fft默认计算的信号是从0开始的

t=linspace(1,2,N);deta=t(2)-t(1);1/deta x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t); % N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi; % x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*det a).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t); y = x; m=0:N-1; f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的 %下面计算的Y就是x(t)的傅里叶变换数值 %Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后[-2,2]之间的频谱值 Y=fft(y); z=sqrt(Y.*conj(Y)); plot(f(1:100),z(1:100)); title('幅频曲线') xiangwei=angle(Y); figure(2) plot(f,xiangwei) title('相频曲线') figure(3) plot(t,y,'r') %axis([-2,2,0,1.2]) title('原始信号')

希尔伯特-黄变换(Hilbert-Huang Transform,HHT)

希尔伯特-黄变换(Hilbert-Huang Transform,HHT) 0 前言 传统的数据分析方法都是基于线性和平稳信号的假设,然而对实际系统,无论是自然的还是人为建立的,数据最有可能是非线性、非平稳的。 希尔伯特-黄变换(Hilbert-Huang Transform,HHT)是一种经验数据分析方法,其扩展是自适应性的,所以它可以描述非线性、非平稳过程数据的物理意义。 1 HHT简介[贺礼平.希尔伯特-黄变换在电力谐波分析中的应用研究[D].湖南:中南大学,2009]HHT的发展。 1995年,Norden E.Huang为研究水表面波构思出一种所谓“EMD--HSA”的时间序列分析法,通过这种方法他发现水波的演化不是连续的,而是突变、离散、局部的。 1998年,Norden E.Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。 HHT是一种新的分析非线性非平稳信号的时频分析方法,由两部分组成: 第一部分为经验模态分解(Empirical Mode Decomposition,EMD)(the sifting process,筛选过程),它是由Huang提出的,基于一个假设:任何复杂信号都可以分解为有限数目且具有一定物理定义的固有模态函数(Intrinsic Mode Function,IMF;也称作本征模态函数);EMD方法能根据信号的特点,自适应地将信号分解成从高到低不同频率的一系列IMF;该方法直接从信号本身获取基函数,因此具有自适应性,同时也存在计算量大和模态混叠的缺点。 第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,HSA),利用Hilbert变换求解每一阶IMF 的瞬时频率,从而得到信号的时频表示,即Hilbert谱。 简单说来,HHT处理非平稳信号的基本过程是:首先,利用EMD方法将给定的信号分解为若干IMF,这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的时间-频率-能量分布,即Hilbert谱。 在HHT中,为了能把复杂的信号分解为简单的单分量信号的组合,在进行EMD方法时,所获得的IMF 必须满足下列两个条件: 1)在整个信号长度上,一个IMF的极值点和过零点数目必须相等或至多只相差一点。 2)在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零,也就是说IMF的上下包络线对称于时间轴。

希尔伯特23个问题

希尔伯特23问 希尔伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼

黎曼函数

它亦可以用积分定义: 对于所有实部>1的复数s。这和上面ζ(2)的表达式一起可以用来证明两 个随机整数互质的概率是6/π2。 \frac{}{}== 函数值==

黎曼函数在s > 1的情况 ζ函数满足如下函数方程: 对于所有C\{0,1}中的s成立。这里,Γ表示Γ函数。这个公式原来用 来构造解析连续性。在s = 1,ζ函数有一个简单极点其留数为1。上 述方程中有sin函数,的零点为偶数s = 2n,这些位置是 可能的零点,但s为正偶数时,为不为零的规 则函数(Regular function),只有s为负偶数时,ζ函数才有零点, 称为平凡零点。 当s为正整数 其中B2k是伯努利数。从这个,我们可以看到ζ(2)= π2/6, ζ(4) = π4/90, ζ(6) = π6/945等等。(序列A046988/A002432列在OEIS)。 这些给出了著名的π的无穷级数。奇整数的情况没有这么简单。 拉马努金在这上面做了很多了不起的工作。为正偶数时的函数值 公式已经由欧拉计算出。但当为正奇数时,尚未找到封闭式。 这是调和级数。 (OEIS中的数列A078434)

自旋波物理。 (OEIS中的数列 A013661) 是多少? (OEIS中的数列A002117) 称为阿培里常数。 (OEIS中的数列 A0013662) 负整数[编辑] 同样由欧拉发现,ζ函数在负整数点的值是有 理数,这在模形式中发挥着重要作用,而且ζ 函数在负偶整数点的值为零。 复数值[编辑] ,x>1。 幅角[编辑] , 函数值表[编辑] , , , , ,

, , , , , , , ,

(完整版)Hilbert希尔伯特环变换

黄锷院士在《On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data》中提出一种高维全息谱分析理论HHSA(Holo-Hilbert spectral analysis) 要理解HHSA方法,首先要了解希尔伯特变换、经验模态分解(EMD)、与希尔伯特-黄变换(HHT)。 学术背景: 在信号处理与频谱分析的目的是要描述信号的频谱含量在时间上变化,以便能在时间和频谱上同时表示信号的能量或者强度。傅里叶频谱并没有告诉我们哪些频率在什么时候出现。因此傅里叶变换无法表现信号频率成分的时变性,因此学术界先后发展出了短时傅里叶变换、窗口傅里叶变换、小波等手段,近似的求信号某一时刻的瞬时频率。 希尔伯特变换: 希尔伯特变换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。通过希尔伯特变换,使得我们对短信号和复杂信号的瞬时参数的定义及计算成为可能,能够实现真正意义上的瞬时频率的提取,因而希尔伯特变换在信号处理上具有十分重要的地位,使得希尔伯特变换具有广泛的工程应用。 但在进一步的工程应用中,希尔伯特变换具有以下缺陷: (1)希尔伯特变换只能近似应用于窄带信号。但实际应用中,存在 许多非窄带信号,希尔伯特变换对这些信号无能为力。即便是 窄带信号,如果不能完全满足希尔伯特变换条件,也会使结果

发生错误。而实际信号中由于噪声的存在,会使很多原来满足 希尔伯特变换条件的信号无法完全满足; (2)对于任意给定时刻,通过希尔伯特变换运算后的结果只能在 一个频率值,即只能处理任何时刻为单一频率的信号; (3)对于一个非平稳的数据序列,希尔伯特变换得到的结果很大 程度上失去了原有的物理意义。 图1 傅立叶、小波与希尔伯特-黄变换对瞬时频率的分辨率 希尔伯特-黄变换: 针对上述的三个问题,黄锷院士在1998年提出希尔伯特-黄变换(HHT)。其基本思想是:讲一个非稳态、非线性的信号分解为若干个稳态信号,在对分解后的信号进行希尔伯特变换,分别求取对应的瞬时频率。 在这里将非稳态、非线性信号分解为多个稳态信号的算法成为经

相关主题
文本预览
相关文档 最新文档