当前位置:文档之家› 温度采集报警系统的设计。

温度采集报警系统的设计。

温度采集报警系统的设计。
温度采集报警系统的设计。

温度采集报警系统的设计院系电子信息工程学院专业电子信息工程班级 1

姓名孙黄超

摘要

温度采集广泛应用于人民的生产和生活中,使用温度计来采集温度,这样不仅采集精度低、实时性差,而且操作人员的劳动强度大。为了解决这一问题,本文介绍了一种采用集成温度传感器DS18B20作为检测元件,AT89C51作为CPU的温度监控系统。利用数字温度传感器DS18B20与AT89C51单片机结合来测量温度,利用相应的显示器显示温度值。利用仿真工具Proteus进行单片机应用系统的虚拟设计与仿真调试。在Keil μVision3开发环境下进行C51语言程序开发。本课题主要有键盘输入模块、传感器采集模块、显示模块、报警模块、CPU处理模块、电源供电及复位模块组成。本文介绍了该温度采集报警系统的硬件和软件设计。

关键字:数据采集、传感器、AT89S51单片机、仿真调试

目录

摘要 ............................................................................................................... I 目录 ............................................................................................................. II 1 引言 .. (1)

1.1 研究背景及意义 (1)

1.2 国内外研究现状 (1)

2 温度采集报警系统原理说明 (1)

3 硬件设计 (3)

3.1 总体方案设计 (3)

3.2 主要模块设计 (3)

3.2.1 晶振电路 (3)

3.2.2 复位电路 (4)

3.2.3 按键操作电路 (4)

3.2.4 显示电路 (5)

3.2.5 报警电路 (5)

3.2.6 温度传感器选择........................................... (5)

3.2.7 实现温度采集报警系统的整体流程图 (6)

4 软件设计 (7)

4.1 温度采集传感系统的任务 (7)

4.2 Proteus的界面实现 (7)

4.3 在KeilμVision4平台下进行编程 (8)

5 系统调试与实验 (9)

6 总结 (11)

7 参考文献 (12)

8 附录 (13)

1 引言

1.1 研究背景及意义

随着社会和经济的发展,城市的消防工作越来越重要,火灾自动报警系统在消防工作中的作用就越突出,我国的火灾报警系统历经了从无到有,从简单到复杂的发展过程,其中智能化程度越来越高,但是由于人为的因素导致发生火灾的消息不能及时向有关方面报告,没有及时的处理火灾事故,这导致了更多的经济财产损失。而火灾自动报警系统的实现及全方面的应用就是为了减少损失的发生率。温度采集报警系统的设计及研究应用,对于以后消防工作的进行有十分重大的意义。因此,采用单片机实现温度控制系统的研究越来越普遍,而单片机温度控制系统中的传感器的应用,简化了信息采集的设计,从而减小了设计的复杂性,增加系统的可靠性,也同时减小了在实际开发中PCB板的面积,节约了成本。报警和显示模块主要是驱动蜂鸣器实现报警功能和便于实时观察。该系统充分体现了智能化、低功耗、高精度的发展趋势。重点在于传感器的设计及智能化、低功耗的硬件电路设计上。

1.2 国内外研究现状

由于火灾系统需要不断完善,因此,目前各个国家对于温度采集报警系统十分的重视。重视的角度虽热不同,但最终的目的就是提高温度采集报警系统的灵敏度,使之应用于各大消防隐患场所。

在现代社会不断发展的时代进程中,起初的消防设施不能广泛应用于各个大型场所。因此才不断追求灵敏度高、规模小型化、高可靠性、技术智能化的系统。

网络化、智能化、多样化、小型化、社区化是目前各个国家需要攻克的研究课题。为此,研究力度仍需不断加大。

2 温度采集报警系统原理说明

由于采用温度传感器DS18B20与AT89S51单片机相结合的测温方式,因此要对两者有一个简单的了解,下面就其基本性能做下说明。

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型的具有单总线接口的智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字读数方式。

DS18B20的性能如下。

(1)单总线接口,仅需要一个引脚与单片机进行通信。

(2)多个DS18B20 均可挂在单总线上,实现多点测温功能。

(3)可通过数据线供电,电压范围为3.0V~5.5V。

(4)温度以9或12位的数字读数方式。

(5)用户可定义报警设置。

(6)报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件。

(7)负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

(8)DS18B20采用3引脚PR-35封装或8引脚SOIC封装。

AT89S51单片机的片内硬件组成结构如图1所示。它把那些作为控制应用所必需的基本外围部件都集成在一个集成电路芯片上。它具有如下外围部件及特性:

(1)8位微处理器(CPU);

(2)数据存储器(128B RAM);

(3)程序存储器(4KB Flash ROM);

(4)4个8位可编程并行I/O口(P0口、P1口、P2口、P3口);

(5)1个全双工的异步串行口;

(6)2个可编程的16位定时器/计数器;

图1 AT89S51单片机片内结构

(7)1个看门狗定时器;

(8)中断系统具有5个中断源、5个中断向量;

(9)特殊功能寄存器(SFR)26个;

(10)低功耗模式有空闲模式和掉电模式,且具有掉电模式

下的中断恢复模式;

(11)3个程序加密锁定位;

与AT89C51比,AT89S51更突出的优点:

(1)增加在线可编程功能ISP(In System Program),字节和页编程,现场程序调试和修改更加方便灵活;

(2)数据指针增加到两个,方便了对片外RAM的访问过程;

(3)增加了看门狗定时器,提高了系统的抗干扰能力;

(4)增加断电标志;

(5)增加掉电状态下的中断恢复模式;

片内的各功能部件通过片内单一总线连接而成(见图1),基本结构依旧是CPU 加上外围芯片的传统微机结构。

CPU对各种功能部件的控制是采用特殊功能寄存器(SFR,Special Function Register)的集中控制方式。

单片机通过模拟口采集得到的传感器输出的电压,通过设置的参数电压就可以得到传感器的输入电压,再通过温度与电压转换等式就可以得到温度参数,将得到的温度参数进行分析后进行相应的处理,显示温度数据或者是驱动蜂鸣器报警,AT89S51芯片内集成了A/D转换通道,这样就可以直接将单片机的A/D输入通道与传感器的模拟电压输出通道相连接,系统可以通过键盘来完成对报警温度的上限和下限的设置,再通过显示电路将数据显示出来,当温度超过所设置的最大温度或最小温度时,系统通过驱动蜂鸣器进行报警。因此采用AT89S51芯片与温度传感器DS18B20相结合的方式实现温度报警系统的研究。

