当前位置:文档之家› 世界数学十大未解难题

世界数学十大未解难题

世界数学十大未解难题
世界数学十大未解难题

世界数学十大未解难题

(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决

的问题”)

一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

四:黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

五:杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

八:几何尺规作图问题

这里所说的“几何尺规作图问题”是指作图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。以上四个

问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

九:哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

【哥德巴赫猜想最新最好的成果是中国数学家陈景润的陈氏定理,通俗地讲:哥德巴赫猜想如果简称“1+1”,如今解决的是“1+2”。但是这样说使得许多大众容易产生误会。】

十:四色猜想

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。

希尔伯特23问题里尚未解决的问题:

1、问题1连续统假设。

全体正整数(被称为可数集)的基数和实数集合(被称为连续统)的基数c之间没有其它基数。

背景:1938年奥地利数学家哥德尔证明此假设在集合论公理系统,即策莫罗-佛朗克尔公理系统里,不可证伪。

1963年美国数学家柯恩证明在该公理系统,不能证明此假设是对的。

所以,至今未有人知道,此假设到底是对还是错。

2、问题2 算术公理相容性。

背景:哥德尔证明了算术系统的不完备,使希尔伯特的用元数学证明算术公理系统的无矛盾性的想法破灭。

3、问题7 某些数的无理性和超越性。

背景

此题为希尔伯特第7问题中的一个特例。

已经证明了e^π的超越性,却至今未有人证明e+π的超越性。

4、问题 8 素数问题。

证明:

ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + …

(s属于复数域)

所定义的函数ζ(s)的零点,除负整实数外,全都具有实部1/2。

背景:

此即黎曼猜想。也就是希尔伯特第8问题。

美国数学家用计算机算了ζ(s)函数前300万个零点确实符合猜想。

希尔伯特认为黎曼猜想的解决能够使我们严格地去解决歌德巴赫猜想(任一偶数可以分解为两素数之和)和孪生素数猜想(存在无穷多相差为2的素数)。

引申的问题是:素数的表达公式?素数的本质是什么?

5、问题 11 系数为任意代数数的二次型。

背景:德国和法国数学家在60年代曾取得重大进展。

6、问题 12 阿贝尔域上的克罗内克定理在任意代数有理域上的推广。

背景:此问题只有些零散的结果,离彻底解决还十分遥远。

7、问题13 仅用二元函数解一般7次代数方程的不可能性。

背景:1957苏联数学家解决了连续函数情形。如要求是解析函数则此问题尚未完全解决。

8、问题15 舒伯特计数演算的严格基础。

背景:代数簌交点的个数问题。和代数几何学有关。

9、问题 16 代数曲线和曲面的拓扑。

要求代数曲线含有闭的分枝曲线的最大数目。和微分方程的极限环的最多个数和相对位置。

10、问题 18 用全等多面体来构造空间。

无限个相等的给定形式的多面体最紧密的排列问题,现在仍未解决。

11、问题 20 一般边值问题。

偏微分方程的边值问题,正在蓬勃发展。

12、问题 23 变分法的进一步发展。

世界数学十大未解难题/希尔伯特23个问题未解决的问题

本文链接地址:

七大“千僖难题”:

黎曼假设庞加莱猜想霍奇猜想戴尔猜想纳威厄-斯托克斯方程杨——米尔理论 P对NP问题

世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二:霍奇(Hodge)猜想 难题”之三:庞加莱(Poincare)猜想 难题”之四:黎曼(Riemann)假设 难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四:黎曼(Riemann)假设

中国古今26位著名数学家的故事[001]

