当前位置:文档之家› 正弦定理练习 含答案上课讲义

正弦定理练习 含答案上课讲义

正弦定理练习  含答案上课讲义
正弦定理练习  含答案上课讲义

正弦定理练习含答

课时作业1 正弦定理

时间:45分钟 满分:100分

课堂训练

1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )

A.π

12 B.π

6 C.π4 D.π3

【答案】 D

【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =3

2, ∴∠A =π

3.

2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π

3,a =3,b =1,则c 等于( )

A .1

B .2 C.3-1 D. 3 【答案】 B

【解析】 由正弦定理a sin A =b

sin B , 可得3sin π3=1sin B ,sin B =12,

故∠B =30°或150°,

由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.

3.在△ABC 中,若tan A =13,C =5

6π,BC =1,则AB =________.

【答案】

102

【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =10

10.由正弦定理得AB =BC sin C sin A =1×sin 56π

1010

=10

2.

4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.

【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .

【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,

又∵0°<∠C <180°,∴∠C =60°或120°.

(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;

(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.

综上,△ABC的周长为6+23或4+2 3.

【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.

课后作业

一、选择题(每小题5分,共40分)

1.在△ABC中,sin A=sin C,则△ABC是()

A.直角三角形B.等腰三角形

C.锐角三角形D.钝角三角形

【答案】 B

【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.

2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c =()

A.1:2:3 B.1:2: 3

C.1: 2 : 3 D.1: 3 :2

【答案】 D

【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.

由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.

3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =32

3

【答案】 C

【解析】 ∠A =180°-60°-75°=45°,由a sin A =b

sin B 可得b =a sin B sin A =8sin60°

sin45°=4 6.

4.已知△ABC 中,a =1,b =3,A =π

6,则B =( ) A.π3 B.2

3π C.π3或23π D.56π或π6 【答案】 C

【解析】 由a sin A =b sin B 得sin B =b sin A

a , ∴sin B =

3·sin30°1=32,∴B =π3或2

3π.

5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )

A .32 3

B .16

C .326或16

D .323或16 3

【答案】 D

【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8

=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.

∴S =1

2ab sin C 的值有两个,即323或16 3.

6.在△ABC 中,cos A cos B =b a =8

5,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形

【答案】 D

【解析】 ∵cos A cos B =b a =sin B

sin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π

2,∴△ABC 为直角三角形.

7.已知△ABC 中,2sin B -3sin A =0,∠C =π

6,S △ABC =6,则a =( )

A .2

B .4

C .6

D .8

【答案】 B

【解析】 由正弦定理得a sin A =b

sin B ,故由2sin B -3sin A =0, 得2b =3a .①

又S △ABC =12ab sin C =12ab sin π

6=6, ∴ab =24.②

解①②组成的方程组得a =4,b =6.故选B.

8.在△ABC 中,∠A =60°,a =13,则a +b +c

sin A +sin B +sin C 等于

( )

A.833

B.2393

C.263

3 D .2 3 【答案】 B

【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +c

sin A +sin B +sin C =2R =a sin A =13sin60°=239

3.

二、填空题(每小题10分,共20分)

9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2

C 的值为________.

【答案】 0

【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.

10.在锐角三角形ABC 中,若∠A =2∠B ,则a

b 的取值范围是

________.

【答案】 (2,3)

【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴?????

0<2∠B <π2,

0<π-3∠B <π2,

∴π6<∠B <π

4.

∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin A

sin B =2cos B ∈(2,3).

三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)

11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .

【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°

=5 2. (2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=1

2. 又∵0°<∠B <180°,且a >b ,∴∠B =30°.

【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.

12.在△ABC中,已知sin A=sin B+sin C

cos B+cos C

,判断△ABC的形

状.

【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.

【解析】∵sin A=sin B+sin C

cos B+cos C

∴sin A cos B+sin A cos C=sin B+sin C.

∵∠A+∠B+∠C=π,

∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C

=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.

∴cos A(sin B+sin C)=0.

∵∠B,∠C∈(0,π),∴sin B+sin C≠0.

∴cos A=0,∴∠A=π

2

,∴△ABC为直角三角形.

