当前位置:文档之家› 超临界二氧化碳萃取孜然油工艺技术研究

超临界二氧化碳萃取孜然油工艺技术研究

超临界二氧化碳萃取孜然油工艺技术研究
超临界二氧化碳萃取孜然油工艺技术研究

超临界二氧化碳萃取孜然油工艺技术研究

甘芝霖,于明,胡雪芳,李淑燕,梁峥,倪元颖*

【摘要】摘要:利用超临界CO2萃取技术提取孜然油。研究了原料粒度、萃取压力、萃取温度、二氧化碳流量等因素在不同萃取时间下对孜然油萃取率的影响,以此为基础进行正交实验设计,确定超临界二氧化碳萃取最佳工艺参数。结果表明:超临界CO2萃取孜然油的适宜工艺参数为萃取时间2.0h、萃取压力为35MPa、萃取温度40℃、原料粉碎度40目、CO2流量25kg/h,分离压力6MPa,分离温度50℃。在此条件下,孜然油提取率达到13.56%。

【期刊名称】食品工业科技

【年(卷),期】2010(031)008

【总页数】4

【关键词】关键词:超临界CO2萃取,孜然油,萃取率

Abstract:The supercritical CO2fluid extraction technology was used to extract cumin oil.The effect of granularity of cumin powder,extract pressure,extract temperature,the flow rate of CO2on the extract rate of cumin oil under different extract time were researched.Then through the orthogonal design,the optimal extract conditions were obtained.The optimal levels for each variable to obtain the highest extraction yield of cumin oil were as follows:The optimal extraction condition showed that the extraction pressure was at 35MPa,grind degree of material was at 40 hole,flow of liquid CO2was at 25kg/h,extraction temperature was at 40℃,separate pressure was at 6MPa,

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超临界二氧化碳萃取孜然油工艺技术研究

超临界二氧化碳萃取孜然油工艺技术研究 甘芝霖,于明,胡雪芳,李淑燕,梁峥,倪元颖* 【摘要】摘要:利用超临界CO2萃取技术提取孜然油。研究了原料粒度、萃取压力、萃取温度、二氧化碳流量等因素在不同萃取时间下对孜然油萃取率的影响,以此为基础进行正交实验设计,确定超临界二氧化碳萃取最佳工艺参数。结果表明:超临界CO2萃取孜然油的适宜工艺参数为萃取时间2.0h、萃取压力为35MPa、萃取温度40℃、原料粉碎度40目、CO2流量25kg/h,分离压力6MPa,分离温度50℃。在此条件下,孜然油提取率达到13.56%。 【期刊名称】食品工业科技 【年(卷),期】2010(031)008 【总页数】4 【关键词】关键词:超临界CO2萃取,孜然油,萃取率 Abstract:The supercritical CO2fluid extraction technology was used to extract cumin oil.The effect of granularity of cumin powder,extract pressure,extract temperature,the flow rate of CO2on the extract rate of cumin oil under different extract time were researched.Then through the orthogonal design,the optimal extract conditions were obtained.The optimal levels for each variable to obtain the highest extraction yield of cumin oil were as follows:The optimal extraction condition showed that the extraction pressure was at 35MPa,grind degree of material was at 40 hole,flow of liquid CO2was at 25kg/h,extraction temperature was at 40℃,separate pressure was at 6MPa,