中国古今26位著名数学家的故事 1.赵爽,三国时期东吴的数学家。曾注《周髀算经》,《周髀算经注》 中有一篇《勾股圆方图注》全文五百余字,并附有数幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 2.朱世杰(公元1300年前后)朱世杰数学代表作有《算学启蒙》(1299) 和《四元玉鉴》(1303)。 3.祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问 题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 4.祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学 家。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 5.杨辉,字谦光,钱塘(今杭州)人,中国古代数学家和数学教育家, 生平履历不详。(一)主要著述 《详解九章算法》,《日用算法》,《乘除通变本末》,《田亩比类乘除捷法》,《续古摘奇算法》,其中后三种为杨辉后期所著,一般称之为《杨辉算法》。 6.熊庆来(1893—1969),字迪之,云南弥勒人,他是中国近代数学研 究和教育的奠基人。 7.许宝騄(19l0.9.10一1970.12.18)是中国数学家,生卒于北京.许宝騄是中国概率统计领域内享有国际声誉的第一位数学家。他的主要工作是在数理统计和概率论两个方面。 8.徐光启(公元1562—1633年)字子先,编写了著名的《农政全书》。《几何原本》是我国最早第一部自拉丁文译来的数学著作还有《数理精蕴》。 9.吴学谋是中国数学家,生于广西柳州。 10.汪莱(1768一1813),是中国古代数学家,《参两算经》的最早的数学作品。1796一1798年,汪莱先后与自己的同乡好友巴树谷、江玉讨论数学,完成《弧三角形》和《勾股形》两部书稿。1789年,巴树谷将此两书合为一帙刊行,取名《衡斋算学》,这就是汪莱数学著作的最早刊本。

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

世界著名数学家简介-手抄报

幻灯片1 世界著名数学家简介刘徽 03 世纪 笛卡儿 16 世纪 洛必达 费马 牛顿 莱布尼兹 伯努利 17 世纪 泰勒 麦克劳林 欧拉 拉格朗日 柯西 傅里叶 高斯 18 世纪 阿贝尔 雅可比 狄利克雷 19 世纪 维尔斯特拉斯 斯托克斯 (点击名字可显示简介) 华罗庚 20 世纪 机动目录上页下页返回结束 幻灯片2 刘徽(约225 – 295年)

他撰写的《重 我国古代魏末晋初的杰出数学家. 差》对《九章算术》中的方法和公式作了全面的评 注, 在数学方法和数学 指出并纠正了其中的错误, 他的“割圆术”求圆周率 理论上作出了杰出的贡献. 的方法: 割之又割, 以至于不可割, “割之弥细, 所失弥小, 则与圆合体而无所失矣” 它包含了“用已知逼近未知, 用近似逼近精确”的重要极限思想. 机动目录上页下页返回结束 幻灯片3 笛卡儿(1596 – 1650)

法国哲学家, 数学家, 物理学家, 他 1637年他发 是解析几何奠基人之一. 表的《几何学》论文分析了几何学与 代数学的优缺点, 进而提出了“另外 一种包含这两门科学的优点而避免其缺点的方法”, 给出了几何问题的统一 把几何问题化成代数问题 , 作图法, 从而提出了解析几何学的主要思想和方法, 恩格斯把它称为数学中的转折点. 机动目录上页下页返回结束 幻灯片4 费马(1601 – 1665) 法国数学家, 他是一位律师, 数学 只是他的业余爱好. 他兴趣广泛, 博 览群书并善于思考, 在数学上有许多 重大贡献. 他特别爱好数论, 他提出

的费马大定理: 至今尚未得到普遍的证明. 他还是微积分学的先驱 , 费马引理是后人从他研究最大值与最小值的方法中 提炼出来的. ",2"无整数解方程时当n n n z y x n =+> 机动 目录 上页 下页 返回 结束 幻灯片5 牛顿(1642 – 1727) 伟大的英国数学家 , 物理学家, 天文 他在数学上的卓越 学家和自然科学家. 1665年他提出正 贡献是创立了微积分. 并于1671 流数 (微分) 术 , 次年又提出反流数(积分)术, 他

中国最著名的五大数学家介绍

中国最著名的五大数学家 第一位:华罗庚 自学成材的天才数学家,中国近代 数学的开创人!在众多数学家里华罗 庚无疑是天分最为突出的一位! 华罗 庚通过自学而成为世界级的数学家, 他是解析数论、矩阵几何学、典型群、 自守函数论、多复变函数论、偏微分 方程、高维数值积分等广泛数学领域 的中都做出卓越贡献。在这些数学领域他或是创始人或是开拓者! 华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。 “华罗庚金杯少年数学邀请赛”(简称“华杯赛”)就是为了纪念和学习我国杰出的数学家华罗庚教授的。

现代微分几何的开拓者,曾获数学界 终身成就奖----沃尔夫奖!他对整体微分几 何的卓越贡献,影响着半个多世纪的数学 发展。他创办主持的三大数学研究所,造 就了一批承前启后的数学家。 在微分几何领域有诸多贡献,如以他命名 的“陈空间”,“陈示性类”,“陈纤维从”。 一位数学家说“陈省身就是现代微分几何。”这是对他的最好评价!