3 硬件设计

3.1 总体方案设计

温度采集报警系统主要由电源电路、复位电路、键盘、温度采集电路、显示电路、报警电路、CPU处理(AT89S51)等组成,整个系统的原理框图如图2所示。

图2:系统电路的总体设计框图

3.2 主要模块设计

3.2.1 晶振电路

瓷片电容C1、C2是用来驱动晶振Y1的,因为晶振的大小是16M,所以选用30pF的电容,如下图3所示。

图3 晶振电路

3.2.2 复位电路

复位电路选用了30pF的电解电容和1K的电阻,如下图4所示。

图4 复位电路

3.2.3 按键操作电路

电路图如下图5所示:

图5 按键操作电路

按键SET用来进行温度值的设置;BACK键用于返回上一层次的步骤;INC键用于调整数

字的值,每按一次加一,数值加一;MOVE键用于显示屏上光标的移动。

3.2.4 显示电路

显示采用16*4字符LCD,如下图6所示:

图6 显示电路

3.2.5 报警电路

采用蜂鸣器出声、发光二极管闪烁的方式进行报警。如下图7所示:

图7 报警电路

三极管NPN采用9013是作为蜂鸣器的驱动的作用的,R7、R8作为限流电阻使用。

3.2.6 温度传感器选择

采用数字温度传感器DS18B20。DS18B20为数字式温度传感器,无需其他外加电路,直接输出数字量。可直接与单片机通信,读取测温数据,电路简单。

DS18B20能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的

数字值读数方式。并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面带来了令人满意的效果。

基于现有器件所限,温度采集模块采用DS18B20温度传感器效果更好。

3.2.7 实现温度采集报警系统的整体流程图

图8 温度采集报警系统整体流程图

4 软件设计

在本设计系统中,要求达到的目的是在温度数值低于或超过设定的安全数值的情况下,系统自动报警的目的。要实现现实社会中温度异常检测与报警预警之间的联系转换,就需要温度采集报警系统的全面应用。温度采集报警系统的主要功能是实现微妙的温度伤害差距对于生产生活影响的减弱,通过单片机等设施及时的通告给人类,以便于我们采取有利的措施。总之,该系统对于我们的生产生活有很大的影响。

4.1 温度采集传感系统的任务

温度采集传感系统的任务就是运用温度传感器将超出或低于设定温度的温度状态报告给上一级,通过单片机的CPU处理系统,实现即时的报警预警,以减少国家及人民的财产安全。

4.2 Proteus的界面实现

下图9为其基本界面:

图9 Proteus界面

打开Proteus软件,将图中标号为P的小格选中,将会出现一个如下图10的界面。

在界面中的Keywords中输入要找的元器件,然后点击OK就会出现在图9中的界面中,按照此方法找到我们所需要的所有器件,之后在开始的界面中绘制所需原理图。绘制好之后,将在Keil μVision4中生成的.hex文件导入到绘制好的原理图中。最后,进行调试与检测。

图10 元件快速查找界面

4.3 在Keil μVision4平台下进行编程

如图11为Keil μVision4运行界面。

在编写一个新的应用程序前,一定先要建立项目。下面首先介绍如何建立一个新的项目。

在编辑界面下,首先要建立一个点击“Project”菜单,选择下拉式菜单中的“New Project”,弹出文件对话窗口,选择要保存的路径,在“文件名”中输入一个程序项目名称,保存后的文件扩展名为“.uv2”,这是Keil μVision4项目文件的扩展名,以后可直接点击此文件就可打开先前做的项目。

点击“保存”后,这是会弹出一个对话框,要求选择单片机的型号,用户可根据所使用的单片机来选择。Keil μVision4支持几乎所有的51内核单片机。

然后编写第一个程序。点击“File”菜单,单击“New”。这时,用户可输入代码。输入完毕,单击菜单上的“File”,在下拉菜单中单击“Save As”,在“文件名”栏的编辑框中,键入文件名,同时,必须键入正确的扩展名(.C或.ASM),然后,单击“保存”按钮。

上述工作完成后,还有有关项目的设置,程序的编译,链接,调试。这些内容,可按照Keil μVision4开发环境的帮助功能。

5 系统调试与实验

本设计完成了一个温度采集报警系统,系统的硬件组成主要有:计算机,USB转串口,STC12系列单片机,驱动电路,传感器等。本次系统的调试程序采用的是C语言进行编程的,经多次的实验以及调试,最终结果还是较好的,下图12为本次系统实验研究原理图。

图12 系统原理图

通过改变温度,研究温度采集报警系统的情况如下:图13—16

图13 温度超过设定安全温度,灯闪烁蜂鸣器鸣响

图14 温度恰在设定临界处,灯不闪蜂鸣器不响

图15 温度低于设定安全温度,灯闪烁蜂鸣器鸣响

图16 温度处于设定安全温度之间,灯不闪蜂鸣器不响由以上调试分析,验证该温度采集报警系统符合设计要求。

6 总结

这次的课程设计是我自己第一次设计的一个系统,前期的方案选取与材料的查找,原理图的绘制及调试,程序的编写和Proteus仿真等等,使我对之前的理论知识有了较好的巩固,同时也提高了自己的动手能力与实际学习能力,但是在学习中我也发现自己在理论知识方面存在很多不足,比如说,对单片机的中断控制系统的掌握还不够,和对LCD的菜单界面编程能力不足。所以在今后,我将更加努力地学习,提高自己的专业水平和课程设计的能力,为以后更好的做相关的工作而积累经验。

7 参考文献

[1] 袁昌立. 基于网络架构的智能火灾报警系统设计.微计算机信息,2007,1-1: 215-216.

[2] 楼然苗,李光飞. 51系列单片机设计实例[M].北京航空航天大学版社.

[3] 孙焕铭,赵成会,王金.51单片机C程序应用实例详解[M].北京:北京航空航天大学出版

社,2011.

[4] 胡汉才,单片机原理及其接口技术[M].北京:清华大学出版社,1996.

[5] 赵建领,弓雷.51系列单片机开发宝典2版[M].北京:电子工业出版社,2012.

[6] 李勇.一个多串口多线程数据采集系统软件的设计与实现.微计算机.

