当前位置:文档之家› 什么建筑材料要做放射性检验

什么建筑材料要做放射性检验

什么建筑材料要做放射性检验
什么建筑材料要做放射性检验

一般情况下,建筑物的放射性大部分来自建筑材料中的天然放射性核素,这些放射性物质对公众造成附加照射,一般表现为全身外照射及其衰变子体的内照射。对建筑材料放射性物质含量的限值是基于辐射防护基本安全标准而确定的,并以常见的放射性核素226Ra、232Th 和40K的比活度表征。国际放射防护委员会(ICRP)对公众规定的五年内平均年有效剂量限值为1mSv,如果建造住房和工作用房的建筑材料中226Ra、232Th和40K的比活度分别为120、100和1000Bq·kg-1(这一放射性水平接近现行国际规定的极限),并假定公众在室内的居留因子为0.8,则建材放射性对公众个体造成的年有效照射剂量约为1.1mSv,已经略为超过ICRP 确定的上述有效剂量限值[1]。

为保障公众及其后代的健康与安全,促进建筑材料的合理利用和建材工业的合理发展,各国相继根据本国的放射卫生防护法规和标准制定出建筑材料放射性物质的限制标准及相应的检测方法,并授权或指定有关部门负责贯彻实施。我国现行关于建筑材料放射性主要有以下三部标准,分别是:1994年国家建筑材料工业局颁布的JC518-1993《天然石材产品放射防护分类控制标准》;2000年国家质量技术监督局修订发布的GB6566-2000《建筑材料放射卫生防护标准》;2000年国家质量技术监督局修订发布的GB6763-2000《建筑材料产品及建材用工业废渣放射性物质控制要求》[2,3,4]。上述标准中所规定的测量条件和限制要求均不相同,而且对建筑物室内的g空气比释动能率没有作出限值要求和指定检测方法。因此,迫切需要建立一种与现行标准有机联系、适合现场快速检测、并具操作性的测量方法,以满足市场需求,这对于保护上海城市环境和公众健康,促进国际大都市的可持续发展具有重要意义。本文以目前市场上大量用于室内装饰的花岗石材料为研究对象,针对影响石材表面g空气比释动能率测量结果的几个因素进行了实验研究,得出一种现场快速检测方法,并尝试提出建筑物内部建材放射性的检测方法和限值要求。

2 实验

2.1 测量仪器和实验材料

本实验测量g空气比释动能率采用便携式c-g射线辐射仪,比活度测量选用美国ORTEC公司高纯锗g谱仪,其对60Co1332keV能量峰分辨率为1.87keV。实验材料选用山东石岛红花岗石,切割成规格为50′50′2cm的正方形薄板。

2.2 建材本身对放射性的吸收影响

当g光子束穿过吸收介质时,将通过光电效应、康普顿散射和产生电子对三种效应损失能量,宽束g光子数目的衰减规律由下式表示:[5]

(1-1)

式中,I0为入射光子束强度,I为经过厚度为x的吸收体后g光子束的强度,m为吸收体的线性减弱系数,B称为积累因子,是一个描述散射光子影响的物理量,它与射线能量、介质种类和厚度等许多因素有关。由于g光子的散射效应较为复杂,介质对射线的吸收通常通过实验测得。

考虑到天然石材的放射性水平较低,实验中我们按照地球天然本底Ra、Th、K的成分比例制作了一块平板源:用60Co溶液源(Eg平均=1.25MeV)代替40K(Eg=1.46MeV),Ra选用U-Ra平衡粉末,Th选用ThO2粉末,活度分别为2.8′105Bq、2.27′104Bq、1.68′104Bq,均匀混合三种源,用883万能胶水固定于两块20cm′20cm′0.8cm的石材中。在距离石材表面10cm处分别测量未加覆盖和覆盖2cm-42cm花岗石的剂量率(覆盖面积为2m′2m),间隔厚度为2cm,结果如图2.1所示。

2.3 建材堆放面积对空气比释动能率测量的影响

在堆放厚度一定,探头距建材表面距离一定的条件下,建材表面空气比释动能率与面积大小明显相关,我们模拟了正方形堆放模体不同边长对空气比释动能率的影响,实验中我们以40cm为递增长度,测量了边长从20cm到400cm的不同面积情况下与之相对应的建材表面

空气比释动能率,模体厚度为2cm,测量结果对土壤本底和宇宙射线作了修正。考虑到天然石材的放射性水平较低,在模体厚度仅为2cm的条件下,测量统计误差过大,我们仍旧利用另外制作的较高放射性水平的平板源作为实验材料。由于没有足够经费,也不太可能做出一套边长从20cm直到400cm的平板源,实验中我们把20cm′20cm′2cm的源放置在以测量点为中心,间隔为20cm的周围不同位置,分别测量其空气比释动能率。最后不同边长模体的空气比释动能率由其相应位置的空气比释动能率分量算术叠加而得。图2.2给出了探测器距建材表面中心高度分别为5cm、10cm、15cm时空气比释动能率随模体尺寸大小的变化规律。

2.4 探测器距建材表面中心高度对空气比释动能率测量的影响

实验采用2m′2m′0.5m的堆垛模型作为研究对象,分别测量了贴近材料表面直到距材料表面中心50cm处的空气比释动能率,间隔距离为5cm,测量值对土壤本底和宇宙射线作了修正,结果如图2.3所示。

2.5 模体厚度对空气比释动能率测量的影响

我们在模型尺寸2m′2m,探测器距材料表面中心10cm条件下,测量了堆放厚度从2cm到50cm,厚度间隔为2cm的空气比释动能率的变化,其结果如图2.4。

3 结果

3.1 g空气比释动能率测量与比活度分析结果对比

实验用花岗石经比活度分析,226Ra、232Th和40K含量分别为48.6、125.9、1120Bq/kg;2m′2m,厚度0.5m堆垛距表面中心10cm处测得的g空气比释动能率为178nGy/h(含本底)。根据Beck公式[6]可以计算出堆垛表面空气g吸收剂量率为152nGy/h,由1.2的实验可知,土壤本底完全被0.5m厚的石材所吸收,所以测量之中所含本底仅剩下宇宙射线的贡献,根据全国环境天然贯穿辐射水平调查结果[7](1983-1990年),上海地区的宇宙射线水平为29nGy/h,从测量值178nGy/h中扣除宇宙射线的空气比释动能率贡献29nGy/h,得到149nGy/h,与Beck公式计算结果符合较好。

3.2 影响g空气比释动能率测量结果的几个因素

通过模型实验我们可以看出,建材堆放面积大小、厚度不同、测量点的选取不同,对建材表面空气比释动能率的测量结果都有不同程度的影响。

3.2.1建材堆放面积大小对空气比释动能率的影响

由图2.2可以看出, 对于测量距离15cm的曲线, 即使模型尺寸达到4m ′4m, 空气比释动能率仍呈继续增大的趋势;对于测量距离10cm,模型尺寸大于3.2m ′ 3.2m时, 空气比释动能率趋于饱和;对于测量距离5cm,当模型尺寸大于2m ′2m, 空气比释动能率就已经达到饱和。

3.2.2测量距离对空气比释动能率的影响

由图2.3可以知道,探测器距模体表面距离远近对测量结果影响很大,距离越远, 空气比释动能率测量值越小, 距离材料表面中心10cm处与50cm处的空气比释动能率比值达到1.43。