世界著名微分几何学家,射影微分几何学派的开拓者,40、50年代开始研究一般空间微分几何学,60年代又研究高维空间共轭网理论,70年代以来在中国开创了新的研究方向——计算几何!为中国数学走向现代化做出巨大贡献! 第四位:陈景润 华罗庚的学生!数论学家,歌德巴赫猜想专家!离解决歌德巴赫猜想即“1+1”问题,最近的人,证明了“1+2”陈景润一生只做一件事的人,那就是歌德巴赫猜想,他也一直只专注于这个领域而取得了举世瞩目的成就!迄今为止,歌德巴赫猜想依然是世界级难题!众多数学家认为用现有数学理论系统无法解决这一问题,除非出现新的数学观念,新的数学理论系统!

世界最迷人的数学难题

世界最迷人的数学难题 “几何尺规作图问题” 获奖理由:这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但後来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 “蜂窝猜想” 获奖理由:四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为"蜂窝猜想",但这一猜想一直没有人能证明。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。 “孪生素数猜想” 获奖理由:1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5 ,5和7,11和13,…,和等等都是孪生素数。1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

世界50个经典的数学难题

世界50个经典的数学难题 第01题阿基米德分牛问题 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。 在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数 是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。 问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。 问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题 a头母牛将b块地上的牧草在c天内吃完了; a'头母牛将b'块地上的牧草在c'天内吃完了; a"头母牛将b"块地上的牧草在c"天内吃完了; 求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题 在下面除法例题中,被除数被除数除尽: * * 7 * * * * * * * ÷* * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每 个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of th e Misaddressed letters

100个历史上最有名的数学难题

100个历史上最有名的数学难题 第01题阿基米德分牛问题archimedes' problema bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题the weight problem of bachet de meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题newton's problem of the fields and cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题berwick's problem of the seven sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题柯克曼的女学生问题kirkman's schoolgirl problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题伯努利-欧拉关于装错信封的问题the bernoulli-euler problem of the misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。

【数学逻辑】世界上最有趣的数学题

【数学逻辑】世界上最有趣的数学题 推荐:如果你家有个小学或者初中的孩子,务必让孩子看看这几道数学题。你身上的计算器利用手进行计算时,一种最简单的乘法是9的倍数计算,在这种计算中,有一个小孩子非常了解,但是年长的人不是太了解的小窍门。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的答案是63。多少只袜子才能配成一对?关于多少只袜子能配成对的问题,答案并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,

例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。燃绳计时一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。火车相向而行问题两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远? 我们知道两车相距100英里,每辆车的时速都是50英里。

世界近代三大数学难题:哥德巴赫猜想

世界近代三大数学难题:哥德巴赫猜想 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。 猜想提出 1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。” 1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。 研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。 殆素数

Removed_希尔伯特23个问题与21世纪七大数学难题

希尔伯特23个问题与21世纪七大数学难题 2009-12-31 12:41:40 希尔伯特23个问题及解决情况 1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。 希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。” 他阐述了重大问题所具有的特点,好的问题应具有以下三个特征: 清晰性和易懂性; 虽困难但又给人以希望; 意义深远。 同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。 编号问题推动发展的领域解决的情况 1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。 2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。数学的相容性问题至今未解决。 3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生 M.Dehn给出了肯定的解答。 4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。 5 不要定义群的函数的可微性假设的李群概念拓扑群论经过漫长的努力,这个问题于1952年由Gleason, Montqomery , Zipping等人最后解决,答案是肯定的。 6 物理公理的数学处理数学物理在量子力学、热力学等领域,公理化方法已获得很大成功,但一般地说,公理化的物理意味着什么,仍是需要探讨的问题。概率论的公理化已由 A.H.Konmoropob等人建立。 7 某些数的无理性与超越性超越数论1934年A.O.temohm 和Schneieder各自独立地解决了这问题的后半部分。 8 素数问题数论一般情况下的Riemann猜想至今仍是猜想。包括在第八问题中的Goldbach 问题至今也未解决。中国数学家在这方面做了一系列出色的工作。 9 任意数域中最一般的互反律之证明类域论已由高木贞治(1921)和E.Artin(1927)解决. 10 Diophantius方程可解性的判别不定分析1970年由苏、美数学家证明Hilbert所期望的一