8 附录主程序:

#include

#include

#define uchar unsigned char

#define uint unsigned int

#define IO P0

sbit RS=P2^0;

sbit RW=P2^1;

sbit E=P2^2;

void check_busy(void);

void write_cmd(uchar com);

void write_data(uchar dat);

void LCD_init(void);

void write_str(uchar x ,uchar y,uchar *s); void lcd_test(void);

void delay(uint);

//1ms延时程序

void delay(uint j)

{

uchar i;

for(;j>0;j--)

for(i=0;i<100;i++);

}

//查忙程序

void check_busy(void)

{

uchar dt;

do

{

dt=0xff;E=0;RS=0;

RW=1;

E=1;

dt=IO;

}while(dt&0x80);

E=0;

}

//写控制指令

void write_cmd(uchar com)

{

check_busy();

E=0;RS=0;RW=0;IO=com;

E=1;_nop_();E=0;

delay(1);

}

//写数据指令

void write_data(uchar dat)

{

check_busy();

E=0;RS=1;RW=0;

IO=dat;E=1;_nop_();

E=0;delay(1);

}

void LCD_init(void)

{

write_cmd(0x38);//8位总线,双行显示,5X7的点阵字符write_cmd(0x0C);//开整体显示,光标关,无黑块

write_cmd(0x06);//光标右移

write_cmd(0x01);//清屏

delay(1);

}

void set_xy(uchar x,uchar y)

{

if(x==0) x=0x80+y;

if(x==1) x=0xc0+y;

if(x==2) x=0x94+y;

if(x==3) x=0xd4+y;

write_cmd(x);

}

void write_str(uchar x,uchar y,uchar*s)

{

set_xy(x,y);

while(*s)

{

write_data(*s);

s++;

}

}

unsigned char ReadOneChar(void);

void WriteOneChar(uchar dat);

void ReadTemp(void);

#ifndef DS18B20_H

#define DS18B20_H

#define uint unsigned int

#define uchar unsigned char

sbit DQ = P1^7; //温度传送数据IO口

int temp_value; //温度值

unsigned char Temp[6]; // 存放温度的各个位的值int temp_dot ; //温度小数部分

/*******ds18b20延时子函数(晶振12MHz ***/ void delay_18B20(unsigned int i)

{

while(i--);

}

/**********ds18b20初始化函数************/

void Init_DS18B20(void)

{

unsigned char x=0;

DQ = 1; //DQ复位

delay_18B20(8); //稍做延时

DQ = 0; //单片机将DQ拉低

delay_18B20(80); //精确延时大于 480us

DQ = 1; //拉高总线

delay_18B20(14);

x=DQ; //稍做延时后如果x=0则初始化成功 x=1则初始化失败 delay_18B20(20);

}

/***********ds18b20读一个字节**********/

unsigned char ReadOneChar(void)

{

uchar i=0;

uchar dat = 0;

for (i=8;i>0;i--)

{

DQ = 0; // 给脉冲信号

dat>>=1;

DQ = 1; // 给脉冲信号

if(DQ)

dat|=0x80;

delay_18B20(4);

}

return(dat);

}

/*************ds18b20写一个字节********/

void WriteOneChar(uchar dat)

{

unsigned char i=0;

for (i=8; i>0; i--)

{

DQ = 0;

DQ = dat&0x01;

delay_18B20(5);

DQ = 1;

dat>>=1;

}

/**************读取ds18b20当前温度******/

void ReadTemp(void)

{

unsigned char a=0;

unsigned char b=0;

unsigned char t=0;

Init_DS18B20();

WriteOneChar(0xCC); // 跳过读序号列号的操作

WriteOneChar(0x44); // 启动温度转换

delay_18B20(100); // this message is wery important

Init_DS18B20();

WriteOneChar(0xCC); //跳过读序号列号的操作

WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度delay_18B20(100);

a=ReadOneChar(); //读取温度值低位

b=ReadOneChar(); //读取温度值高位

temp_value=b<<4;

temp_value+=(a&0xf0)>>4; //温度整数部分

temp_dot=a&0x0f; //温度小数部分

}

void temp_to_1602() //温度数据转换成液晶字符显示

{

ReadTemp();

Temp[0]=temp_value/10+'0'; //十位

Temp[1]=temp_value%10+'0'; //个位

Temp[2]='.';

Temp[3]=temp_dot*0.625+'0';

Temp[4]=0xdf;

Temp[5]='\0';

}

#endif

温度采集报警系统的设计。

温度采集报警系统的设计院系电子信息工程学院专业电子信息工程班级 1 姓名孙黄超

摘要 温度采集广泛应用于人民的生产和生活中,使用温度计来采集温度,这样不仅采集精度低、实时性差,而且操作人员的劳动强度大。为了解决这一问题,本文介绍了一种采用集成温度传感器DS18B20作为检测元件,AT89C51作为CPU的温度监控系统。利用数字温度传感器DS18B20与AT89C51单片机结合来测量温度,利用相应的显示器显示温度值。利用仿真工具Proteus进行单片机应用系统的虚拟设计与仿真调试。在Keil μVision3开发环境下进行C51语言程序开发。本课题主要有键盘输入模块、传感器采集模块、显示模块、报警模块、CPU处理模块、电源供电及复位模块组成。本文介绍了该温度采集报警系统的硬件和软件设计。 关键字:数据采集、传感器、AT89S51单片机、仿真调试

目录 摘要 ............................................................................................................... I 目录 ............................................................................................................. II 1 引言 .. (1) 1.1 研究背景及意义 (1) 1.2 国内外研究现状 (1) 2 温度采集报警系统原理说明 (1) 3 硬件设计 (3) 3.1 总体方案设计 (3) 3.2 主要模块设计 (3) 3.2.1 晶振电路 (3) 3.2.2 复位电路 (4) 3.2.3 按键操作电路 (4) 3.2.4 显示电路 (5) 3.2.5 报警电路 (5) 3.2.6 温度传感器选择........................................... (5) 3.2.7 实现温度采集报警系统的整体流程图 (6) 4 软件设计 (7) 4.1 温度采集传感系统的任务 (7) 4.2 Proteus的界面实现 (7) 4.3 在KeilμVision4平台下进行编程 (8) 5 系统调试与实验 (9) 6 总结 (11) 7 参考文献 (12) 8 附录 (13)

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

单片机课程设计报告——温度报警器

单片机原理与应用 课程设计报告 课程设计名称:温度报警器设计 专业班级:13计转本 学生姓名:张朝柱肖娜 学号:20130566140 20130566113 指导教师:高玉芹 设计时间:2016-11—2017-12 成绩: 信电工程学院