3.2.3建材堆放厚度对空气比释动能率的影响

从图2.4容易看出,建材表面空气比释动能率随堆放厚度增加而增加,当厚度达到30cm以上时,空气比释动能率趋于饱和,厚度2cm处的测量值相当于饱和值的40%左右。

3.3 建筑材料放射性现场检测方法

建材放射性现场检测,特别是建筑物室内环境测量条件差别很大,而国家标准所规定的测量条件过分单一,与现场条件不相适应。针对这一情况,提出一种与现行国家标准有机联系起来,适合于现场检测, 尤其是建筑物内部建材放射性检测的方法和限值要求,正是本研究所要达到的主要目的。

3.3.1堆场条件的建材放射性检测

堆场条件的空气比释动能率测量比较容易解决, 只要参考国家标准GB6566-2000中规定的测量条件和剂量限值执行即可。而且, 根据图2.4的结果, 堆放厚度只要超过30cm就可以满足检测需求, 不必一定要达到50cm的厚度,这样可以减少部分工作强度。对于堆放面积不能达到2m ′2m要求的,可以根据图2.2和表4.1所列修正系数对空气比释动能率限值进行修正。

3.3.2建筑物内部的建材放射性检测

首先测量条件如何确定。考虑到与国家标准的联系,我们认为可以参考国家标准GB6566-2000,把探测器放在被测建材表面几何中心位置上方10cm处进行测量,理由如下:根据实验2.3和图2.2的结果,如果探测距离小于5cm,探测器所测量到的有效范围比较小,不能反映较大面积建材的放射性真实情况;而探测距离大于15cm,测量值会随探测距离增大而减小,由于建材所含放射性水平较低,则会带来很大的统计误差。综合考虑,我们认为把测量距离定为10cm是合适的。

对于建筑物室内装饰建材空气比释动能率限值,我们引入建材附加空气比释动能率这一概念。建材附加空气比释动能率定义为建筑物内装饰材料表面空气比释动能率与未铺设装饰材料建筑物(如毛坯房)室内空气比释动能率之差值。GB6566-2000规定2m′2m′0.5m建材堆垛距离表面中心10cm处空气比释动能率限值为200nGy/h(含本底),而50cm厚的建材已几乎把土壤本底完全屏蔽,测量的空气比释动能率仅来自建材本身放射性和宇宙射线的贡献,根据全国环境天然贯穿辐射水平调查结果(1983-1990年),全国的宇宙射线水平加权平均为30nGy/h左右,也就是说2m′2m′0.5m的建材堆垛引入的附加表面空气比释动能率限值为170nGy/h。对建筑物室内装修,根据目前规定,地面铺设石材只能选用1.5~2cm厚的材料薄板,由图2.4可知2cm厚的石材放射性相当于50cm厚石材的40%左右,那么对于2m′

2m的条件,我们可以把建筑物室内装饰建材附加空气比释动能率限值定为70nGy/h,如果铺设面积不等于4m2,可以根据图2.2和表3.1所列修正系数对附加空气比释动能率限值再做修正。

表3.1 附加空气比释动能率限值对于不同面积的修正系数

面积/m2 0.04 0.16 0.64 1.44 2.56 4 5.76 7.84 >10

修正系数0.16 0.37 0.65 0.80 0.93 1.00 1.06 1.09 1.11

4 讨论

4.1 实验与蒙特-卡洛(Monte-Carlo)方法计算结果对比

北京防化研究院李湘葆先生,中国计量科学研究院万国庆先生等在他们最近的一项研究工作中采用Monte-Carlo方法, 针对建材放射性检测, 对不同模型尺寸与不同测量条件的建筑材料空气比释动能率进行了计算[8]。凑巧我们的研究内容与其基本相同,可以与之作一比较。对比理论计算与模型实验的结果,我们发现,无论是模型厚度,模型尺寸大小,还是探测距离对建材表面空气比释动能率的影响,二者之间均呈现较好的一致性。仅对于探测距离这一因素,当测量距离小于5cm时,理论计算与实验测量差异颇为明显,尤其是当探测器贴近建材表面,即距离趋近于0时,二者之间甚至达到一个数量级的差别。如何解释这一现象呢?实际上,并非总有可能设计出完全理想条件下的仪器装置,象我们通常采用的便携式辐射仪都存在有一定程度的角相应,当测量距离较近时,探测器将只能探测到有限范围内所包含的射线,这也就是当探测距离较近时,实测值要小于理论计算值的原因之所在。

4.2 现场检测中的某些具体问题

什么建筑材料要做放射性检验

一般情况下,建筑物的放射性大部分来自建筑材料中的天然放射性核素,这些放射性物质对公众造成附加照射,一般表现为全身外照射及其衰变子体的内照射。对建筑材料放射性物质含量的限值是基于辐射防护基本安全标准而确定的,并以常见的放射性核素226Ra、232Th 和40K的比活度表征。国际放射防护委员会(ICRP)对公众规定的五年内平均年有效剂量限值为1mSv,如果建造住房和工作用房的建筑材料中226Ra、232Th和40K的比活度分别为120、100和1000Bq·kg-1(这一放射性水平接近现行国际规定的极限),并假定公众在室内的居留因子为0.8,则建材放射性对公众个体造成的年有效照射剂量约为1.1mSv,已经略为超过ICRP 确定的上述有效剂量限值[1]。 为保障公众及其后代的健康与安全,促进建筑材料的合理利用和建材工业的合理发展,各国相继根据本国的放射卫生防护法规和标准制定出建筑材料放射性物质的限制标准及相应的检测方法,并授权或指定有关部门负责贯彻实施。我国现行关于建筑材料放射性主要有以下三部标准,分别是:1994年国家建筑材料工业局颁布的JC518-1993《天然石材产品放射防护分类控制标准》;2000年国家质量技术监督局修订发布的GB6566-2000《建筑材料放射卫生防护标准》;2000年国家质量技术监督局修订发布的GB6763-2000《建筑材料产品及建材用工业废渣放射性物质控制要求》[2,3,4]。上述标准中所规定的测量条件和限制要求均不相同,而且对建筑物室内的g空气比释动能率没有作出限值要求和指定检测方法。因此,迫切需要建立一种与现行标准有机联系、适合现场快速检测、并具操作性的测量方法,以满足市场需求,这对于保护上海城市环境和公众健康,促进国际大都市的可持续发展具有重要意义。本文以目前市场上大量用于室内装饰的花岗石材料为研究对象,针对影响石材表面g空气比释动能率测量结果的几个因素进行了实验研究,得出一种现场快速检测方法,并尝试提出建筑物内部建材放射性的检测方法和限值要求。 2 实验 2.1 测量仪器和实验材料 本实验测量g空气比释动能率采用便携式c-g射线辐射仪,比活度测量选用美国ORTEC公司高纯锗g谱仪,其对60Co1332keV能量峰分辨率为1.87keV。实验材料选用山东石岛红花岗石,切割成规格为50′50′2cm的正方形薄板。 2.2 建材本身对放射性的吸收影响 当g光子束穿过吸收介质时,将通过光电效应、康普顿散射和产生电子对三种效应损失能量,宽束g光子数目的衰减规律由下式表示:[5] (1-1) 式中,I0为入射光子束强度,I为经过厚度为x的吸收体后g光子束的强度,m为吸收体的线性减弱系数,B称为积累因子,是一个描述散射光子影响的物理量,它与射线能量、介质种类和厚度等许多因素有关。由于g光子的散射效应较为复杂,介质对射线的吸收通常通过实验测得。 考虑到天然石材的放射性水平较低,实验中我们按照地球天然本底Ra、Th、K的成分比例制作了一块平板源:用60Co溶液源(Eg平均=1.25MeV)代替40K(Eg=1.46MeV),Ra选用U-Ra平衡粉末,Th选用ThO2粉末,活度分别为2.8′105Bq、2.27′104Bq、1.68′104Bq,均匀混合三种源,用883万能胶水固定于两块20cm′20cm′0.8cm的石材中。在距离石材表面10cm处分别测量未加覆盖和覆盖2cm-42cm花岗石的剂量率(覆盖面积为2m′2m),间隔厚度为2cm,结果如图2.1所示。 2.3 建材堆放面积对空气比释动能率测量的影响 在堆放厚度一定,探头距建材表面距离一定的条件下,建材表面空气比释动能率与面积大小明显相关,我们模拟了正方形堆放模体不同边长对空气比释动能率的影响,实验中我们以40cm为递增长度,测量了边长从20cm到400cm的不同面积情况下与之相对应的建材表面