数学之最:世界上最难的23道数学题

数学之最:世界上最难的23道数学题 1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛–弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛–伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛–弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。198 8年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题。问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题。此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、庞德里亚金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1 952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0,1,和任意代数无理数β证明了αβ的超越性。 8.素数问题。包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律。该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10.丢番图方程的可解性。能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。

世界七大数学难题

世界七大数学难题 难题的提出 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. 世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣 布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。) 整个计算机科学的大厦就建立在图灵机可计算理论和计算复杂性理论的基础上, 一旦证明P=NP,将是计算机科学的一场决定性的突破,在软件工程实践中,将革命性的提高效率.从工业,农业,军事,医疗到生活,软件在它的各个应用域,都将是一个飞跃. P=NP吗?这个问题是著名计算机科学家(1982年图灵奖得主)斯蒂文·考克(StephenCook)于1971年

世界七大数学难题

世界七大数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个"千年大奖问题",克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个"千年大奖问题"的解决都可获得百万美元的奖励。克雷数学研究所"千年大奖问题"的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,97年费尔兹奖获得者伽沃斯以"数学的重要性"为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个"千年大奖问题"。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对"千年大奖问题"的解决与获奖作了严格规定。每一个"千年大奖问题"获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. NP完全问题 NP完全问题是不确定性图灵机在P时间内能解决的问题,是世界七大数学难题之一。NP完全问题是NP

霍奇猜想 一。 庞加莱猜想

Riemann猜想 黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。 与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要的数学难题。目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。

世界7大数学难题

世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想 千年大奖问题 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。) “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 P问题对NP问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。 霍奇(Hodge)猜想

世界经典数学名题

鸡兔同笼 《孙子算经》卷下第31题叫“鸡兔同笼”问题,也是一道世界数学名题。“有一群野鸡和兔子关在同一个笼子里,头数是35,脚数是94。问野鸡和兔子的数目各是多少?”这个题目编得很有趣,如果35只动物全是鸡,就应该有70只脚;如果全是兔,就应该有140只脚,而题中却说共有94只脚,给人一种左右为难的印象。其实,解题关键也正在这里,假设35只动物全是鸡,则共有70只脚,与题中“脚数是94”相比较,还差24只脚,将1只兔看作是鸡,脚数就会相差2,有多少只兔被看作是鸡了呢?24 2=12。算到这里,答案也就呼之欲出了。 清朝时,作家李汝珍把这类问题写进了小说《镜花缘》中。书中有这样一个情节,一座楼阁到处挂满了五彩缤纷的大小灯球,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个。一位才女把大灯看作是头,小灯看作是脚;把一种灯球看作是鸡,把另一种看作是兔,运用“脚数的一半减头数得兔数,头数减兔数得鸡数”的算法,很快就算出了一大二小的灯是120盏,一大四小的灯是240盏,赢得了一片喝彩声。伴随古代中外文化交流,鸡兔同笼问题很快就漂洋过海流传到了日本。不过到了日本之后,鸡变成了仙鹤,兔变成了乌龟,鸡兔同笼变成了赫赫有名的“鹤龟算”。 狗跑与兔跳 行程问题是中小学里常见的一类数学应用题,也是一类很古老的数学问题。在我国古代数学名著《九章算术》里,收集了很多这方面的题目如书中第6章第14题:“狗追兔子。兔子先跑100步,狗只追了250步便停了下来,这时它离兔子只有30步的距离了。问如果狗不停下来,还要跑多少步才能追上兔子?”这道追及问题编得很有趣,它没有直接告诉狗与兔的“速度差”,反而节外生枝地让狗在追及过程中停了下来,数量关系显得扑朔迷离。2000年前,我们的祖先解决这类问题已经很有经验了,所以书中只是简单地说,用(250 30)作除数,用(100-30)作被除数,即可算出题目的答案。 世界各国人民都很喜爱解答这类问题,一本公元8世纪时在欧洲很流行的习题集中,也记载了一个狗与兔的追及问题:“狗追兔子,兔子在狗前面100英尺。兔子跑7英尺的时间狗可以跑9英尺,问狗跑完多少英尺才能追上兔子?”相传

世界七大数学难题

世界七大数学难题 世界七大数学难题 P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(Steph enCook)于1971年陈述的。 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形

色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~186 6)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

相关主题
文本预览
相关文档 最新文档