超临界二氧化碳流体萃取紫苏油实验

超临界二氧化碳流体萃取紫苏油实验 一、实验目的
1.使学生了解超临界二氧化碳流体萃取植物油的基本原理。 2.超临界二氧化碳流体萃取装置的操作技术。
二、实验原理
超临界萃取技术是现代化工分离中出现的最新学科, 是目前国际上兴起的一种先进的分 离工艺。 所谓超临界流体是指热力学状态处于临界点 CP(Pc、 Tc)之上的流体, 临界点是气、 液界面刚刚消失的状态点, 超临界流体具有十分独特的物理化学性质, 它的密度接近于液体, 粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,使其分离效果较好,是很好 的溶剂。超临界萃取即高压下、合适温度下在萃取缸中溶剂与被萃取物接触,溶质扩散到溶 剂中,再在分离器中改变操作条件,使溶解物质析出以达到分离目的。 超临界装置由于选择了 C02 介质作为超临界萃取剂,使其具有以下特点: 1、操作范围广,便于调节。 2、选择性好,可通过控制压力和温度,有针对性地萃取所需成份。 3、操作温度低,在接近室温条件下进行萃驭,这对于热敏性成份尤其适宜,萃取过程 中排除了遇氧氧化和见光反应的可能性,萃取物能够保持其自然风味。 4、从萃取到分离一步完成,萃取后的 C02 不残留在萃取物上。 5、CO2 无毒、无味、不然、价廉易得,且可循环使用。 6、萃取速度快。 近几年来,超临界萃取技术的国内外得到迅猛发展,先后在啤酒花、香料、中草药、油 脂、石油化工、食品保健等领域实现工业化。 三、主要仪器与试剂 1、仪器 1)超临界二氧化碳流体萃取装置;2)天平;3)粉碎机。 2、试剂 二氧化碳气体(纯度≥99.9%) 、紫苏籽。 3、材料 一次性塑料口杯、封口膜 四、实验内容 1、原料预处理 取 800 克紫苏籽将其在 105℃下加热 30min,将其粉碎,过 20 目筛。 2、实验前设备准备工作 1)开机前检查设备电路和管路接头以及各连接部位是否牢靠。 2)CO2 钢瓶压力保证在 5—6MPa,CO2 纯度≧99%,净重≥22 ㎏。

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

超临界二氧化碳流体萃取植物油实验

实验三超临界二氧化碳流体萃取植物油实验 一、实验目的 使学生了解超临界二氧化碳流体萃取植物油的基本原理和超临界二氧化碳流体萃取装置的操作技术。 二、实验原理 超临界萃取技术是现代化工分离中出现的最新学科,是目前国际上兴起的一种先进的分离工艺。所谓超临界流体是指热力学状态处于临界点CP(Pc、Tc)之上的流体,临界点是气、液界面刚刚消失的状态点,超临界流体具有十分独特的物理化学性质,它的密度接近于液体,粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,使其分离效果较好,是很好的溶剂。超临界萃取即高压下、合适温度下在萃取缸中溶剂与被萃取物接触,溶质扩散到溶剂中,再在分离器中改变操作条件,使溶解物质析出以达到分离目的。 介质作为超临界萃取剂,使其具有以下特点:超临界装置由于选择了C0 2 1、操作范围广,便于调节。 2、选择性好,可通过控制压力和温度,有针对性地萃取所需成份。 3、操作温度低,在接近室温条件下进行萃驭,这对于热敏性成份尤其适宜,萃取过程中排除了遇氧氧化和见光反应的可能性,萃取物能够保持其自然风味。 不残留在萃取物上。 4、从萃取到分离一步完成,萃取后的C0 2 无毒、无味、不然、价廉易得,且可循环使用。 5、CO 2 6、萃取速度快。 近几年来,超临界萃取技术的国内外得到迅猛发展,先后在啤酒花、香料、中草药、油脂、石油化工、食品保健等领域实现工业化。 三、仪器、设备及试剂、材料 1、仪器 1)超临界二氧化碳流体萃取装置;2)天平;3)水浴锅;4)筛子;5)烘箱6)粉碎机;7)索氏提取器 2、试剂 二氧化碳气体(纯度≥99.9%)、山核桃仁、松子、亚麻籽、正己烷、无水乙醇(分析纯)、氯仿(分析纯)、硼酸(分析纯)、氢氧化钠(分析纯)、石油醚(分析纯)、 丁基羟基茴香醚、没食子酸丙酯、生育酚、油酸、亚油酸、亚麻酸、硫酸钾、乙酸乙脂、氢氧化钾、β-环糊精、亚硝酸钠、钼酸铵、氨水、无水乙醚。 3、材料 一次性塑料口杯、封口膜 四、实验步骤 1、原料预处理 取700克核桃仁(松籽、葵花籽)用多功能粉碎机破碎成4-10瓣,利用木辊将预备好