常用建筑材料检测取样方法介绍

常用建筑材料检测取样方法 一、钢筋?钢筋进场时的验收: 钢筋进场时,应按照现行国家标准《钢筋砼用热轧带肋钢筋》GB1499等的规定抽取试件作力学性能检验,其质量必须符合有关标准规定。 验收方法:检查产品合格证、出厂检验报告和进场复验报告。 取样方法:按照同一批量、同一规格、同一炉号、同一出厂日期、同一交货状态的钢筋,每批重量不大于60t为一检验批,进行现场见证取样;当不足60t也为一个检验批,进行现场见证取样。试样分为抗拉试件两根,冷弯试件两根。实验室进行检验时,每一检验批至少应检验一个拉伸试件,一个弯曲试件。?试件长度:冷拉试件长度一般≥500mm(500~650mm),冷弯试件长度一般≥250mm (250~350mm)。 (备注:取样时,从任一钢筋端头,截取500~1000mm的钢筋,再进行取样。) 冷拉钢筋:应进行分批验收,每批重量不大于20t的同等级、同直径的冷拉钢筋为一个检验批。 取样数量:两个拉伸试件、两个弯曲试件。?二、钢筋焊接 钢筋焊接在建筑施工中一般分为:闪光对焊、电阻点焊、电弧焊、电渣压力焊、预埋件T型接头埋弧压力焊、钢筋气压焊。?取样方法: 1、闪光对焊:在同一工作班内,由同一焊工完成的300个同级别、同直径钢筋焊接接头应作为一检验批。当同一台班内不足300个接头时也作为一个检验批。其机械性能试验包括拉伸试验和弯曲试验,应从每批成品中切取6个试件,3个作拉伸试验,3个作弯曲试验。拉伸试件长度一般≥500 mm(50 0~650mm);冷弯试件长度一般≥250mm(250~350mm)。 验收方法:?(1)接头处不得有横向袭纹;

(2)与电极接触处的钢筋表面,Ⅰ~Ⅲ级钢筋焊接时不得有明显烧伤;Ⅳ级钢筋焊接时不得有烧伤;负温闪光对焊时,对于Ⅱ~Ⅳ级钢筋,均不得有烧伤; (3)接头处的弯折角不得大于4。;?(4)接头处的钢筋轴线偏移,不得大于0.1倍钢筋直径,同时不得大于2mm。?2、电阻点焊:凡钢筋级别、直径及尺寸均相同的焊接制品,即为同一类型制品,每200件为一批。?热轧钢筋点焊做抗剪试验,试件为3件,长度一般≥600mm;拔低碳钢丝焊点,除作抗剪试验外,还应对较小钢丝做拉伸试验,试件为3件,试件长度一般≥500 mm(500~650mm)。 3、电弧焊:在现场安装条件下,每一楼层中以300个同类型接头(同钢筋级别、同接头类型、同焊接位置)作为一批,不足300个时,仍作为一批。 从每批成品中切取3个接头作拉伸试验,试件长度一般≥500 mm (500~650mm)。 4、电渣压力焊:在一般构筑物中,每300个同类型接头(同钢筋级别、同焊接位置)作为一批;在现浇砼框架结构中,每一楼层中以300个同类型接头作为一批。?从每批成品中切取3个接头作拉伸试验,试件长度一般≥500 mm (500~600mm)。 验收方法:?(1)接头焊包均匀,不得有流疱、裂纹,焊包自钢筋表面至其外边缘宽度≥2mm,厚度≥4mm;?(2)焊接时钢筋表面不得有明显烧伤,其零线不得接在构件主筋上;?(3)接头处的钢筋轴线偏移不得大于0.1倍钢筋直径,同时4)接头处的弯折角不得大于4。。 不得大于2mm。?( (备注:对焊接检验报告复查时,其焊接的力学性能必须大于或等于其原材的力学性能。本现场暂时未使用到预埋件T型接头埋弧压力焊及钢筋气压焊,因此不予赘述。) 1、水泥 三、水泥、砂石? 水泥进场验收:水泥进场时应对其品种、级别、包装或散装仓号、出厂日期等进行检查,并应对其强度、安定性及其他必要的性能指标进行复验,其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。

常用建筑材料进场检验批次

常用建筑材料进场检验批次 一、水泥《混凝土施工验收规范》GB50204-2002 按同一生产厂家、同一等级、同一品种、同一批号且连续进场的水泥,袋装不超过200t 为一批,散装不超过500t为一批,每批抽样检验不少于一次。 二、钢材《钢筋混凝土用热轧带肋钢筋》GB1499 同一牌号、同一炉罐号(批号)、同一规格(直径)、同一交货状态,不大于60t为一个检验批。 三、砂《普通混凝土用砂质量标准及检验方法》JGJ52。 用大型运输工具的,以400立方米或600t为一检验批;用小型工具运输的,以200立方米或300t为一检验批。 四、碎石或卵石《普通混凝土用碎石或卵石质量标准及检验方法》JGJ52。大型运输工具运输的,以400立方米或600立方米为一检验批;小型工具运输的,以200立方米或300吨为一检验,不足一批按一批计。 五、砖《砌体结构验收规范》GB50203-2002 每一生产厂家的砖到现场后,按烧结砖15万块、多孔砖5万块、灰砂砖及粉煤灰砖10万块各为一个检验批,抽检数量为一组。 六、混凝土小型砌块:必须对其强度等级进行复检,每一生产厂家、每一万块至少抽检一组,用于多层以上建筑基础和底层的小砌快抽检数量应不小于二组。 七、钢筋连接 1、电弧焊件接头:在现场安装条件下,每一至二楼层中以300个接头形式、同钢筋级别的接头作为一批:不足300个时,仍作为一批。 2、电渣压力焊接头:在一般构筑物中,以300个同级别钢筋接头为一个检验批;在现浇钢筋混凝土结构中,应为每一层或施工区段中300个同级别钢筋接头作为一批,不足300个接头仍应作为一批。 3、闪光对弧焊接头:在同一台班内焊接接头的数量较少,可在一周内累计计算;累计仍不足300个接头,应按一批计算。 4、气压焊接头:一般构筑物中,以300个接头为一批,在现浇钢筋混凝土结构中,同一楼层中应以300个接头作为一批,不足300个接头仍应作为一批。 5、预埋件钢筋T型接头:以300件同类型预埋件计为一批。在一周内连续焊接时,可累计计算。不足300件时,按一批计算。 6、锥螺纹接头:同一施工条件、同一材料等级、同规格接头,以500个接头为一个验收批,不足500个也为一个验收批。 7、带肋钢筋套筒挤压连接接头:同一批材料同等级、同形式、同规格接头,以500个为一个验收批进行检验,不足500个也作为一个验收批。 8、机械连接件:在同一施工条件下采用同一批材料的同等级、同形式、同规格的接头,已500个接头为一个检验批,不足500个也做一批。 八、混凝土试块: 结构混凝土的强度等级必须符合设计要求。用于检查结构构件混凝土强度的试件,应在混凝土的浇筑地点随机抽取。取样与试件留置应符合下列规定: 1、每拌制100盘且不超过100立方米的同配合比的混凝土,取样不得少于一次。 2、每工作班拌制的同一配合比的混凝土不足100盘时,取样不 得少于一次。 3、当一次连续浇筑超过1000立方米时,同一配合比的混凝土每200立方米取样不得少于一次。

