当前位置:文档之家› 量子计算机发展简史

量子计算机发展简史

量子计算机发展简史
量子计算机发展简史

量子计算机发展简史

原著:Simon Bone & Matias Castro 翻译:bianca 2003年3月26日

内容摘要

听起来好像有点奇怪,计算机的未来可以被建筑在一杯咖啡周围。那些咖啡因分子恰巧是构建“量子计算机”--一种能够保证提供可在几秒钟内破解密码的思想回应功能的新型计算机的可能组成部件。

内容目录

1.介绍

1.1量子计算机的基本要素

1.2量子计算机的缺点--(电子)脱散性

1.3取得结果

2.通用计算的理论

2.1加热流失的信息

2.2通用量子计算机

2.3人工智能

3.建立一台量子计算机

3.1量子点

3.2计算流体

4.量子计算机的应用

4.1Shor算法--Shor的算法--一个范例

4.2Grover算法

4.3量子机械系统的模拟

5.量子通讯

5.1量子通讯是如何工作的

5.2量子比特的任务

6.当今进展及未来展望

7.结论

8.术语表

9.参照表

9.1书籍

9.2人物

9.3杂志文章

9.4网页

1.介绍

经常会有能使计算机的性能大大改善的新技术出现。从晶体管技术的引进,到超大规模集成电路的持续性发展,科技进步的速度总是如此无情。近日来,现代处理器中晶体管体积的减小成为计算机性能改进的关键所在。然而,这种不断的减小并不能够持续很长的时间。如果晶体管变得太小,那种对量子机械的未知影响将会限制它的性能。因此,看起来这些影响会限制我们的计算机技术,它们真的会吗?在1982年,诺贝尔奖获得者--物理学家Richard Feynman想出了“量子计算机” 的概念,那是一种利用量子机械的影响作为优势的计算机。有一段时间,“量子计算机”的想法主要仅仅停留在理论兴趣阶段,但最近的发展令这个想法引起了每一个人的注意。其中一个进步就是一种在量子计算机上计算大量数据的算法的发明,由Peter Shor(贝尔实验室)设计。通过使用这种算法,一台量子计算机破解密码可以比任何普通(典型)计算机都要快。事实上,一台能够实现Shor算法的量子计算机能够在大约几秒内破解当今任何密码技术。在这种算法的推动下,量子计算机的话题开始集中在动力上,全世界的研究人员都争当第一个制造出实用量子计算机的人。

1.1量子计算机的基本要素

在计算机的经典模型中,最基础的构建要素--比特,只能存在于两种截然不同的状态之一:0或是1。在量子计算机中,规则改变了。一个原子比特--经常被简称为“量比”(quantum bit) --不仅仅存在于传统的0和1状态中,还可以是一种两者连续或重叠状态。当一个量比处于这种状态时,它可以被认为存在于两种领域中:一种为0,而另外一种为1。一个基于这种量比的操作能够同时有效地影响两个值。因此,极为重要的一点是:当我们在量比上实行单一操作时,我们是在针对两种不同的值进行的。类似的,一个双量比系统能对4个值进行操作,而一个三量比系统就是8个值。因此,增加量比的数目能够以指数方式增加我们从系统获得的“量子并行效应”(量子并行效应)。在拥有正确算法类型的情况下,它能通过这种并行效应以远低于传统计算机所花费的时间内解决特定的问题。

1.2量子计算机的缺点--(电子)脱散性

使量子计算机如此强大的关键要点是,它对受量子机械规律决定的奇异的亚原子事件的依赖,而这也使它非常脆弱和难以控制。例如,假想一个处于连续状态的量比。一旦它和环境发生了可调节的相互影响,它就将脱散并落入两种传统状态中的一种,这就是脱散性问题。它已经成为了量子计算机作为建立在由连续性状态所带来的量子并行效应上的潜在力量的绊脚石。这个问题很复杂,即使只是看看量比也会引起它的脱散,这使从一台量子计算机获得结果的过程像量子计算机自己做运算一样难。

1.3取得结果

当一个利用量子并行效应的计算执行后,不同的领域将会得到许多不同的结果。事实上,我们只能通过关注各种结果之间的冲突来获得一个计算的结果。值得注意的是:关注一台量子计算机的结果(或者任何中间状态)将会阻止任何不同版本之间进一步冲突的发生。例如,可以阻止任何有用的量子计算继续进行。这种冲突可以用一个简单的例子来表明:在托马斯.杨(Young)的双缝干涉试验中,光通过两条平行细缝照向屏幕。展现在屏幕上的明暗条纹的图案是相长和相消的结果。用类似的方法,每种状态的计算结果都相长和相消出一个可以测量的结果。这个结果对于不同的算法有着不同的重要性,并且可以用于手工推算问题结果(例如:见Shor's algorithm - An example)。