超临界二氧化碳萃取的过程及设备教学教材

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分

最新超临界二氧化碳萃取资料

超临界二氧化碳萃取技术 超临界二氧化碳萃取技术产生于二十世纪五十年代,目前已经广泛应用于食品、能源、医药、化妆品及香料工业。随着中药、天然药物新药研究的发展和中药现代化的不断深入,超临界二氧化碳萃取技术在中药、天然药物活性成分和有效部位的分离和纯化中的应用研究越来越多。由于此项技术在我国起步较晚,在中药新药中应用该项技术的品种较少。为了促进与新药研制单位的沟通和交流,共同探讨超临界二氧化碳萃取技术在中药新药中应用的相关问题,我们对超临界二氧化碳萃取技术在中药新药研究中的应用谈一些个人的看法,抛砖引玉,仅供参考。 一、超临界二氧化碳萃取技术在中药中的应用概况 超临界二氧化碳萃取是以超临界状态(温度31.3℃,压力7.15MPa)下的二氧化碳为溶剂,利用其高渗透性和高溶解能力来提取分离混合物的过程。超临界状态下的二氧化碳,其密度大幅度增大,导致对溶质溶解度的增加,在分离操作中,可通过降低压力或升高温度使溶剂的密度下降,引起其溶解物质能力的下降,可使萃取物与溶剂分离。与一般液体萃取相比,超临界二氧化碳萃取的速率和范围更为扩大,萃取过程是通过温度和压力的调节来控制与溶质的亲和性而实现分离的。 超临界二氧化碳萃取技术具有环境良好、操作安全、不存在有害物残留、产品品质高且能保持固有气味等特点。从20世纪50年代起已开始进入实验阶段,70年代以来超临界二氧化碳萃取技术在食品工业中的应用日趋广泛,80年代超临界二氧化碳萃取技术更广泛地用于香料的提取。进人90年代后,超临界二氧化碳萃取技术开始运用于从药用植物中提取药用有效成分等。我国对超临界流体技术的研究始于20世纪70年代末80年代初,与国外相比虽起步稍晚,但发展很快,在超临界流体萃取、精馏、沉析、色谱和反应等方面都有研究,涉及了化工、轻工、石油、环保、医药及食品等行业,不仅有基础研究,而且有工艺、工程开发。 早在20世纪70年代后期,德国人就采用超临界二氧化碳萃取技术从黄春菊中萃取出有效活性成分,产率高于传统溶剂法。日本学者用超临界二氧化碳对蛇床子、紫草、甘草等进行提取。发现蛇床子中呋喃骈香豆精(furocoumarins)超临界提取的最佳条件是温度为40℃,压力为40MPa,流速为6L/min,夹带剂为乙醇、水或甲醇。不用夹带剂的超临界二氧化碳可将紫草中的紫红色素提出来,并能从东北甘草或西北甘草中提出甘草素(1iquiritigenin),但提不出带有三个酚羟基的异甘草素(isoliquiritigenin),不用夹带剂能将甘草查耳酮 A(1icochalconeA)提出,而使用乙醇夹带剂则可将甘草查耳酮B(1icochalcone)提出。 我国研究人员用超临界二氧化碳从丹参中提取丹参酮,其提取率也比传统的溶剂