《建筑材料放射性核素限量》

《建筑材料放射性核素限量》 中国建材网发布时间:2006-1-4 点击数:899 前言 本标准中第3章为强制性条款,其余为推荐性条款。 本标准自生效之日起,同时废除GB6566-2000《建筑材料放射卫生防护标准》、GB 6763-2000《建筑材料产品及建材用工业废渣 放射性物质控制要求》和建材行业标准JC 518-1993(96)《天然石材产品放射防护分类控制标准》。 本标准与GB 6566-2000,GB 6763-2000和JC 518-1993(96)相比主要变化如下:{TodayHot} ——将建筑材料分为建筑物主体工程用建筑主体材料和建筑物饰面用装修材料。规定了建筑主体材料中天然放射性核素比活度的限量,不再进行分类管理;明确了装修材料进行分类管理的要求; ——放射性核素检测方法不再引用GB/T 11713-1989 和GB/T 11743-1989标准; ——删去了建材用工业废渣限量要求方面的具体内容: ——删去了采用γ辐射剂量率检测进行判定的方法和石材矿床勘查中放射性水平预评价准则; 自2002年1月1日起,生产企业生产的产品应执行该国家标准,过渡期6个月;自2002年7月1日起,市场上停止销售不符合该国家标准的产品。{HotTag} 本标准由中国建筑材料工业协会提出。 本标准起草单位:中国建筑材料科学研究院、卫生部工业卫生实验所、中国建材工业地质勘查中心、中国地质大学(北京)。 本标准参加起草单位:中国石材工业协会、福建玄武石材有限公司、山东荣成中磊石材有限公司、国家建材放射性监督检测中心。 本标准主要起草人:马振珠、王南萍、杨钦元、任天山、王玉和。 本标准所代替标准的历次版本发布情况为: ——GB 6566-1986、GB 6566-2000; ——GB 6763-1986、GB 6763-2000; 1 范围 本标准规定了建筑材料中天然放射性核素镭-226、钍-232和钾-40放射性比活度的限量和试验方法。 本标准适用于建造各类建筑物所使用的无机非金属类建筑材料,包括掺工业废渣的建筑材料。 2 术语和定义 下列术语和定义适用于本标准。 2.1 建筑材料building materials 本标准中建筑材料是指:用于建造各类建筑物所使用的无机非金属类材料。本标准将建筑材料分为:建筑主体材料和装修材料。 2.1.1 建筑主体材料main materials for building 用于建造建筑物主体工程所使用的建筑材料。包括:水泥与水泥制品、砖、瓦、混凝土、混凝土预制构件、砌块、墙体保温材料、工业废渣、掺工业废渣的建筑材料及各种新型墙体材料等。

建筑材料放射性核素限量

《建筑材料放射性核素限量》 前言 本标准第3章为强制性条款,其余为推荐性条款。 本标准自生效之日起,同时废除GB6566-2000《建筑材料放射卫生防护标准》、GB6763-2000《建筑材料产品及建材用工业废渣放射性物质控制要求》和建材行业标准JC518-93(96)《天然石材产品放射防护分类控制标准》。 本标准与GB6566-2000、GB6763-2000和JC518-93(96)相比主要变化如下: ——将建筑材料分为建筑物主体工程用建筑主体材料和建筑物饰面用装修材料。规定了建筑主体材料中天然放射性核素比活度的限量,不再进行分类管理;明确了装修材料进行分类管理的要求; ——放射性核素检测方法不再引用GB/T11713-1989和GB/T11743-1989标准; ——删去了建材用工业废渣限量要求方面的内容; ——删去了采用γ辐射剂量率检测进行判定的方法和石材矿床勘查中放射性水平预评价准则; 本标准由中国建筑材料工业协会提出。 本标准起草单位:中国建筑材料科学研究院、卫生部工业卫生实验所、中国建材工业勘查中心、中国地质大学(北京)。 本标准参加起草单位:中国石材工业协会、福建玄武石材有限公司、山东荣成中磊石材有限公司、国家建材放射性监督检测中心。 本标准主要起草人:马振珠、王南萍、杨钦元、任天山、王玉和。 本标准所代替标准的历次版本发布情况为: ——GB6566-1986、GB6566-2000 ——GB6763-1986、GB6763-2000 建筑材料放射性核素限量 1范围 本标准规定建筑材料中天然放射性核素镭-226、钍-232、钾-40放射性比活度的限量和试验方法。 本标准适用于建造各类建筑物所使用的无机非金属类建筑材料,包括掺工业废渣的建筑材料。 2术语和定义 下列术语和定义适用于本标准。 2.1建筑材料buildingmaterials 本标准中建筑材料是指:用于建造各类建筑物所使用的无机非金属类材料。本标准将建筑材料分为:建筑主体材料和装修材料。 2.1.1建筑主体材料mainmaterialsforbuilding 用于建造建筑物主体工程所使用的建筑材料。包括:水泥与水泥制品、砖、瓦、混凝土、混凝土预制构件、砌块、墙体保温材料、工业废渣、掺工业废渣的建筑材料及各种新型墙体材料等。 2.1.2装修材料decorativematerials 用于建筑物室内、外饰面用的建筑材料。包括:花岗石、建筑陶瓷、石膏制品、吊顶材料、

常用建筑材料进场检验批次

常用建筑材料进场检验批次1 常用建筑材料进场检验批次 一、水泥《混凝土施工验收规范》GB50204-2002 7.2.1条 按同一生产厂家、同一等级、同一品种、同一批号且连续进场的水泥,袋装不超过200t 为一批,散装不超过500t为一批,每批抽样检验不少于一次。 二、钢材《钢筋混凝土用热轧带肋钢筋》GB1499 同一牌号、同一炉罐号(批号)、同一规格(直径)、同一交货状态,不大于60t为一个检验批。 三、砂《普通混凝土用砂质量标准及检验方法》JGJ52。 用大型运输工具的,以400立方米或600t为一检验批;用小型工具运输的,以200立方米或300t为一检验批。 四、碎石或卵石《普通混凝土用碎石或卵石质量标准及检验方法》JGJ52。大型运输工具运输的,以400立方米或600立方米为一检验批;小型工具运输的,以200立方米或300吨为一检验,不足一批按一批计。 五、砖《砌体结构验收规范》GB50203-2002 5.2.1条 每一生产厂家的砖到现场后,按烧结砖15万块、多孔砖5万块、灰砂砖及粉煤灰砖10万块各为一个检验批,抽检数量为一组。 六、混凝土小型砌块:必须对其强度等级进行复检,每一生