正弦定理证明

一、正弦定理的几种证明方法
1.利用三角形的高证明正弦定理
(1)当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据锐角三角函数的定义,
有CD ?asinB ,CD ? b sin A 。
C
由此,得
a sin A
b ? sinB
同理可得 ,
c sinC
?
b sin B

b
a
A
B
故有
a
b
sinA ? sinB
c ? sinC .从而这个结论在锐角三角形中成立.
D
(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有CD ?asin?CBD ?asin?ABC ,CD ? b sin A 。由此,

a sin A
b ? sin?ABC
同理可得 ,
c sinC
b ? sin?ABC
C
故有
a
b
sinA ? sin?ABC
c ? sinC .
b
a
A
由(1)(2)可知,在
?
ABC
中,
a sin
A
?
b sin
B
c ? sinC
成立.
BD
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
b
c
sinA ? sinB ? sinC .
2.利用三角形面积证明正弦定理
已知△ ABC,设 BC=a, CA=b,AB=c,作 AD⊥BC,垂足为 D. 则 Rt△ ADB
中, sin B ? AD , ∴AD=AB·sinB=csinB.
A
AB
∴S△ ABC= 1 a ? AD ? 1 acsin B . 同理,可证 S△ ABC= 1 absin C ? 1 bcsin A.
2
2
2
2
∴ S△ ABC= 1 absin C ? 1 bcsin A ? 1 acsin B . ∴absinc=bcsinA=acsinB, C
2
2
2
D
B
在等式两端同除以 ABC,可得 sin C ? sin A ? sin B . 即 a ? b ? c .
c
a
b
sin A sin B sin C
3.向量法证明正弦定理
(1)△ ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与 AB 的夹角为
90°-A,j 与 CB 的夹角为 90°-C. 由向量的加法原则可得 AC ? CB ? AB ,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量
第1页共5页

2018年必修五《正弦定理》教案

§1.1.2 正弦定理 一、知识与技能 1会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题 2通过三角函数、正弦定理等多处知识间联系来体现事物之间的普遍联系与辩证统一. 3.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、教学重点与难点: 重点:正弦定理的探索及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【授课类型】:习题拔高课 四、教学过程 一、知识回顾 1正弦定理的内容是什么? 二、例题讲解 例 1试推导在三角形中 A a s i n =B b sin =C c sin =2R 其中R 是外接圆半径. 证明 如图所示,∠A =∠D ∴R CD D a A a 2sin sin === 同理B b sin R 2=,C c sin R 2= ∴ A a sin = B b sin =C c sin =2R a b c O B C A D

例2 在C A a c B b ABC ,,1,60,30和求中,===? 解:∵213 60sin 1sin sin ,sin sin 0=?==∴=b B c C C c B b ,C B C B c b ,,60,0<∴=> 为锐角, 0090,30==∴B C ∴222=+=c b a 例3 C B b a A c ABC ,,2,45,60和求中,===? 解2 3245sin 6sin sin ,sin sin 0=?==∴=a A c C C c A a 0012060,sin 或=∴<

必修五正弦定理和余弦定理

必修五第一讲 正弦定理 知识梳理 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C . 2.解三角形:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 题型分析 [例1] 在△ABC 中,已知a [解] A =180°-(B +C )=180°-(60°+75°)=45°.由 b sin B =a sin A 得,b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A = c sin C 得, c =a sin C sin A =8×sin 75°sin 45°=8×2+642 2=4(3+1).∴A =45°,b =46,c =4(3+1). [变式训练]在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 解:∵A =45°,C =30°,∴B =180°-(A +C )=105°.由 a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. 由 b sin B = c sin C 得b =c sin B sin C =10×sin 105°sin 30°=20sin 75°,∵sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45° =2+64,∴b =20×2+64 =52+5 6. [例2] 在△ABC [解] ∵a sin A =c sin C ,∴sin C =c sin A a =6×sin 45°2=32,∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b = c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. [变式训练]在△ABC 中,若c =6,C =π3 ,a =2,求A ,B ,b . 解:由a sin A =c sin C ,得sin A =a sin C c =22.∴A =π4或A =34π.又∵c >a ,∴C >A ,∴只能取A =π4 , ∴B =π-π3-π4=5π12,b =c sin B sin C =6·sin 5π12sin π3=3+1.

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B =, 故有 sin sin a b A B =sin c C =.从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 =∠sin sin a b A ABC , 同理可得 =∠sin sin c b C ABC 故有 =∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B =sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C =. 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C === sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

苏教版数学必修五:1.1正弦定理(二)【教师版】

课题:§1.1 正弦定理(二) 总第____课时 班级_______________ 姓名_______________ 【学习目标】 掌握正弦定理的内容及其等价形式;会运用正弦定理、内角和定理与三角形的面积公式解决一些与测量和几何计算与证明有关的实际问题. 【重点难点】 学习重点:正弦定理的等价形式及其基本应用. 学习难点:已知两边和其中一边的对角解三角形时判断解的个数. 【学习过程】 一、自主学习与交流反馈: 问题1:对于任意的三角形若已知两边及夹角怎样求三角形的面积? 问题2:正弦定理还有哪些等价的变形形式? 二、知识建构与应用: 例1 在ΔABC 中,已知 C c B b A a cos cos cos ==,试判断ΔABC 的形状. 例2 在ΔABC 中,AD 是∠BAC 的平分线,如图,用正弦定理证明: DC BD AC AB =. 例 3 某登山队在山脚处测得山顶的仰角为,沿倾斜角为的斜坡前进A B 35?20?1000180?-βαβαD C B A