摘要 2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。 本文主要介绍了一个基于AT89C52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机AT89C51;DS18B20温度传感器;液晶显示LCD1602。

目录 1绪论 (1) 1.1温度报警器简介 (1) 1.2温度报警器的背景与研究意义 (1) 1.3温度报警器的现状及发展趋势 (1) 2 系统整体方案设计 (2) 2.1 设计目标 (2) 2.2系统的基本方案 (2) 2.2.1 系统方案选择 (2) 2.2.2 各模块方案选择 (3) 2.3主要元器件介绍 (3) 2.3.1 STC89C52的简介 (3) 2.3.2 DS18B20的简介 (4) 3 系统的硬件设计与实现 (5) 3.1 系统硬件概述 (5) 3.2主要单元电路的设计 (5) 3.2.1键盘扫描模块电路的设计 (5) 3.2.2单片机控制模块电路的设计 (5) 3.2.3报警模块电路的设计 (6) 3.2.4 LCD1602显示模块电路的设计 (7) 4 系统的软件设计与实现 (8) 4.1 KEIL软件介绍 (8) 4.2系统程序设计流程图 (8) 4.2.1 主程序软件设计 (8) 4.2.2 按键软件设计 (9) 4.2.3 密码设置软件设计 (9) 4.2.4 开锁软件设计 (10) 5 系统仿真设计 (12) 5.1 Proteus 软件介绍 (12) 5.2 Proteus 仿真图 (12) 5.3 硬件调试 (13) 5.4 调试结果 (13) 6 结论 (14)

远程温度采集与显示系统设计

毕业设计论文 远程温度采集测量系统 系电子信息工程系 专业电子信息工程技术姓名张一浩班级电信091 学号0901043118 指导教师张少华职称讲师 设计时间2011.11.20-2012.1.8

目录 第一章测量方案 (4) 1.1 系统功能 (4) 1.1.1 功能介绍 (4) 1.2方案论证与确定 (4) 1.2.1温度测量方案的确定 (4) 1.2.2 远程无线数据传送方案的确定 (5) 第二章电路原理及主要功能模块 (6) 2.1工作原理 (6) 2.1.1 系统框图 (6) 2.1.2现场温度采集电路 (6) 2.2 通信模块 (7) 2.2.1 信号发送电路 (7) 2.2.2 接收解调电路 (8) 2.3微机硬件原理图 (9) 2.3.1主机控制原理图 (9) 2.3.2从机控制原理图 (10) 第三章软件系统设计 (11) 3.1软件主要功能 (11) 3.2 软件设计框图 (11) 3.2.1设计框图 (11) 3.3测试方法及所用仪表 (13) 第四章数据分析 (14) 4.1 测试数据及测试结果分析 (15) 4.1.1 温度数据 (15) 第五章结束语 (16) 参考文献 (17) 致谢 (18)

远程温度采集测量系统 摘要 本文给出了远程温度采集测量系统的设计,它由温度数据采集测量与远程无线数字调频传送两部分构成,分为现场温度采集、远程数据传送和温度数据显示三个模块。设计采用单片微型计算机系统,数字频率调制(FSK)芯片和相关接口电路,实现现场温度信号的调理、模数转换、处理和远程传送。测温范围可达-50℃~+150℃,误差小于1℃。远程无线传送距离有障碍物时大于20m,传送的误码率小于1‰。利用LCD和LED分别可在现场模块和终端模块显示当前温度值,显示分辨率为0.1℃,系统设有语音报温和温度上限报警功能,所有指标均满足题目的基本要求和发挥部分要求。 关键词:温度传感器;接收电路;温度的测量

温度监测报警系统设计报告

目录 一、设计任务与设计要求 (1) 二、设计原理 (1) 2.1 主要硬件介绍 (1) 2.1.1 DS18B20数字温度传感器 (1) 2.1.2 AT89C51单片机芯片 (3) 2.2 系统原理结构 (3) 三、设计方案 (4) 3.1 硬件部分 (4) 3.1.1 温度测量模块 (4) 3.1.2 LED数码管显示模块 (4) 3.1.3 按键模块 (5) 3.1.4 系统整体结构仿真图 (5) 3.2 软件部分 (5) 3.2.1DS18B20传感器程序 (5) 3.2.2键盘读取及确认程序 (7) 3.2.3DS18B20操作流程图 (8) 四、调试与性能分析 (9) 4.1 proteus仿真结果 (9) 4.2实物测试 (9) 4.2.1正常情况 (9) 4.2.2报警状态 (10) 五、心得体会 (10) 六、成品展示 (11) 七、附录部分 (12) 附件一、电路设计原理图 (12) 附件二、系统设计原始代码程序 (13)

一、设计任务与设计要求 本设计主要利用单片机AT89C51 芯片和以美国MAXIM/DALLAS半导体公司的单总线温度传感器DS18B20相结合来实现装置周围温度的采集,其中以单片机AT89C51 芯片为核心,辅以温度传感器DS18B20和LED数码管及必要的外围电路,构成一个结构简单、测温准确、具有一定控制功能的温度监视警报装系统。 功能要求: 添加温度报警功能,通过4个按键来设置温度的上下限值,当用DS18B20 测得的温度不在所设置的温度范围内,蜂鸣器开始鸣报。 二、设计原理 2.1 主要硬件介绍 2.1.1 DS18B20数字温度传感器 DS18B20 数字温度传感器提供9~12 位摄氏温度的测量,拥有非易失性用户可编程最高与最低触发点告警功能。DS18B20 通过单总线实现通信,单总线通常是DS18B20连接到中央微控制器的一条数据线(和地)。它能够感应温度的范围为-55℃~+125℃,在-10℃~+85℃的测量的精度是±0.5℃,而且DS18B20 可以直接从数据线上获取供电(寄生电源)而不需要一个额外的外部电源。 DS18B20 使用DALLAS 独有的单总线(1—wire)协议使得总线通信只需要一根控制线,控制线需要一个较小的上拉电阻,因为所有的期间都是通过三态或开路端口连接在总线上的(DS18B20 是这种情况)。在这种总线系统中,微控制器(主器件)识别和寻址挂接在总线上具有独特64 位序列号的器件。因为每个器件拥有独特的序列号,因此挂接到总线上的器件在理论上是不受限制的,单总线(1-wire)协议包括指令的详细解释和“时隙”。这个数据表包含在单总线系统(1-WIRE BUS SYSTEM)部分。DS18B20 的另外一个特征是能够在没有外部供电的情况下工作。当总线为高的时候,电源有上拉电阻通过DQ 引脚提供,高总线信号给内部电容(Cpp)充电,这就使得总线为的时候给器件提供电源,这种从单总线上移除电源的方法跟寄生电源有关,作为一种选择,DS8B20 也可以采用引脚VDD 通过外部电源给器件供电。 DS18B20 引脚定义: (1) GND为电源地; (2) DQ为数字信号输入/输出端; (3)VDD 为外接供电电源输入端(在寄生电源接线方式时接地) 图2.1.1 DS18B20 引脚排列图