产厂家、每一万块至少抽检一组,用于多层以上建筑基础和底层的小砌快抽检数量应不小于二组。 七、钢筋连接 1、电弧焊件接头:在现场安装条件下,每一至二楼层中以300个接头形式、同钢筋级别的接头作为一批:不足300个时,仍作为一批。 2、电渣压力焊接头:在一般构筑物中,以300个同级别钢筋接头为一个检验批;在现浇钢筋混凝土结构中,应为每一层或施工区段中300个同级别钢筋接头作为一批,不足300个接头仍应作为一批。 3、闪光对弧焊接头:在同一台班内焊接接头的数量较少,可在一周内累计计算;累计仍不足300个接头,应按一批计算。 4、气压焊接头:一般构筑物中,以300个接头为一批,在现浇钢筋混凝土结构中,同一楼层中应以300个接头作为一批,不足300个接头仍应作为一批。 5、预埋件钢筋T型接头:以300件同类型预埋件计为一批。在一周内连续焊接时,可累计计算。不足300件时,按一批计算。 6、锥螺纹接头:同一施工条件、同一材料等级、同规格接头,以500个接头为一个验收批,不足500个也为一个验收批。 7、带肋钢筋套筒挤压连接接头:同一批材料同等级、同形式、同规格接头,以500个为一个验收批进行检验,不足500个也作为一个验收批。

常用建材取样送检指南(材料送检的数量和批量

常用建材取样送检指南(材料送检的数量和批量) 常用建材取样送检指南 2.材料送检的数量和批量 2.1 水泥。执行的标准是《硅酸盐水泥、普通硅酸盐水泥》GBl75—1999、《混凝土结构工程施工质量验收规范》GB50204—2002及现行有关标准。水泥进场使用前应分批对其强度、安定性及其他必要的性能指标进行复验,其性能必须符合有关标准的规定。 2.1.1 散装水泥:按同一生产厂家、同一等级、同一品种、同一批号且连续进场的水泥不超过500t为一批,每批抽样送检不少于一次。抽样时随机从不少于3个罐车中取等量水泥,经混拌均匀后称取不少于12kg作样品。 2.1.2 袋装水泥:按同一生产厂家,同一等级、同一品种、同一批号且连续进场的水泥不超过200t为一批,每批抽样送检不少于一次。取样应有代表性,可连续取,亦可从20个以上不同部位取等量样品水泥,经混合均匀后称取不少于12kg作样品。 2.1.3 当在使用中对水泥质量有怀疑或水泥出厂超过三个月(快硬硅酸盐水泥超过一个月)时,应抽样复验,并按复验结果使用。 2.2 钢筋。执行的标准是:《钢筋混凝土用热轧带肋钢筋》GBl499—1998、《钢筋混凝土用热轧光圆钢筋》GB13013—91及现行有关标准。 2.2.1 钢筋应按进场时钢筋批号及直径分批送。每60t为—批,不足60t按一批计。每批送检1组。每批钢筋应由同—牌号、同一炉号(批号)、同一规格(直径)、同一交货状态的钢筋组成。 并按如下方法取样: 1、拉伸2根:任选两根钢筋去掉端部100mm,切取长约500mm或10d+200(Φ32以上取长约800mm)。 2、冷弯2根:任取两根钢筋切取,长约350mm或5d+150。 3、钢材化学分析1根:任取一根钢筋切取中部一段长约300—400mm(凡进口钢材;外观质量不合格钢筋;检验中发现热区脆断、焊接及力学性能不良的钢筋必须做化学分析)。2.2.2 每—单位工程基础和主体使用的钢筋应分别送检。(详见3.其他规定) 2.3 钢筋闪光对焊接头按下列规定抽取试件: 1、在同一台班内,由同一焊工完成的300个同牌号、同直径钢筋焊接接头应作为一批。当同一台班内焊接的接头数量较少,可在一周之内累计计算;累计仍不足300个接头时,应按一批计算。 2、力学性能试验时,应从每批接头中随机切取6个接头,其中3个做拉伸试验,3个做弯曲试验(弯曲点应打磨与母材平齐)。 2.3.2 钢筋电弧焊接头按下列规定抽取试件: 1、在现浇混凝土结构中,应以300个同牌号钢筋、同型式接头作为一批;在房屋结构中,应在不超过两楼层中300个同牌号钢筋、同型式接头作为一批;不足300个时仍作一批。 2、在装配式结构中,可按生产条件制作模拟试件,每批3个,做拉伸试验。 2.3.3 电渣压力焊接头按下列规定抽取试件:

常用建筑材料检测标准

常用建筑材料检测 标准 1

一.砂 1.执行标准:JGJ52-92<普通砼用砂质量标准及检验方法> 2.检验批次:应以在施工现场堆放的同产地,同规格分批验收,以400立方米或600吨为一验收批,不足上述数量者以一批计。对于一次进场数量较少,且随进随用者,当质量比较稳定时,能够一个月为一周期以400立方米或600吨为一检验批,不足者亦为一个批次进行抽检。每次从8个不同部位,取样22kg。单项试验的最少取样数量应符合下表规定。做几项试验时,如确能保证试样经一项试验后不致影响另一项试验的结果,可用同一试样进行几项不同的试验。 单项试验取样数量 (kg) 3.检验项目:若受检单位能够提供法定检测单位出具的,能够证明该批砂子合格的检测报告原件,则只做必检项目:颗粒级配;含泥量;泥块含量;CI-含量检验,若无证明材料,或法定单位检测报告与产品 2

不符(有较大差异)时则应对该批材料进行: 1)颗粒级配、2)表观密度、3)紧密和堆积密度、4)含水率、5)含泥量、6)泥块含量、7)有机物含量、8)云母含量、9)轻物质含量、10) 坚固性、11) 硫化物及硫酸盐含量、12) CI-含量、13) 碱活性(根据双方商定)检验4.检验结论: 1)抽样必检:根据JGJ52-92,该批砼用砂必检项目合格(或不合格) 2)抽样全项:根据JGJ52-92,该批砼用砂合格(或不合格) 3)委托必检:根据JGJ52-92,该砼用砂必检项目合格(或不合格) 4)委托全项:根据JGJ52-92,该砼用砂合格(或不合格) 二.卵石(碎石) 1.执行标准:JGJ53-92<普通砼用卵石(碎石)质量标准及检验方法> 2.检验批次:应以在施工现场堆放的同产地,同规格分批验收,以400立方米或600吨为一验收批,不足上述数量者以一批计。对于一次进场数量较少,且随进随用者,当质量比较稳定时,能够一个月为一周期以400立方米或600吨为一检验批,不足者亦为一个批次进行抽检。每次从15个不同部位,取样60kg。单项试验的最少取样数量应符合下表规定。做几项试验时,如确能保证试样经一项试验后不致影响另一项试验的结果,可用同一试样进行几项不同的试验。 单项试验取样数量 (kg) 3

材料及建筑成品检验检测规定(送检)

材料及建筑成品检验检测规定 序号项目名称证明文件送检规定送检数量 1 水泥1、产品合格证 2、出厂物理性能抽 检报告 3、建筑材料放射性 指标检验报告 4、物理性能进场后 检验报告 (水泥进场要收集的 前面3种文件) 取样批量:同一水泥生 产厂、同期出厂、同一出厂编号 及同强度的水泥: (1)散装水泥:≤批 /500t; (2)袋装水泥:≤批 /200t; (3)当对水泥质量有怀疑或 存放期超过三个月(快硬硅酸盐 水泥超过一个月)必须复检。 做到先检验后使用,严禁先施工 后检验 (备注:28天有检测结果,有施 工可否使用,但此资料不能存 档,28天的才能存档) 20个以上不同部位取 等量样品不小于 12kg。 2 1、钢筋 2、预应钢 筋 3、钢绞线 4、钢丝 1、产品合格证 2、出厂抽检报告 3、力学及工艺性能 检验报告 (钢筋只有一份产品 质量证明书) (圆钢即直径是6.5、 8、10,其送检不能 是 加工后的,是刚入场 时,是圆形时就要剪 下来送检了) 同一生产厂、同一炉罐号、同一 规格、级别、同一交货状态及同 一进场时间的钢筋: (a)热轧带肋、光圆钢筋、低 碳钢热轧圆盘条及余热钢筋:≤ 60t/批。(工地用得最多的) (b)冷轧带肋钢筋:≤50t/ 批。 (c)钢筋焊接网应成批验收, 每批应由同一厂家生产的、受力 主筋为同一直径的焊接网组成, 重量不应大于20t/批 做到先检验后使用,严禁先施工 后检验 (备注:送检时,盘形条的钢筋 不能是加工后的直筋,应是弯 筋,即是圆钢筋,即是板筋、箍 筋,未加工过的,即未拉直就要 送检了) 拉伸L=200mm+10d (2支/组)(d是直径) 弯曲L=140mm+6.2d (2支/组)(d是直径) (备注:拉伸的要长弯 曲的钢筋长一些, 如: 拉伸: 弯曲: ) (例:直径12厘) 拉伸: L=200mm+10*12 =200+120 =320mm 弯曲: L=140mm+6.2*12 =140+74.4 =214.4mm