米后到达处,又测得山顶的仰角为,求山的高度. 例4 判断下列三角形解的情况: (1)已知; (2)已知; (3)已知. 四、巩固练习 D 65?060,12,11 ===B c b 0 110,3,7===A b a 045,9,6===B c b

1.在ΔABC 中,已知,150,3,2o ===C b a 则=?ABC S . 2.在中,_________,sin 23==B A b a 则. 3.在中,若,60,3?==A a 那么的外接圆的周长为____ ____. 4.在中,若,则 . 5. 在中, ______,cos cos 的形状为则ABC B C b c ?=. ABC ?ABC ?ABC ?ABC ?3,600==a A _______sin sin sin =++++C B A c b a ABC ?

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

人教课标版高中数学必修5《正弦定理》基础训练

《正弦定理》基础训练 一、选择题 1.在 中,三个内角,,A B C 的对边分别为,,a b c ,若 sin cos a b A B =,则角B 的大小为 ( ) A .6π B .4π C .3π D .2π 2.在中,::4:1:1A B C =,则::a b c = ( ) A .4:1:1 B .2:1:1 C .2:1:1 D .3:1:1 3.在 中,下列关系中一定成立的是 ( ) A .a bsinA > B .a bsinA = C .a bsinA ≤ D .a bsinA ≥ 4.在中,30,2sin sin sin a c b B b A C B ο +-===+-,则 ( ) A .2 B .3 C 2

D .3 2 5.在 中,45,30,2,A B b a ??===则的值为 ( ) A .4 B .22 C .3 D .2 6.在 中,若15,10,60,sin a b A B ?====则 ( ) A . 3 3 B . 63 C . 22 D . 32 7. 的三个内角,,A B C 的对边分别为,,a b c ,若 cos 2cos A b B a ==,则角C 的大小为 ( ) A .60? B .75? C .90? D .120? 8.在 中,3,3,60,a b A B ?===那么角等于 ( ) A .30? B .60?

C .300??或15 D .600??或12 9.已知中,43,2,30,b c C ?===那么此三角形 ( ) A .有一解 B .有两解 C .无解 D .解的个数不确定 10.设 中,内角,,A B C 的对边分别为,,a b c ,且满足cos cos ,a B bC A c -=则是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 二、填空题 11.在 中,若1 3,cos 2 a A ==-,则 的外接圆半径为 。 12.在单位圆上有三点A ,B ,C ,设在中,内角,,A B C 的对边分别为,,a b c , 则 2sin 2sin sin a b c A B C ++= 。 13.在中,角,,A B C 的对边分别为,,a b c , 若6 3,2,cos ,=3 a B A A b ===则 。 14.在 中,角,,A B C 的对边分别为,,a b c , 若21,3,,=3 b c C a π ===则 。 15.在 中,角sin 120,5,7,sin B A A B B C C ? ===则 的值为 。

正弦定理的四种证明方法

正弦定理的四种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

苏教版高中数学必修五正弦定理教案

第 1 课时: §1.1 正弦定理(1) 【三维目标】: 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程; 2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题; 3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一. 4.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、情感、态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 【教学重点与难点】: 重点:正弦定理的探索和证明及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【学法与教学用具】: 1. 学法:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C == ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 2. 教学用具:多媒体、实物投影仪、直尺、计算器 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 1.在直角三角形中的边角关系是怎样的? 2.这种关系在任意三角形中也成立吗? 3.介绍其它的证明方法 二、研探新知 1.正弦定理的推导 (1)在直角三角形中:c a A = sin ,1sin ,sin ==C C B B , 即 =c A a sin ,=c B b sin ,=c C c sin ∴A a sin =B b sin =C c sin 能否推广到斜三角形? (2)斜三角形中 证明一:(等积法,利用三角形的面积转换)在任意斜△ABC 中,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111 sin sin sin 222 ABC S ab C ac B bc A ?= ==,每项

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正弦定理练习 含答案上课讲义

正弦定理练习含答 案

课时作业1 正弦定理 时间:45分钟 满分:100分 课堂训练 1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π 12 B.π 6 C.π4 D.π3 【答案】 D 【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =3 2, ∴∠A =π 3. 2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π 3,a =3,b =1,则c 等于( ) A .1 B .2 C.3-1 D. 3 【答案】 B 【解析】 由正弦定理a sin A =b sin B , 可得3sin π3=1sin B ,sin B =12, 故∠B =30°或150°,