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

简易数字温度采集系统设计

电子技术课程设计 题目: 简易数字温度采集系统设计 学生姓名 专业 班级 指导教师 成绩 工程技术学院 2015 年12 月

*1、前言 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,电子技术得到了的迅猛发展,数字电路应用广泛,电子技术深入各个领域。通过这一电子技术课程设计来让我们熟悉理论知识与实践相结合的综合训练,从而达到对我们运用能力进行检查和综合素质的培养。 *1.1课程设计要求与目的 1.1.1基本设计要求与原则 本次课程设计的所选题目是简易温度数字采集系统设计。该系统的电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此温度采集系统可以测量得温度范围—55~+125℃并通过一个四位一体的7段数码管显示出来。 整个课程设计以先设计,再仿真,最后进行实物焊接与调试的步骤进行。 基本要求: 1、能够根据设计任务和指标要求,综合运用电子技术课程中所学到的理论知识与实践技能独立完成一个设计课题。 2、根据课题需要选择参考书籍,查阅手册、图表等有关文献资料。要求通过独立思考、深入钻研课程设计中所遇到的问题,培养自己分析、解决问题的能力。 3、进一步熟悉常用电子器件的类型和特性,掌握合理选用的原则。 4、学会电子电路的安装与调试技能,掌握常用仪器设备的正确使用方法。利用“观察、判断、实验、再判断”的基本方法,解决实验中出现的问题。 基本原则: 1,小组团队设计不能从网上下载,自己动手编排电路,流程图,编写程序。 2,电路图必须采用PROTEL软件绘制,用multisim或者proteus软件仿真,并提交程序及结果、课程论文电子版。 1.1.2设计的基本目的

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

(完整word版)基于MSP430的温度控制报警系统

微控制器应用及系统设计课程设计报告 南京理工大学

2010 年 5 月 目次 1 引言 (3) 2 系统总体设计 (3) 2.1 系统组成结构及工作原理 (3) 2.2 系统工作流程 (3) 2.3 系统核心器件选型 (4) 3 系统硬件设计 (4) 3.1 电源模块设计 (4) 3.2 LED显示模块设计 (4) 3.3 键盘输入模块设计 (5) 3.4 温度采集模块设计 (5) 3.5 报警模块设计 (6) 4 系统软件设计 (6) 4.1 系统软件总体结构及总流程图 (7) 4.2 LED显示模块程序设计 (9) 4.3 键盘输入模块程序设计 (9) 4.4 温度采集模块程序设计 (10) 4.5 报警模块程序设计 (10) 4.6 主模块程序设计 (10) 5 系统调试与结果分析 (10) 5.1 系统调试步骤 (10) 5.2 遇到的问题及解决方案 (12) 5.3 实验结果 (13) 6 结论与心得体会 (13) 参考文献 (13) 附录 (14)

1 引言 温度是一个非常重要的物理量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。温度控制失误就可能引起生产安全、产品质量、产品产量等一系列问题。因此对温度的检测的意义就越来越大。温度采集控制系统在工业生产、科学研究和人们的生活领域中,得到了广泛应用。在工业生产过程中,很多时候都需要对温度进行严格的监控,以使得生产能够顺利的进行,产品的质量才能够得到充分的保证。使用自动温度控制系统可以对生产环境的温度进行自动控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。 温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。 现在的生活中,所用到的电器,家具设备,包括工业产品等对温度的要求日益增高,灵敏的温度控制报警系统已成为日常生活中必不可少的产品。例如冰箱的温控系统,锅炉等等,无不都用到了这一功能部件。对于此,我们设计了基于MSP430F149单片机的温度控制报警系统,来模拟实现现实中的温度控制系统。此系统具有设计和布线简单,结构紧凑,体积小,重量轻,抗干扰能力强,性价比高,扩展方便,在大型仓库,工厂,智能化建筑等领域的多点温度检测中有广阔的应用前景。 2 系统总体设计 2.1系统组成结构及工作原理 该系统主要由5大模块组成,其中包括DS18B20温度传感器,MSP430F149微控制器,LED显示模块,4X4矩阵键盘输入模块,报警模块5大部分组成。由温度传感器负责数据采集,经微处理器转换后由LED显示模块输出,同时由键盘模块负责输入温度报警的上下限。当到达设定的温度限定值时就报警。 其组成框图如下所示: 2.2 系统工作流程 首先设定温度报警的上下限值,然后由温度传感器进行温度数据的采集,当微处理器检测到温度超过设定的范围值时就实行报警,提醒用户做相关操作。

基于Labview的温度采集系统

基于Labview 的温度采集系统 摘要:随着工业的不断发展,对温度测量的要求越来越高,而且测量范围也越来越广。本设计用LabView 软件在PC 机上编程实现了多点温度采集、动态图形显示、数据存储、报警、数据分析等功能,并重点对基于LabVIEW 的虚拟温度采集系统的设计进行了讨论。 关键词:LabVIEW; 温度采集 0 引言 进入21世纪以来,作为测试技术的一个分支,虚拟仪器的开发和研制在国内得到了飞速的发展。它可以利用计算机显示器的显示功能来模拟传统仪器的控制面板,以多种形式表达输出检测结果。目前,常用的温度采集系统绝大部分是由集成温度传感器和单片机构成的,设计过程繁琐、调试期长、修改不方便。本文借助LabVlEW 图形化软件开发系统,用软件代替DAQ 数据采集卡设计的这种虚拟温度采集系统,比以前的更易修改且成本低、周期短。 1 设计思想 该系统的功能框图如图所示。 本温度采集系统的设计采用软件代替了DAQ 数据采集卡,使用Demo read voltage 子程序来仿真电压测量,然后把所测得的电压值转换成摄氏或华氏温度读数。 在数据采集过程中,实时地显示数据。当采集的温度值大于设定的高限报警数值时,就会点亮高报警红色灯,同时触发条件结构里的事件发生,使系统发出蜂呜温度采集系统 实 时 温 度 显 示 保存数据 报警设定 数值计算 显示转换