常用建筑材料检验批次

常用建筑材料检验批次 一、水泥取样 1、散装水泥:同一水泥厂生产的同期出厂的同品种、同标号的水泥,以一次进场的同一出厂编号的水泥为一批,且总重量不超过500t。 2、袋装水泥:同一水泥厂生产的同期出厂的同品种、同标号水泥,以一次进场的同一出厂编号为一批,且总重量不超过200t。 二、钢材取样 1、钢筋混凝土用钢筋:应按批进行检查,每批由同一厂别、同一炉罐号、同一规格、同一交货状态、同一进场时间为一验收批,且每批数量不大于60t,取一组试样。一组9根(5根550mm,4根400mm)。(委托时要标明结构形式及是否为一、二、三级抗震等级) 2、焊件:(应作焊前试验和焊中抽样试验)(焊前工艺检验详见JGJ18-2013) (1)钢筋闪光对焊接头:在同一台班内,由同一焊工完成的300个同级别、同直径钢筋焊接接头应作为一批。当同一台班内焊接的接头数量较少。可在一周之内累计计算; 累计仍不足300个接头应按一批计算。 (2)钢筋电弧焊接头:在现场安装条件下,每1—2楼层中以300个同接头形式、同钢筋级别的接头作为一批;不足300个时,仍作为一批。 (3)钢筋电渣压力焊接头: a)在一般构筑物中,应以300个同级钢筋接头作为一批。 b)在现浇钢筋混凝土多层结构中,应以每一楼层或施工区段中300个同级别钢筋接头作为一批,不足300个接头仍应作为一批。 (4)钢筋气压焊接头: a)在一般构筑物中,以300个接头作为一批。 b)在现浇钢筋混凝土房屋结构中,同一楼层中应以300个接头作为一批;不足300个接头仍应作为一批。 三、砂、石取样 同一产地以400M3或300t为一批,取一组试样送检试验。 四、建筑用砌墙砖取样 同一砖厂生产的同标号烧结普通砖检验批量宜在15万块为一验收批,但不得超过一 条生产线的日产量,不足15万块按一批计;烧结空心砖、多孔砖每10万块为一验收 批。

常用建筑材料进场检验及取样规定

常用建筑材料进场检验及取样规定 常用建筑材料进场复检 取样材料 复检主 要内容 取样方法(条件)检验批 钢筋 热轧 带肋 钢筋 力学性能 弯曲性能 1、试件应从不同根钢筋中截取 (圆盘条,应取自不同盘), 每根钢筋距端头不小于 500mm处截取一根拉伸试样 (力学性能),一根冷弯试样。 2、拉伸试样长度为 400MM~500MM;冷弯试样长 度为 5D+150mm 每检验批应由同一牌号,同一炉罐号、同一规格 的钢筋组成,每批重量不大于 60T,抽取二根拉 伸试样,二根冷弯试样;若每批重量大于 60T, 则超过部分,每增加 40T(不足的按 40T计)增 加一根拉伸试样,一根冷弯试样。 热轧 光圆 钢筋 每检验批应由同一牌号,同一炉罐号、同一规格 的钢筋组成,每批重量不大于 60T,抽取二根拉 伸试样,二根冷弯试样;若每批重量大于 60T,

则超过部分,每增加 40T(不足的按 40T计)增 加一根拉伸试样,一根冷弯试样。 冷轧 带肋 钢筋 每批应由同一厂家、同一规格、同一原材料来源、同一生产工艺轧制的钢筋组成,每批不大于 60T, 抽取一根拉伸试样,二根冷弯试样。对 650级及 以上级别钢筋的强度和伸长率应逐盘检验。对直条成捆供应的 550级钢筋力学性能和工艺性能, 以不大于 10T为一批进行检验,抽取一根拉伸试 样,二根冷弯试样。 冷轧 扭钢筋 每批由同一牌号、同一规格尺寸、同一台轧机、同一台班的钢筋组成,且每批不大于 20T,不足 20T按一批计,抽取三根拉伸试样,三根冷弯试样。 水泥 强度 安定性 其它必要 性能指标 一般从 20袋以上(散装水泥不少 于 3罐)中取等量样品,总重 12kg, 拌和均匀。 同厂家、同等级、同品种、同批号且连续进场的水泥,袋装不超过 200T为一批,散装不超过 500T 为一批,每批抽样不少于一次。当在使用中对水泥质量有怀疑或水泥出厂超过三个月(快硬硅酸盐水泥超过一个月)时,应进行复验,并按复验结果使用。

探讨建筑材料放射性的一些影响因素

探讨建筑材料放射性的一些影响因素 探讨建筑材料放射性的一些影响因素 摘要:随着现代生活水平的不断提高,各种建筑材料越来越多受到人们的关注,被广泛的大量应用,有些材料在应用的同时也会给人们赖以生存的自然环境和生活环境带来了重大污染。近年来,建筑材料的放射性危害逐步地引起了人们的高度重视,成为人们关注的焦点问题。文章主要分析了建筑材料的放射性、建筑材料放射性对身体产生的危害,最后重点探讨了建筑材料放射性的一些影响因素和减少危害影响的方法。 关键词:建筑材料;放射性;影响因素 随着我国经济和社会的快速发展,基础设施和房地产项目逐渐增多,建筑材料的需求量在逐年的增加,建筑材料的种类也在逐渐增多。相对于建筑材料中的苯、甲醛等化学物质对人体的危害来讲,建筑材料的放射性危害更是不可预见和不易察觉的,并且它产生危害的潜伏期一般较长。因此,对于建筑材料放射性的影响因素进行分析和研究,对引导人们正确的认识和使用建筑材料具有极其重要的意义。下面先讲一讲建筑工程材料的放射性。 1 建筑材料放射性概述 建筑材料一般可分为装饰材料和建筑主体材料。对于室内环境造成放射性污染的建筑材料主要有两种:一种是以工业废渣和矿渣为原材料制作而成的新型建筑材料。我国目前每年都有大量的工业废渣,如炉渣、煤矿石、高炉矿渣、特种冶金渣、粉煤灰等,被用来生产不同类型的建筑材料;另一种是以砂石、黏土、矿石等直接用来做建筑主体材料或以这些原料加工成的产品。相关的产品主要有大理石、砖、人造花岗岩、饰品、石膏板等。原材料包括河砂、毛石、石灰、花岗石、回填土、三合土、艺术石、水泥、石子等。建筑材料中主要含有Th-232、Ra-226、K-40等天然的放射性核素,这些核素属于半衰期极长的元素,对于人们的身体健康损害较大。研究表明,建筑材料的放射性含量超过一定的标准或限值,将会对人体的免疫系统造成不同