二氧化碳超临界萃取技术

二氧化碳超临界萃取技术 摘要 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成“温室效应”,因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要用于生产干冰(灭火用)或作为食品添加剂等。现国内外正在致力于发展一种新型二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效。它适用于化工、医药、食品等工业。 正文 二氧化碳在温度高于临界温度(Tc)31℃、压力高于临界压力(Pc)3MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力,用它可溶解多种物质,然后提取其中的有效成分,具有广泛应用。 传统提取有效成份的方法如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,但工艺复杂、纯度不高,而且易残留有害物质。而二氧化碳超临界萃取廉价、无毒、安全、高效,可以生产极高附加值的产品。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。除了用在化工、化工等工业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。以下举例 简单介绍一下该技术的应用。 (一)用于提取辣椒中的红色素 用超临界方法萃取的红色素没有一丝辣味,副产品主要是辣味素,只要加入90%的熟植物油即可制成辣椒油。一年能收回投资。1991年以来,在日本每年需要辣椒红色素30吨,每公斤价3万日元,年销售额9亿日元。我国化学方法生产的辣椒红色素每年60吨,但色价太低又有辣味,出口困难。我国色素应用也呈直线上升趋势,因此生产色素有极光明的前景。 除辣椒色素外,设备还可以生产姜黄、玉米黄、红花色素等。 (二)用于提取茶叶中的茶多酚 安徽、云南、四川、湖北等省盛产茶叶,可以将质次的碎茶叶未或次茶生产茶多酚及咖啡因。茶多酚是极优良的抗氧剂,广泛用于食品和化妆品等方面,已发现茶多酚有抗龋杀菌作用,在医学方面茶多酚可以有降胆固醇、降血压、降血脂、延缓衰老作用,因此是一种优良的天然食品添加剂。用化学方法提取的茶多酚比不上用CO2超临界萃取法生产的茶多酚纯净,因此在大量种植茶叶的地区上此项目,一定有较大的经济效益。此外咖啡因也是常用的药品,这将使过去认为无用的次品,转变成高附加值的产品。100吨茶叶末可以提取5吨茶多酚, 产值近千万元。 (三)用于提取银杏黄酮、内酯 用超临界萃取设备杏从银可粗提物中精提银杏黄酮、内酯。银杏叶粗提物成本年需1860万元,超临界萃取设备工艺投资300万元,产值就可达到2900万元。一年内可收回投资并有 600万元收益,第二年可获毛利900万元。 (三)用于提取桂花精和米糖油 如用超临界萃取技术提取桂花精油,每千克油在国际市场上售价可达3000美元。一瓶25mL 装的香水只需桂花精油5~6滴,可卖几十法朗,经济效益十分可观。 由超临界流体浸制的米糠油是一种相当纯的天然高品质油。米糠油中所含的甾醇(高达0.75%)可化学合成甾醇激素,其产品包括:雄性荷尔蒙、雌性荷尔蒙、避孕药、利尿剂、抗癌剂。这些产品在医药工业中占有重要的地位和极高的经济价值。甾族药物的生产,在世

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

超临界二氧化碳萃取技术在几个方面的应用

湖北民族学院 本科生文献综述 题目超临界二氧化碳萃取技术的 应用 作者所在系别化学与环境工程学院 作者所在专业化工与制药 作者所在班级0408405 作者姓名简丹 作者学号0404840547 指导教师姓名李国祥 指导教师职称博士 完成时间2011 年 5 月

超临界二氧化碳萃取技术的应用 简丹 (湖北民族学院化学与环境工程学院,恩施 445000) 摘要:本文系统的介绍了超临界二氧化碳萃取技术在环境领域,放射性金属离子萃取领域,油脂工业中的应用与发展现状,对超临界二氧化碳萃取技术在这三个方面应用所遇到的问题做了总结,并对未来的发展做了展望。 关键词:超临界二氧化碳;萃取;放射金属离子;油脂工业 Application of supercritical CO2 extraction in some fields Jian dan (Hubei University for Nationalities School of Chemistry and Environmental Engneering,Enshi 445000,China) Abstract:This artical systematically introduces application of supercritical CO2 extraction in the fields of environment,extraction of radioactive metals,oil industry.This artical also introduces the present development situation and tendency in these fields. Key words:CO2-SFE;environment; extraction ofradioactive metals;oil industry 1、前言 超临界流体二氧化碳萃取(supercritical CO2 extraction ,CO2-SFE或CO2-SCFE)技术是超临界流体萃取(superccritical fluid extraction,SCEF或SEF)技术的一种,由于CO2具有无毒、无味、无臭、化学惰性,超临界点低(Tc=31·1℃,Pc=7·28 MPa),不污染环境和产品,廉价易得,不易染易爆,使用安全等诸多优点,所以CO2已经成为工业上和首选的绿色萃取剂,成为超临界萃取技术最重要的应用技术[1]。CO2-SFE的研究在国内研究起步晚,现在有关CO2-SFE的应用主要集中在环境,放射金属离子萃取,油脂工业,