声。当采集过程结束后,在图表上画出数据波形,并算出最大值、最小值和平均值,并自动产生数据文件的头文件,它包括操作者名字和文件名,将采集的数据附在头文件后面,以供查询。 2 子程序设计 2.1 温度计子程序 温度计界面程序如下图所示。在框图程序中设定温度计的标尺范围为0.0到100.0,在前面板窗口中放入竖直开关控制用下选择“温度值单位”,即选择以华氏还是摄氏显示。 2.2 实现步骤 1、点击框图程序窗口的空白处,弹出功能模板,从弹出的菜单中选择所需的对象。本程序用到下面的对象: Multiply(乘法)功能,将读取电压值乘以100.00,以获得华氏温度。 Subtract(减法)功能,从华氏温度中减去32.0,以便转换成摄氏温度。 Divide(除法)功能,把相减的结果除以1.8以转换成摄氏温度。 Select(选择)功能(Comparison子模板)。取决于温标选择开关的值,该功能输出华氏温度(当选择开关为false)或者摄氏温度(选择开关为True)数值。 Demo Read Voltage VI程序(Tutorial子模板)。该程序模拟从DAQ卡的0通道读取电压值,并把所测得的电压值转换成华氏或摄氏读数。 随机数产生功能(Numeric子模板),用于产生随机温度值。 数值常数。用连线工具,点击要连接一个数值常数的对象,并选择Create Constant功能。若要修改常数值,用标签工具双点数值,再写入新的数值。

温度测量与报警系统设计.

课程设计说明书 题目:温度测量与报警系统设计 姓名: 学号: 指导教师: 专业年级: 所在学院和系: 完成日期: 课程名称:机电一体系统设计

目录 1绪论 (1) 1.1 背景 (1) 1.1 设计要求 (1) 1.3 设计任务 (1) 2系统总体方案设计 (2) 2.1 设计思想 (2) 2.2 方案论证 (2) 2.2.1 电源模块 (2) 2.2.2 温度检测模块 (3) 2.2.3 控制模块 (3) 2.2.4 显示模块 (3) 2.2.5 报警模块 (4) 2.2.6 按键模块 (4) 2.3 芯片选择 (4) 2.3.1电源模块 (4) 2.3.2 温度检测模块 (4) 2.3.3 控制模块 (5) 2.3.4 显示模块 (5) 3系统硬件设计 (6) 3.1 单片机最小系统 (6) 3.2 传感检测电路 (6) 3.3 显示模块 (7) 3.4 报警模块 (8) 3.5 按键模块 (8) 3.6 总电路 (8) 3.6.1 绘图软件简介 (8)

3.6.2 电路原理图 (9) 3.6.3 电路PCB图 (10) 4系统软件设计 (12) 4.1 程序设计思路 (12) 4.2 主程序流程图 (12) 4.3 获取温度程序流程图 (13) 4.4 报警程序流程图 (14) 4.5 显示程序流程图 (15) 4.6 数据处理程序流程图 (15) 4.7 编程软件简介 (16) 5总结 (17) 参考文献 (18) 附录A (19) 附录B (20) 附录C (21)

1绪论 1.1 背景 温度温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量;同时,温度超过了系统工作正常范围将直接影响系统的寿命,甚至损坏系统;甚至可以说任何一个系统都必须工作在一定的温度范围内,因而设计一种较为理想的温度控制系统是非常有价值的。 自18世纪工业革命以来,工业的飞速发展离不开温度参量在控制系统中的应用。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。在工业生产中人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制,常用的控制电路根据应用场合和所要求的性能指标有所不同, 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。 1.1 设计要求 设计要求:实现温度的测量与控制。 测温范围:0~1000C;测量精度:0.10C; 设有上、下限报警温度;数码显示; 1.3 设计任务 设计任务:硬件设计(元器件选择、电路原理图与电路板图绘制等)、软件设计。

四路温度采集系统系统

四路温度采集系统的设计 【内容摘要】本文主要研究的是基于AT89S51单片机作为系统的温度显示以及设定双路温度报警系统的设计。此系统硬件电路主要包括5部分:AT89S51单片机最小系统电路部分和复位电路部分,LCD1602液晶显示电路部分,4个DS18B20作为温度检测部分,以及电源电路部分。 本系统采用C语言进行编写程序,为了便于阅读和修改,软件采用模块化结构设计,使程序间的逻辑层次更加简明。 【关键词】四路温度采集系统系统;DS18B20;LCD1602液晶显示;AT89S51单片机 1 引言 四路温度采集系统系统不仅是工业上的宠儿,也是是单片机实验中一个很常用的题目。因为它的有很好的开放性和可发挥性,因此对作者的要求比较高,不仅考察了对单片机的掌握能力更加强调了对单片机扩展的应用。而且在操作的设计上要力求简洁,功能上尽量齐全,显示界面也要出色。所以,双路温度报警系统无论作为比赛题目还是练习题目都是很有价值。 本文介绍一种基于 AT89C2051 单片机的一种温度测量,该电路DS18B20 作为温度监测元件,测量范围-55℃-~+125℃,使用LCD1602液晶显示模块显示,能通过键盘设置温度报警上下限.正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器 DS18B20 的原理,AT89C2051 单片机功能和应用.该电路设计新颖,功能强大,结构简单。 2双路温度报警系统系统简介及其作用综述 首先,由DS18B20温度传感器芯片测量当前温度,并将结果送入单片机。然后,通过AT89C51单片机芯片对送入的测量温度读数进行计算和转换,并将此结果送入液晶显示模块。最后,LCD 1602模块将送来的四路温度值值显示于显示屏上。

基于51的温度报警器设计..