简析建筑材料和装饰装修材料的放射性

简析建筑材料和装饰装修材料的放射性【摘要】通过对建筑材料和装饰装修材料放射性的介绍,提醒人 们对放射性污染不容忽视,让人们了解放射性污染对人体的危害,并对放射性污染的防治提出了一些建议。 【关键词】建筑材料和装饰装修材料;放射性;内照射;外照射近年来,随着我国社会经济的快速发展,人民的生活品质不 断提高。随着住房条件的不断改善和自我保护意识的逐渐增强,人们对建筑物使用的建材所产生的污染高度重视。但是一提到这些污染,多数消费者马上就会想起由涂料、胶粘剂、家具等带来的甲醛、苯、TVOC等有毒、有害物质。殊不知还有一种特殊的污染源,被人们长期忽视,它就是无色、无味、看不见,摸不着,在浑然不觉中杀人于无形的“隐形杀手”―― 建筑材料和装饰装修材料的放射性。 在建筑主体用砖、砌块、砂、石及水泥制品等材料中,在装 饰装修用的石材、石膏板、瓷砖等材料中其实都存在放射性。这些放射性属于天然放射性核素辐射的较多,它们都是由天然原料加工而成,人们往往忽视或者不了解这些材料中所存在的天然放射性核素对人 体带来的危害。 1 放射性的定义及来源 放射性是指元素从不稳定的原子核自发地放出射线(如α射线、β射线、γ射线等),衰变形成稳定的元素而停止放射,这种现象称为放射性。

放射性对人体的危害可分为外照射和内照射两类:外照射指天然辐射源和人为辐射源中的天然放射性核素所产生的β、γ射线对人体的直接照射,主要由γ射线造成;内照射指存在于空气、食品和饮水中的天然放射性核素,通过呼吸和消化系统进入人体内部而形成的照射。 放射性污染物质来源于自然界和人工制造两个方面。 1.1 天然放射性来源 1.1.1 宇宙射线由初级宇宙射线和次级宇宙射线组成; 1.1.2 天然放射性同位素。 1.2 人为放射性核素的来源 1.2.1 核试验及航天事故; 1.2.2 核工业; 1.2.3 工农业、医学科研等部门对放射性核素的应用; 1.2.4 放射性矿的开采和利用。 2 放射性检测标准及指标限量 为了防治放射性污染,保护环境,保障人体健康,2003年6月28日第十届全国人民代表大会常务委员会第三次会议通过《中华人民共和国放射性污染防治法》,其中第十七条指出含有放射性物质的产品,应当符合国家放射性污染防治标准;不符合国家放射性污染防治标准的,不得出厂和销售。 中华人民共和国国家质量监督检验检疫总局发布的GB 503 25-2010《民用建筑工程室内环境污染控制规范》规定,民用建筑

建筑材料放射性现场检测.

建筑材料放射性现场检测 项目完成人员:徐锴陆逊周绚乙 项目完成单位:上海市计量测试技术研究院 【摘要】本文对影响建材表面γ空气比释动能率测量的几个因素作了研究,提出了一种建材放射性现场检测方法和剂量限制要求,并对实验和理论计算结果进行了讨论,二者之间有较好的一致性。【关键词】建筑材料;放射性测量 1 前言 一般情况下,建筑物的放射性大部分来自建筑材料中的天然放射性核素,这些放射性物质对公众造成附加照射,一般表现为全身外照射及其衰变子体的内照射。对建筑材料放射性物质含量的限值是基于辐射防护基本安全标准而确定的,并以常见的放射性核素226Ra、232Th和40K的比活度表征。国际放射防护委员会(ICRP)对公众规定的五年内平均年有效剂量限值为1mSv,如果建造住房和工作用房的建筑材料中226Ra、232Th和40K 的比活度分别为120、100和1000Bq·kg-1(这一放射性水平接近现行国际规定的极限),并假定公众在室内的居留因子为0.8,则建材放射性对公众个体造成的年有效照射剂量约为1.1mSv,已经略为超过ICRP确定的上述有效剂量限值[1]。 为保障公众及其后代的健康与安全,促进建筑材料的合理利用和建材工业的合理发展,各国相继根据本国的放射卫生防护法规和标准制定出建筑材料放射性物质的限制标准及相应的检测方法,并授权或指定有关部门负责贯彻实施。我国现行关于建筑材料放射性主要有以下三部标准,分别是:1994年国家建筑材料工业局颁布的JC518-1993《天然石材产品放射防护分类控制标准》;2000年国家质量技术监督局修订发布的GB6566-2000《建筑材料放射卫生防护标准》;2000年国家质量技术监督局修订发布的GB6763-2000《建筑材料产品及建材用工业废渣放射性物质控制要求》[2,3,4]。上述标准中所规定的测量条件和限制要求均不相同,而且对建筑物室内的γ空气比释动能率没有作出限值要求和指定检测方法。因此,迫切需要建立一种与现行标准有机联系、适合现场快速检测、并具操作性的测量方法,以满足市场需求,这对于保护上海城市环境和公众健康,促进国际大都市的可持续发展具有重要意义。 本文以目前市场上大量用于室内装饰的花岗石材料为研究对象,针对影响石材表面γ空气比释动能率测量结果的几个因素进行了实验研究,得出一种现场快速检测方