超临界二氧化碳萃取设备操作步骤

SFE-CO2萃取技术操作步骤 一、开机操作 1.开启墙上的总电源(最下面一排右数第二个),面板总电源。开启萃取1、分离1、分离2按钮,设定萃取温度(范围35~60℃,正常约45℃)和分离1温度(范围35~65℃,正常约50~60℃),分离2的温度不动(正常约35℃)。2.看三个水箱的水位离口1至2公分,看水泵是否运转(水面有波动的话一般为转动或查看泵的叶片)。 3.开启面板制冷电源,启动制冷箱(顺时针扭90°,与地垂直)。 4.等萃取分离温度达到设定温度和冷机停时(此时准备向料桶加料),打开阀门1,2(逆时针旋3圈,每圈360°),打开球阀(在主机背面,逆时针扭至水平),关阀门4,5,慢慢打开阀门3,排气(听排气声),使萃取压力为0,打开堵头。 二、装料操作 1.加料:自下而上依次为物料(得率不少于5%,量至少达料筒高度一半,最高离料口2公分)→脱脂棉(圆形,直径比滤网长1公分)→白圈→滤纸→滤网→盖子(注意反正,细口朝下,用专用工具盖紧,能用吊篮提住)。 2.装料筒:自下而上依次为料筒→黑色细O型环→通气环→堵头(内部套黑色粗O型环,用水润湿)。 三、萃取操作 1.关阀门3,慢慢打开阀门4(稍微逆时针扭一下,幅度很小),使萃取1压力与贮罐压力相等。 2.慢慢打开阀门3排气5~10秒,关上。 3.全开阀门4和5(逆时针旋3圈,每圈360°),关阀门6(先顺时针旋2圈),泵电源,即绿灯(泵1调频,频率范围12~18,一般16~18,此时设定开CO 2 为18),按RUN,看萃取1压力,等萃取1压力达到设定压力(最高不超过35MPa,正常20~30MPa,此时设为约25MPa),调阀门6使之平衡,关阀门8,升分离1压力(最高不要超过11MPa,正常8~10MPa,此时设定为10MPa),等分离1压力达到设定压力,调阀门8使之平衡。(注:分离2的压力永远不能关,与贮罐压力相等)看时间开始循环(一般每半小时一个循环)。

实验1-超临界二氧化碳流体萃取植物油实验

实验四超临界二氧化碳流体萃取植物油实验 一、实验目的 了解超临界二氧化碳流体萃取植物油的基本原理和超临界二氧化碳流体萃取装置的操作技术。 二、实验原理 超临界萃取技术是现代化工分离中出现的最新学科,是目前国际上兴起的一种先进的分离工艺。所谓超临界流体是指热力学状态处于临界点CP(Pc、Tc)之上的流体,临界点是气、液界面刚刚消失的状态点,超临界流体具有十分独特的物理化学性质,它的密度接近于液体,粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,使其分离效果较好,是很好的溶剂。超临界萃取即高压下、合适温度下在萃取缸中溶剂与被萃取物接触,溶质扩散到溶剂中,再在分离器中改变操作条件,使溶解物质析出以达到分离目的。 超临界装置由于选择了C02介质作为超临界萃取剂,使其具有以下特点: 1、操作范围广,便于调节。 2、选择性好,可通过控制压力和温度,有针对性地萃取所需成份。 3、操作温度低,在接近室温条件下进行萃驭,这对于热敏性成份尤其适宜,萃取过程中排除了遇氧氧化和见光反应的可能性,萃取物能够保持其自然风味。 4、从萃取到分离一步完成,萃取后的C02不残留在萃取物上。 5、CO2无毒、无味、不然、价廉易得,且可循环使用。 6、萃取速度快。 近几年来,超临界萃取技术的国内外得到迅猛发展,先后在啤酒花、香料、中草药、油脂、石油化工、食品保健等领域实现工业化。 三、仪器、设备及试剂、材料 1、仪器 1)超临界二氧化碳流体萃取装置;2)天平;3)水浴锅;4)筛子;5)烘箱6)粉碎机;7)索氏提取器 2、试剂 二氧化碳气体(纯度≥99.9%)、山核桃仁、松子、亚麻籽、正己烷、无水乙醇(分析纯)、氯仿(分析纯)、硼酸(分析纯)、氢氧化钠(分析纯)、石油醚(分析纯)、 丁基羟基茴香醚、没食子酸丙酯、生育酚、油酸、亚油酸、亚麻酸、硫酸钾、乙酸乙脂、氢氧化钾、β-环糊精、亚硝酸钠、钼酸铵、氨水、无水乙醚。 3、材料 一次性塑料口杯、封口膜 四、实验步骤 1、原料预处理 取700克核桃仁(南瓜籽)用多功能粉碎机破碎,过20目筛。