目录 1 概述 (2) 1.1 研究背景 (2) 1.2 设计思想及基本功能 (2) 2 总体方案设计 (3) 2.1 方案选取 (3) 2.2 系统框图 (5) 2.3 总体方案设计 (6) 3 硬件电路设计 (6) 3.1 电源电路设计 (6) 3.2 晶振电路 (7) 3.3 复位电路 (7) 3.4 矩阵键盘电路 (8) 3.5 温度检测电路 (9) 3.6 液晶显示电路 (10) 3.7 蜂鸣器报警电路 (11) 4 系统软件设计 (12) 4.1 主程序软件设计 (12) 4.2 键盘扫描程序设计 (14) 4.3 温度上下限设定程序设计 (15) 4.4 延时程序设计 (16) 5系统调试 (16) 6总结 (18) 参考文献 (18) 附录1 系统原理图 (19) 附录2 程序清单 (20)

1 概述 1.1 研究背景 温度作为一种最基本的环境参数,和人们的安全、生活,工农业生产有着紧密的联系,因此在某些场合对温度进行检测,并且在温度超过期待范围后进行报警便显得尤为重要,对能实现温度检测并报警的装置的设计和研发也就有了特别的意义。 单片机作为一种微控制器,由于具有体积小,质量轻,功耗低,价格便宜,可靠性高,功能强大等特点,已经进入人们生活,工业生产的各个领域,现在很难在某个领域看不到单片机的痕迹。在智能仪表领域,由于单片机的上述优点,用单片机作为控制平台,结合不同类型的传感器,可以很容易地对温度,湿度,流量等物理量进行检测。 针对在日常生活和工业生产中对温度进行检测和监控的需求,本课题以AT89C51单片机为核心设计了一种温度报警器,它可以通过键盘对温度进行上下限设置,用液晶进行温度显示,并且在超出温度设定范围后发声报警。本设计也具有一定的扩展性,例如可以再加一个烟尘传感器和光电传感器,扩展为火灾报警器。 1.2 设计思想及基本功能 本课题对温度报警器进行设计时,在满足温度检测和报警功能的基础上,为了增加其应用的灵活性,采用了矩阵键盘电路,从而可以对温度报警范围进行设定,以适应对温度有检测需求的不同应用场合。为了增加人机交互性,采用了功耗低的字符型液晶显示汉字和温度。 该温度报警器具有以下基本功能: (1)手动设定温度范围:该功能使用户可以根据不同场合设定温度报警范围,增强了该设计的应用性。 (2)温度采集:采用了数字温度传感器对现场温度在-55℃到+125℃范围内的应用场合进行温度采集。 (3)液晶显示:通过常用的液晶模块对当前温度传感器采集的温度进行显示。 (4)蜂鸣器报警:当温度传感器采集的温度不在设定范围内时,使蜂鸣器发

温湿度采集系统设计

目录 第1章设计意义及要求 (1) 1.1 设计意义 (1) 1.2 设计要求 (1) 第2章硬件设计 (2) 2.1 AT89S52芯片介绍 (2) 2.2 液晶显示器LCD1602 (3) 2.2.1 液晶显示原理 (3) 2.2.2 液晶显示器分类 (3) 2.2.3 显示原理 (3) 2.2.4 LCD1602的基本参数及引脚功能 (4) 2.3 温湿度模块DHT11介绍 (6) 2.3.1 DHT11概述 (6) 2.3.2 DHT11传感特性说明 (7) 2.3.3 DHT11封装信息 (8) 2.3.4 串行接口(单线双向) (8) 第3章设计实现 (11) 3.1 设计框图及流程 (11) 3.2 设计结果及分析 (11) 第4章设计总结 (13) 参考文献 (14) 附录 (15)

第1章设计意义及要求 1.1 设计意义 最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。 现代社会越来越多的场所会涉及到温度与湿度并将其显示。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。在此范围内感到舒适的人占95%以上。在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应是工作效率高。18℃,湿度应是40%至60%,此时,人的精神状态好,思维最敏捷。所以,本课程设计就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其他有关设计的基础。如何高效、稳定地对数据(包括温度、湿度光线、压力等项目)进行实时采集对于现代的企业、工厂、研究所等对数据精度要求较高的单位具有非常重要的意义。 1.2 设计要求 本系统设计采用温度和湿度作为采集对象,是以单片机为核心的温度、湿度采集、数字显示系统,用液晶显示出当前温度、湿度的信息。以此了解AT89S52芯片为核心外接温度传感器和湿度传感器模块在液晶显示屏上显示当前的温度和湿度的过程。

温度报警器设计报告完整版

电子技术综合课程 设计 课程:电子技术综合课程设计 题目:温度报警器 所属院(系) 专业班级 姓名学号: 指导老师 完成地点 2011年月日

前言 电子技术综合课程设计是集电路分析、模拟电子技术、数字电子技术以及电路实验、模拟电子技术实验、数字电子技术实验等课程之后的一门理论与实践相结合的综合设计性课程。它包括选择课程、电子电路设计、组装、调试和编写总结报告等实践内容。它的开展是为了提高和增强我们学生对电子技术知识的综合分析与应用能力。这对于提高我们学生的电子工程素质和科学实验能力非常重要,是电子技术人才培养成长的必由之路。 本课程设计任务要求是完成一个温度报警器的制作,并实现当温度高于30℃时发出双音报警,温度低于10℃时发出单音报警的功能要求。本设计中充分展示了模拟电子技术的优点,利用放大电路、窗口比较器进行温度的判定,再结合数字电子技术的优点,充分利用单元电路的功能来实现报警,将模电、数电紧密结合,综合应用,不但对知识有了更进一步的掌握,提高了动手能力,,对于以后的就业打下了一定的基础。 通过课程设计实现以下三个目标: 第一,让学生初步掌握电子线路的试验、设计方法。即学生根据设计要求和性能参数,查阅文献资料,收集、分析类似电路的性能,并通过组装调试等实践活动,使电路达到性能指标。 第二,课程设计为后续的毕业设计打好基础。毕业设计是系统的工程设计实践,而课程设计的着眼点是让学生开始从理论学习的轨道上逐渐引向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解科学实验的程序和实施方法。 第三,培养勤于思考的习惯,设计并制作电子产类品,增强学生这方面的自信心及兴趣。 本课程设计以电工电子技术的基本理论为基础,着重掌握电路的设计装调及性能参数的调试方法。本课程设计应达到如下基本要求: (1)综合运用电子技术课程中所学的理论知识独立完成一个实际应用电路的设计。 (2)通过查阅手册和参考文献资料,培养独立分析和解决实际问题的能力。 (3)熟悉常用电子元器件的类型和特性,并掌握合理选用的原则。 (4)掌握电子电路的安装和调试技能。 (5)熟悉使用各类数字式电子仪器的规范使用方法。 (6)学会撰写课程设计论文。 (7)培养严肃认真的工作作风和严谨的科学态度。 (8)由于本次试验是分组完成,所以培养团结协作能力尤为重要。 此次课程设计中,不仅得到了指导老师的帮助和鼓励,而且还有同学们的互相支持和帮助,在此表示衷心的感谢!