各种建筑材料取样送检标准要求

精心整理 建筑材料抽样检测标准 一.砼用砂: 1.执行标准:JGJ52-92《普通砼用砂质量标准及检验方法》 2.检验批次: 应以在施工现场堆放的同产地,同规格分批验收,以400立方米或600吨为一验收批,不足上述数量者以一批计。对于一次进场数量较少,且随进随用者,当质量比较稳定时,可以一个月为一周期以400立方米或600吨为一检验批,不足者亦为一个批次进行抽检。每次从8个不同部位,取样22kg 3.检验项目: 若受检单位能够提供法定检测单位出具的,能够证明该批砂子合格的检测报告原件,则只做以下必检项目:颗粒级配;含泥量;泥块含量;CI-含量检验。若无证明材料,或法定单位检测报告与产品不符(有较大差异)时则应对该批材料进行: 1)颗粒级配2)表观密度3)紧密和堆积密度4)含水率5)含泥量6)泥块含量7)有机物含量8)云母含量9)轻物质含量10)坚固性11)硫化物及硫酸盐含量12)CI-含量13)碱活性(根据双方商定)检验。 4.检验结论: 1)抽样必检:根据JGJ52-92,该批砼用砂必检项目合格(或不合格) 2)抽样全项:根据JGJ52-92,该批砼用砂合格(或不合格) 3)委托必检:根据JGJ52-92,该砼用砂必检项目合格(或不合格) 4)委托全项:根据JGJ52-92,该砼用砂合格(或不合格) 二.砼用卵石(碎石): 1.执行标准:JGJ53-92《普通砼用卵石(碎石)质量标准及检验方法》 2.检验批次: 应以在施工现场堆放的同产地,同规格分批验收,以400立方米或600吨为一验收批,不足上述数量者以一批计。 对于一次进场数量较少,且随进随用者,当质量比较稳定时,可以一个月为一周期以400立方米或600吨为一检验批,不足者亦为一个批次进行抽检。每次从15个不同部位,取样60kg 3.检验项目: 若受检单位能够提供法定检测单位出具的,能够证明该批卵石(碎石)合格的检测报告原件,则只做以下必检项目: 颗粒级配;含泥量;泥块含量;压碎指标;针片状含量。若无证明材料,或法定单位检测报告与产品不符(有较大差异)时则应对该批材料进行: 1)颗粒级配2)表观密度3)紧密和堆积密度4)含泥量5)泥块含量6)有机物7)针片状含量8)坚固性10)压碎指标11)硫化物及硫酸盐含量12)碱活性(根据双方商定)。 4.检验报告: 1)抽样必检:根据JGJ53-92,该批砼用卵石(碎石)必检项目合格(或不合格) 2)抽样全项:根据JGJ53-92,该批砼用卵石(碎石)合格(或不合格) 3)委托必检:根据JGJ53-92,该砼用卵石(碎石)必检项目合格(或不合格) 4)委托全项:根据JGJ53-92,该砼用卵石(碎石)合格(或不合格) 三.混凝土试块: 1.执行标准:GBJ107-87《砼强度检验评定标准》 2.检验批次: 1)砼试样应在砼浇筑地点随机取样: a.每拌制100盘且不超过100立方米的同配合比其取样不少于一次 b.每工作班拌制的同配合比不足100盘时取样不少于一次。 2)对于现浇砼: a.每一班浇楼层同配合比砼其取样不少于一次 b.同一单位工程每一验收项目中同配合比砼其取样不少于一次,每组为3块。 3.检验项目:抗压强度。 4.检验结论; 根据GBJ81-85,该砼试块28天抗压强度达到设计强度的% 四.砂浆试块: 1.执行标准:JGJ70-90《建筑砂浆基本性能测试方法》 2.检验批次: 每一楼层或每250立方米砌体中各种强度等级的砂浆,取样不少于一次;每台搅拌机搅拌的砂浆取样不少于一次;每一工作班取样不少于一次;当砂浆强度等级或配合比有变更时,还应另作试块。每次取样标养试块至少留置一组,同条件养护试块由施工情况确定。 3.检验项目:立方体拉压强度。 4.检验结论:根据JGJ70-90,该砂浆天抗压强度达到设计要求的% 五.轻集料: 1.执行标准: GB/T17431.1-1999《轻集料及其检验方法.第一部分:轻集料》 GB/T17431.2-1999《轻集料及其检验方法.第二部分:轻集料试验方法》 2.检验批次:

建筑工程常用材料送检的数量和批量

材料送检的数量和批量 1.水泥:执行的标准是《硅酸盐水泥、普通硅酸盐水泥》GBl75—1999、《混凝土结构工程施工质量验收规范》GB50204—2002及现行有关标准。水泥进场使用前应分批对其强度、安定性及其他必要的性能指标进行复验,其性能必须符合有关标准的规定。 散装水泥:按同一生产厂家、同一等级、同一品种、同一批号且连续进场的水泥不超过500t 为一批,每批抽样送检不少于一次。抽样时随机从不少于3个罐车中取等量水泥,经混拌均匀后称取不少于12kg作样品。 袋装水泥:按同一生产厂家,同一等级、同一品种、同一批号且连续进场的水泥不超过200t 为一批,每批抽样送检不少于一次。取样应有代表性,可连续取,亦可从20个以上不同部位取等量样品水泥,经混合均匀后称取不少于12kg作样品。 当在使用中对水泥质量有怀疑或水泥出厂超过三个月(快硬硅酸盐水泥超过一个月)时,应抽样复验,并按复验结果使用。 2.钢筋:执行的标准是:《钢筋混凝土用热轧带肋钢筋》GBl499—1998、《钢筋混凝土用热轧光圆钢筋》GB13013—91及现行有关标准。 钢筋应按进场时钢筋批号及直径分批送。每60t为—批,不足60t按一批计。每批送检1组。每批钢筋应由同—牌号、同一炉号(批号)、同一规格(直径)、同一交货状态的钢筋组成。并按如下方法取样: 1、拉伸2根:任选两根钢筋去掉端部100mm,切取长约500mm或10d+200(Φ32以上取长约800mm)。 2、冷弯2根:任取两根钢筋切取,长约350mm或5d+150。 3、钢材化学分析1根:任取一根钢筋切取中部一段长约300—400mm(凡进口钢材;外观质量不合格钢筋;检验中发现热区脆断、焊接及力学性能不良的钢筋必须做化学分析)。每—单位工程基础和主体使用的钢筋应分别送检。 3. 钢筋闪光对焊接头按下列规定抽取试件: 在同一台班内,由同一焊工完成的300个同牌号、同直径钢筋焊接接头应作为一批。当同一台班内焊接的接头数量较少,可在一周之内累计计算;累计仍不足300个接头时,应按一批计算。 力学性能试验时,应从每批接头中随机切取6个接头,其中3个做拉伸试验,3个做弯曲试验(弯曲点应打磨与母材平齐)。 钢筋电弧焊接头按下列规定抽取试件:

建筑材料和装饰装修材料的放射性

近年来,随着我国社会经济的快速发展,人民的生活品质不断提高。随着住房条件的不断改善和自我保护意识的逐渐增强,人们对建筑物使用的建材所产生的污染高度重视。但是一提到这些污染,多数消费者马上就会想起由涂料、胶粘剂、家具等带来的甲醛、苯、TVOC等有毒、有害物质。殊不知还有一种特殊的污染源,被人们长期忽视,它就是无色、无味、看不见,摸不着,在浑然不觉中杀人于无形的“隐形杀手”——建筑材料和装饰装修材料的放射性。 在建筑主体用砖、砌块、砂、石及水泥制品等材料中,在装饰装修用的石材、石膏板、瓷砖等材料中其实都存在放射性。这些放射性属于天然放射性核素辐射的较多,它们都是由天然原料加工而成,人们往往忽视或者不了解这些材料中所存在的天然放射性核素对人体带来的危害。 1. 放射性的定义及来源 放射性是指元素从不稳定的原子核自发地放出射线(如α射线、β射线、γ射线等),衰变形成稳定的元素而停止放射,这种现象称为放射性。 放射性对人体的危害可分为外照射和内照射两类:外照射指天然辐射源和人为辐射源中的天然放射性核素所产生的β、γ射线对人体的直接照射,主要由γ射线造成;内照射指存在于空气、食品和饮水中的天然放射性核素,通过呼吸和消化系统进入人体内部而形成的照射。放射性污染物质来源于自然界和人工制造两个方面。 (1)天然放射性来源

①宇宙射线由初级宇宙射线和次级宇宙射线组成; ②天然放射性同位素。 (2)人为放射性核素的来源 ①核试验及航天事故; ②核工业; ③工农业、医学科研等部门对放射性核素的应用; ④放射性矿的开采和利用。 2. 放射性检测标准及指标限量 为了防治放射性污染,保护环境,保障人体健康,2003年6月28日第十届全国人民代表大会常务委员会第三次会议通过《中华人民共和国放射性污染防治法》,其中第十七条指出含有放射性物质的产品,应当符合国家放射性污染防治标准;不符合国家放射性污染防治标准的,不得出厂和销售。 中华人民共和国国家质量监督检验检疫总局发布的GB 50325-2010《民用建筑工程室内环境污染控制规范》规定,民用建筑工程所使用的砂、石、砖、砌块、水泥、混凝土、混凝土预制构件等无机非金属建筑主体材料的放射性限量,应符合下表规定。 民用建筑工程所使用的无机非金属装修材料,包括石材、建筑卫生陶瓷、石膏板、吊顶材料、无机瓷质砖粘结材料等,进行分类时,其放射性限量应符合下表规定。 测试方法应符合现行国家标准GB 6566-2010《建筑材料放射性核素限量》的规定。

相关主题
文本预览
相关文档 最新文档