二氧化碳超临界萃取技术

二氧化碳超临界萃取技 术 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

超临界CO2萃取装置 ??? 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 ?超临界CO2萃取装置的主要技术指标 ??? 萃取釜:、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 ??? 分离釜:30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 ??? 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 ??? CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 ??? 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 ??? 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 ??? 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃??? 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±??? 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量??? 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。??? 其他:电源三相四线制380V/50Hz,CO2食品级≥,用户自备 ?超临界CO2萃取装置的基本流程 ??? 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; ??? 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; ??? 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; ??? 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 ?超临界CO2萃取装置的特点

超临界二氧化碳萃取

超臨界二氧化碳萃取實驗 ㄧ、目的: 了解超臨界二氧化碳萃取原理,並經由實驗探討溫度及壓力對超臨界二氧化碳萃取功效之影響。 二、原理: 單一物質通常具有大家所熟悉的氣、固、液三相,當未達臨界點(critical point)前常可藉由溫度與壓力的增減使物質產生液相與氣相之間的轉變,且相與相之間會有明顯的界面存在。但是一旦壓力到達或超過其臨界壓力(critical pressure, P c)且溫度到達或超過其臨界溫度(critical temperature, T c)時,此液氣兩相的界面不復存在,整個系統呈現一均勻狀態即此物質之超臨界流體(Super Critical Fluid, SCF)狀態(圖一)。 圖一:一般純物質之平衡相圖

在超臨界狀態下,物質的一些基本性質與特性會有所改變。一般而言,超臨界流體的物理性質是介於氣、液相之間的,例如其黏度接近氣體而密度則接近液體。因密度高,可輸送較氣體更多的超臨界流體,因黏度低,輸送時所需的功率則較液體為低。又其擴散係數(diffusion coefficient)高於液體10至100倍以上,亦即質量傳遞阻力(mass transfer resistance)遠較液體為小,此外超臨界流體有如氣體幾乎無表面張力,因此很容易滲入多孔性組織中,在質量傳遞上遠較液體為快。除物理性質外,在化學性質上亦與氣、液態時有所不同。例如二氧化碳在氣體狀態下不具萃取能力,但當進入超臨界狀態後,二氧化碳變成親有機性因而具有溶解有機物的能力,且因其密度接近液體因而具有很好的媒合能力(solvating power),使得超臨界流體容易進入萃取物中將溶質帶出而成為一個相當優良的溶劑,具有絕佳的萃取效果。 當一溶質分子處於超臨界流體中,若此分子與溶劑間之引力大於溶劑與溶劑間之引力時,該分子會被周圍的溶劑分子所包圍,稱之為群聚效應(clustering effect);群聚現象目前已被認為是超臨界流體增加溶解能力的主要原因之一。超臨界流體的溶解能力與其密度有直接的關係,而其密度則隨著溫度或壓力的改變 一般流體之壓力-密度平衡相圖;其中壓力是以還原壓力P r(P r=P/P c, reduced pressure),溫度是以還原溫度T r(T r=T/T c, reduced temperature),密度則是以還原密度ρr(ρr=ρ/ρc, reduced density)來表示,其中P c、T c及ρc分別代表此物質在其臨界點之臨界壓力、臨界溫度以及臨界密度。一般超臨界流體萃取的操作溫度約在1~1.4 T r之間,壓力則在1~6 P r之範圍內;亦即圖中的SCF的陰影部份。由圖中可知在此範圍只要溫度或壓力稍為加以改變,還原密度ρr就會有很明顯的變化亦即超臨界流體的溶解能力也會有很明顯的變化。因此此陰影部份也是超臨界流體最常使用的操作區域。表一則為CO2的密度與溫度、壓力的關係數據表。 超臨界流體經常應用在萃取、層析、反應、清洗、染色、分離與造粒等各方面。較常見的超臨界流體有二氧化碳、二氧化硫、乙烯、已烷、丙烷、丁烷、庚烷、六氟化硫及氨等,他們的臨界壓力、臨界溫度以及臨界密度各不相同。而其中又以二氧化碳(CO2)為目前最常使用的超臨界流體,因為CO2具有以下的特點: 1.臨界溫度(304.4 K)與臨界壓力(7 2.9 bar)皆不算高,可以在節省操作成本 及能源的條件下輕易就可達其超臨界狀態。 2.臨界溫度低使得操作溫度可以維持在相對低溫的範圍,可減少對熱敏感 物質的破壞。 3.超臨界二氧化碳對許多較低極性之有機物質具有良好的溶解能力,且其 溶解能力可以很方便的經由壓力和溫度的改變,或者添加少量的修飾劑