基于labView的温度采集系统设计

基于LabVIEW的温度采集系统设计 摘要:设计了基于LabV IEW的温度采集系统。它利用DS18B20数字温度传感器和STC公司生产的STC89C52单片机采集被测环境温度,将测得的数据经串口传给计算机。计算机利用LabV IEW的V ISA读取串口数据并进行处理和显示,实现基于V ISA的串口温度采集。 关键词:温度传感器;单片机;LabV IEW;温度采集 1引言 虚拟仪器(Virtual Instrument)是基于计算机的软硬件测试平台,它可代替传统的测量仪器。LabVIEW是由美国国家仪器公司(National Instruments Co.)推出的、主要面向计算机测控领域的虚拟仪器软件开发平台,是一种基于图形开发、调试和运行的集成化环境[1]。 利用LabVIEW设计的数据采集系统,可模拟采集各种信号,但是配备NI 公司的数据采集板卡比较贵,因此,可以选择单片机小系统作为前端数据采集系统,进行采集数据,然后通过RS-232串口通讯将数据送给计算机,在LabVIEW 开发平台下,对数据进行各种处理、分析并对信号进行存储、显示和打印,从而实现了一种在LabVIEW环境下的单片机数据采集系统。 2 温度采集系统设计 本系统采用STC公司生产STC89C52单片机作为温度数据采集和传输的主控芯片,温度传感器采用单总线方式的集成数字温度传感器DS18B20。采集得到的数据利用单片机经串口通信的方式传输至计算机的串口。计算机上位机软件采用数据处理能力超强的LabV IEW软件编写,利用其所带的V ISA驱动进行串口的数据采集和处理,实现了基于V ISA的串口温度采集。 2.1温度采集系统的硬件设计 本系统以AT89C51为中央处理单元,利用DS18B20数字温度传感器对温度信号进行采集,采集到的信号被送到AT89C51中, 将采集到的温度值在LCD上显示并通过串口发送到上位机,其原理图如1所示(见附录1)。 2.1.1 中央处理单元——STC89C51 本设计选用的中央处理单元是STC89C52单片机,STC89C52是一种带8K 字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Eras-able Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除。该器件采用ATMEL高密度非易失存储器制

温度采集系统原理

1.现有16路温度信号,16路压力信号,48路流量信号和10路物位信号,用单片机构成一个数据采集系统。

答:系统的原理框图如上图所示,图中的T1表示第一路温度信号,同理,P16表示第16路压力信号,F48表示第48路流量信号,H10表示第10路物位信号。 (1)由于温度信号的温度范围是0~100度,系统要求的精度为0.5%,所以对于温度信号采用8位的A/D即可满足要求(100/255=0.4度)。系统使用的是ADC0809,由于ADC0809内部含有多路开关,所以系统设计时,在外部没有添加多路开关,16路温度信号运用两片ADC0809,正好能采集16路温度信号。 (2)16路压力信号的精度要求是精确到0.1%,8位的AD已不能满足要求,假如所测的最大压力为1个大气压, 如果用8位AD,则其分辨率为100000/255=392,而使用16位AD其分辨率为100000/65535=1.5,所以选 用16路AD较为精确。系统使用的是AD7701(相关资料请见本次作业第二题),AD7701内部不含多路开关,所以要外接多路开关,系统中使用的多路开关是CD4067B,CD4067B是16通道双向多路模拟开关,它具有两种电源输入端,VDD和VSS,可以在-0.5~18V之间进行选择。 (3)48路流量信号的精度要求是精确到0.1%,同压力信号一样,8位AD不能满足精度要求,故采用16位AD,系统中采用的还是AD7701。由于流量信号对采集的速度要求不是很高,所以采用多通道共用放大器,采样保持器和AD转换器。48路流量信号可以用3片CD4067B进行切换,由多路开关轮流采集流量信号,经放大器,采样保持器和AD转换进入单片机。 (4)10物位信号的精度要求同温度信号,其精度要求是精确到0.5%,所以采用8位的AD7574, 与ADC0809不同的是其内部不含多路开关,10信号如使用两片多路开关,则增加了系统的复杂度,所以采用一片CD4067B 即可。AD7574采用CMOS工艺,单片行,含有内部时钟振荡器,+5V供电,芯片内部设有比较器和控制逻辑,以及功耗低,转换速度快的逐次逼近型A/D转换器。 2.选一串行的16位ADC。 答:所选的AD7701可变串行接口、16位模/数转换器,以下是相关资料。 AD7701是美国AD公司推出的16位电荷平衡式A/D转换器它具有分辨率高、线性度好、功耗低等特点,并且由于该芯片采用了采样技术和线性兼容CMOS工艺集成技术,且片内含有自校准控制电路,可以有效地消除内部电路、外部电路的失调误差和增益误差G,AD7701具有灵活的串行输出模式,其转换结果通过串行接口输出,数据输出速率达4kbps。串行接口有异步方式、内时钟同步方式和外时钟同步方式三种::异步方式可以直接与通用异步接收/发送器(UART)接口;内时钟同步方式可将串行转换结果经移位寄存器转换为并行输出;外时钟同步方式可以连接与单片机接口。所以它具有精度高、成本低、工作温度范围宽、抗干扰能力强等特点。因此适用于遥控检测、过程 (1)主要性能: .AD7701芯片内含有自校准电路 .片内有可编程低通滤波器; .拐点频率;0.1Hz一10HZ .可变串行接口:分辨率16位; .线性误差:0.0015%: ·功耗低。正常状态:40mW;睡眠状态:10uW。 (2)芯片引肿图和引脚说明: AD770I的核心部分是二阶调制器和6阶高斯低通数字滤波器 构成的16位ADC,另外有校准控制器、校准SRAM、时钟发 生器和串行接口电路。AD7701芯片的引脚名称和说明如下。 MODE:串行接口方式选择。AD7701 方式。 当MODE接十5v时,串行接口工作在内时钟同步方式。AD7701可以通过外部移位寄存器将串行数据转换为并行数据输出。 当引脚MODE接DGND时,AD7701串行接口工作于外时钟同步方式。在这种方式下,AD7701能直接与具有同步串行接口的单片机连接,也可以利用普通I/O端口,通过软件编程产生SCLK时钟以读取AD770I的转换数据。 当引脚MODE接一5V时,AD7701串行接口工作于异步方式。在这种工作方式下, AD7701可以直接与通用异步接收发送器(UART)相连接,适用于AD7701与单片机(或微控制器)之间的距离比较远的应

相关主题
文本预览
相关文档 最新文档