由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B. 3.在△ABC 中,若tan A =13,C =5 6π,BC =1,则AB =________. 【答案】 102 【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =10 10.由正弦定理得AB =BC sin C sin A =1×sin 56π 1010 =10 2. 4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长. 【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A . 【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B , 又∵0°<∠C <180°,∴∠C =60°或120°. (1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;

b8版高中数学必修5正弦定理2

本文为自本人珍藏 版权所有 仅供参考 正弦定理 教学目标 (1)要求学生掌握正弦定理及其证明; (2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点 正弦定理的推导及其证明过程. 教学过程 一.问题情境 在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢? 探索1 我们前面学习过直角三角形中的边角关系,在R t A B C ?中,设90C =?,则 sin a A c = , sin b B c = , sin 1C =, 即:sin a c A = , sin b c B = , sin c c C = , sin sin sin a b c A B C = = . 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动 学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学 探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法 1 若C 为锐角(图(1)),过点A 作A D B C ⊥于D ,此时有 sin A D B c = , sin A D C b = ,所以sin sin c B b C =,即sin sin b c B C = .同理可得sin sin a c A C = ,

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

1.1.1正弦定理公式及练习题

一、引入 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系,我们是否能得到这个边、角关系准确量化的表示呢?这就是我们今天要学习的内容:正弦定理,故此,正弦定理是刻画任意三角形中各个角与其对边之间的关系。 二、新授

1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R C c B b A a 2sin sin sin ===(注:为△ABC 外接圆半径) 2、正弦定理常见变形: (1)边化角公式:A R a sin 2=,B R b sin 2=,C R c sin 2= (2)角化边公式:R a A 2sin =,R b B 2sin =,R c C 2sin = (3)C B A c b a sin :sin :sin ::= (4)R C B A c b a C c B b A a 2sin sin sin sin sin sin =++++=== (5) C c B b C c A a B b A a sin sin sin sin sin sin ===,, (6)B c C b A c C a A b B a sin sin ,sin sin ,sin sin === 3、三角形中的隐含条件: (1)在△ABC 中,c b a >+,c b a <-(两边之和大于第三边,两边只差小于第三边) (2)在△ABC 中,B A b a B A B A B A B A >?>>?>;;cos cos sin sin (3)在△ABC 中,,cos )cos(sin )sin(C B A C B A C B A -=+=+?=++,π 2 cos 2sin C B A =+ 考试·题型与方法 题型一:解三角形 例1:(1)在△ABC 中,已知A=45°,B=30°,c=10,解三角形; (2)在△ABC 中,B=30°,C=45°,c=1,求b 的值及三角形外接圆的半径。 变式训练:在△ABC 中,已知下列条件,解三角形: (1);,,?===602010A b a (2);,,?===606510C c b (3);,,?===4532A b a 例2:下列条件判断三角形解得情况,正确的是( ) A.有两解?===30,16,8A b a B. 有一解?===60,20,18B c b C. 无解?===90,2,15A b a

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

(完整版)必修五;正弦定理与余弦定理

必修五:正弦定理和余弦定理 一:正弦定理 1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即 R C c B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形 (1)R A a C B A c b a 2sin sin sin sin ==++++ (2)?? ???C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)?? ???B c C b A c C a A b B a sin sin sin sin sin sin === (4)R abc A bc B ac C ab S ABC 4sin 21sin 21sin 21====? 以下是ABC ?内的边角关系:熟记 (5)B A B A b a >?>?>sin sin (大边对大角) (6)B A B A cos cos (7)?? ???+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系 (8)2 cos 2sin C B A += (9)若AD 是ABC ?的角平分线,则 AC DC AB DB = 思考题: 1:若B A sin sin =,则B A ,有什么关系? 2:若B A 2sin 2sin =,则B A ,有什么关系? 3:若B A cos cos =,则B A ,有什么关系? 4:若2 1sin > A ,则角A 的范围是什么?

解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形. 例1:已知ABC ?,根据下列条件,解三角形. (1)10,45,60=?=∠?=∠a B A . (2)?=∠==120,4,3A b a . (3)?=∠==30,4,6A b a . (4)?=∠==30,16,8A b a . (5)?=∠==30,4,3A b a . 思考:在已知“边边角”的情况下,如何判断三角形多解的情况 判断方法:(1)用正弦定理:比较正弦值与1的关系 (2)作图法:用已知角所对的高与已知角所对的边长比较. 练习:(1)若?=∠==45,12,6A b a ,则符合条件的ABC ?有几个? (2)若?=∠==30,12,6A b a ,则符合条件的ABC ?有几个? (3)若?=∠==45,12,9A b a ,则符合条件的ABC ?有几个? 例2:根据下列条件,判断三角形形状. (1)C B A 2 22sin sin sin =+. (2)C B A cos sin 2sin = (3)B b A a cos cos = (4)A b B a tan tan 22=

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

相关主题
文本预览
相关文档 最新文档