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分离过程作出比较,必须在此前作出预设计或过程仿真、优化,其流程如图3-16所描述。按照科学开发的原则,不管采用何种分离过程,理应先进行仿真,再作实验验证,有利于省时省力。随着计算机的快速发展,图3-16的开发流程,更为开发研究者乐于采用。Lira[2]指出,图3-16中的步骤4和6是决定最终SCFE是否成功的关键。但是没有步骤3和5,更多的优化工作要在实验验证(步骤7)后进行,这就延缓开发进程和花费更多的人力、物力。

超临界二氧化碳在萃取植物油脂中的应用

超临界CO2在萃取植物油脂中的应用 摘要:对超临界CO2萃取技术的原理、应用范围、特点、分类和国内外研究现状进行了介绍,综述了超临界CO2萃取在植物油脂提取中的应用情况,讨论了萃取压力、萃取温度、萃取时间、CO2流量、原料物性(粒度、含水量)、夹带剂等因素对植物油脂萃取率的影响,可为确定植物油脂超临界萃取的最佳考察因素及其水平提供参考;同时也分析了超临界CO2萃取技术的局限性及存在的问题,并对其在植物油脂萃取方面的应用前景进行了展望。 关键词:超临界CO2萃取技术;植物油脂;应用进展 Abstract:The principle, application, characteristics, classification and research status of supercritical CO2 extraction are introduced,The application of supercritical CO2extraction in vegetable oil extraction was reviewed,The effects of extraction pressure, extraction temperature, extraction time, CO2 flow, material properties (particle size, water content), entrainer and other factors on the extraction rate of vegetable oil were discussed,It can be used as a reference to determine the optimum factor and level of supercritical extraction of vegetable oil,The limitations and problems of supercritical CO2extraction were also analyzed, and the prospect of its application in vegetable oil extraction was prospected. Key words:supercritical CO2extraction technology;vegetable oils and fats;application progress 植物油脂是人体必需脂肪酸的主要来源,同时也是食品、香料、化工等的重要原料。随着新的植物油脂资源的不断开发及其生理功能和作用逐渐被揭示,人们越来越重视油脂的萃取工艺方法的选择[1]。目前植物油脂制取方法主要有机械压榨法、溶剂浸出法、超临界流体萃取法及水代法等。超临界CO2(SC-CO2)萃取技术是目前国内外竞相研究开发的新一代高效分离及分析技术,因其具有良好的溶剂性质,被广泛地应用于植物油脂的提取[2]。 1SC-CO2萃取技术 在超临界流体中, CO2因其临界压力(7.38MPa)和临界温度(31. 3℃)都较低,较容易达到超临界态而成为一种最常用的有机物萃取剂。利用SC-CO2作为溶剂萃取植物油脂,与传统的油脂萃取技术相比,具有以下优势和特点[3-6]:①CO2是一种不燃烧、无毒、资源丰富、易得、价格低廉、环境友好的溶剂,具有生产安全性,而且SC-CO2具较高的扩散性、溶解能力强。②选择性好。CO2的溶解能力可以通过调节温度和压力控制,从而有选择性地萃取目的产品,减小杂质并使目的产品的有效成分高度富集,改善产品质量和外观,且工艺简单,省时省力,三废污染少。③CO2在常温常压下为气体,所得产品无有机溶剂残留。④低温操作,保护活性物质的生理活性,能取得有效成分稳定、质量较高的产品。在植物油脂的提取

超临界CO2溶剂

超临界CO2溶剂 二氧化碳的分子结构 一. 正文 一,超临界流体(Super Critical fluid) 1. 概述随着环境的温度和压力变化,任何一种物质都存在三种相态-气相,液相,固相,三相成平衡态共存的点叫三相点.液,气两相成平衡状态的点叫临界点.在临界点时的温度和压力称为临界温度和临界压力,如图 1 所示,不同的物质其临界点的压力和温度各不相同.超临界流体(Super Critical fluid ,简称SCF) 是指温度和压力均高于其临界点的流体,常用来制备成的超临界流体有二氧化碳,氨,乙烯,丙烷,丙烯,水等物体处于超临界状态时,由于气液两相性质非常相近,以致无法清楚分别,所以称之为「超临界流体」 2. 超临界流体的发展史超临界流体具有溶解其他物质的特殊能力,1822 年法国医生Cagniard 首次发表物质的临界现象,并在1879 即被Hannay 和Hogarth 二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但由于技术,装备等原因,时 至 图 1. 物体之三相图以及临界点图自工研院环安中心 PDF created with pdfFactory Pro trial version 绿色溶剂-超临界二氧化碳 3 20 世纪30 年代,Pilat 和Gadlewicz 两位科学家才有了用液化气体提取「大分子化合物」的 构想.1950 年代,美,苏等国即进行以超临界丙烷去除重油中的柏油精及金属,如镍,钒等,降低后段炼解过程中触媒中毒的失活程度,但因涉及成本考量,并未全面实用化.1954 年Zosol 用实验的方法证实了二氧化碳超临界萃取可以萃取油料中的油脂. 此后,利用超临界流体进行分离的方法沉寂了一段时间,70 年代的后期, 德国的Stahl 等人首先在高压实验装置的研究取得了突破性进展之后,「超临界二氧化碳萃取」这一新的提取,分离技术的研究及应用,才有实质性进展;1973 及1978 年第一次和第二次能源危机后,超临界二氧化碳的特殊溶解能力,才又重新受到工业界的重视.1978 年后,欧洲陆续建立以超临界二氧化碳作为萃取剂的萃取提纯技术, 以处理食品工厂中数以千万吨计的产品,例如以超临界二氧化碳去除咖啡豆中的咖啡因,以及自苦味花中萃取出可放在啤酒内的啤酒香气成分.超临界流体萃取技术近30 多年来引起人们的极大兴趣,这项化工新技术在化学反应和分离提纯领域开展了广泛深入的研究,取

超临界二氧化碳萃取技术在中药提取中的应用

超临界二氧化碳萃取技术在中药提取中的应用 引言:近年一些中药提取新技木以及一些新技术在中药制剂提取的应用大大促进了中药现代化的进程。其中,超临界流体萃取技术就是一个相当先进且极有应用前景的新技术。超临界流体萃取技木利用超临界流体扩散系数高.流动及传递性能好、溶解能力强的特点,已广泛应用于中药挥发油、生物碱、黄酮类等多种有效成分的提取分离。摘要:简要介绍了超临界流体萃取的基本原理及其在中药有效成分提取方面的优点,并从中药有效成分提取和中草药除杂两方面介绍了超临界流体萃取技术在中药开发中的应用。指出超临界流体萃取技术是一种新型高效分离技术,也是中药现代化的关键技术之一。在此基础上,提出了今后超临界流体萃取技术的主要研究方向。 关键词:超临界流体萃取; 中药; 应用; 研究方向 Abstract:Supercritical fluid extracti on ( SFE) is a new and high efficiency separati on technol ogy,which is one of the key technologies in Chinesemedicinemodernizati on . The princi and advantages of SFE in the extracti on of the effective components fromChinese herbalmedicine were si mp ly intr oduced, and the app licati on in the extracting of the effective components and removing theimpurity from herbalmedicine were als o introduced . Based on that, the main advanced research trends of SFE were pointed out . Key words: Supercritical fluid extracti on; Chinese herbalmedicine;

相关主题
文本预览
相关文档 最新文档