图1 托马斯.杨(Young)的双缝干涉试验演示了光子的干涉。

2.通用计算的理论

所有计算机,从Charles Babbage的分析解析机(analytical engine)(1936)到建立在PC基础上的Pentium(tm),它们的共性之一,是在Alan Turing的著作中所阐述的古典计算理论。事实上,Turing的著作描述了通用的图灵机的概念,一种非常简单的计算机模型,它能

够被设计用来执行任何被自然地认为可计算的操作。所有的计算机都必然能够实现通用图灵机。尽管它们中的有些可能比其它的更快、更大或更昂贵,但它们在功能上是相同的,它们都能执行同样的计算任务。

2.1加热流失的信息

大量的时间都被花费在研究量子理论是否在计算机器上设置了基本限制。结论是,现在普遍相信:物理学并未在计算机器速度、可靠性和记忆容量上设置任何绝对的限制。然而,有一点需要考虑的是,信息可能在计算过程中被丢失。为了使一台计算机能够运行得快,它的操作必须是可逆的。(例如,它的输入必须完全可以从它的输出推出来)。这是因为不可逆的计算将会引起一种可换算成熵的信息的丢失,因此,系统散热的有限能力将会反过来限制计算机的性能。一个信息丢失的例子是一种常见的与门。一个与门有两个输入而只有一个输出,这就意味着在从输入门移动到输出门的过程中,我们损失了一比特的信息。

1976年,Charles Bennett证明了可以利用非门建立一种通用计算机,这种计算机在表示具有原始可逆操作的程序时不会降低它的速度。而有一种合适而且通用的非门可以用来制造计算机--Toffoli门(见图2)。

图2Toffoli门的输入是完全可以从它的输出推断出来的。

2.2通用量子计算机

Church-Turing理论:“存在或者可以制造一种计算机,这种计算机能够被设计进行任何自然物体能够进行的计算。”

在量子计算理论中,已经取得了一系列重大进步。第一个是由Richard Feynman在1982年发现的:一个简单级别的通用模拟器能够模拟任何既定的自然物体的行为。1984年,David Albert做出了第二个发现:他描述了一种“自我调节量子机器人”,这种机器人能够执行任何传统计算机都无法模仿的任务。通过指导这种机器人进行自我调节,它能够获得仅靠从外界环境进行度量绝对无法获得的“主观”信息。最后而且可能也是最重要的

发现是由David Deutsch在1989年做出的,他证明了所有既定计算机的计算能力遵从于量子计算机的规则,一种可以从一台单一的通用量子计算机中获得的规则。这种计算机可以通过Toffoli门的量子等价以及添加一些能够带来0和1状态的线性重叠的操作来实现。这样,一台通用量子计算机就完成了。这个发现需要对Church-Turing理论:“存在或者可以建造一种计算机,这种计算机能够被设计进行任何自然物体能够进行的计算。”进行一点调整。

2.3人工智能

量子计算理论和人工智能领域有一些有趣的联系。对于一台计算机是否真的能实现人工智能的争论已经持续了数年,并且很大程度上是哲学的争论。那些反对这种观点的人解释说:人类的思想,即使只是在理论上,也不可能在图灵机上实现的。

量子计算理论允许我们从一个有些微不同的视角来看待意识问题。首先值得注意的是,任何自然物体,从一块岩石到整个宇宙,都可以被看做是一台量子计算机;而任何可察觉的自然过程都可以被视为一种计算。在这些标准下,大脑可以作为一台计算机而意识就是一种计算。争论的下一个阶段主要是基于Church-Turing理论,并且证明:因为每一台计算机在功能上都是等价的,每台既定的计算机一定能模仿其它的计算机,所以用一台量子计算机模仿意识理性思维必然是可能的。

一些人相信量子计算机是突破人工智能问题的关键所在,但是另外一些人不同意。牛津大学的Roger Penrose认为,意识需要一种更奇特的(也是未知的)物理学。

3.建立一台量子计算机

一台量子计算机在设计上没有什么类似传统计算机,例如你不能使用晶体管和二极管。为了制造一台计算机就需要产生一种新的技术,一种能使“量比”在0和1之间以连贯重叠的状态存在的技术。尽管实现这个目标的最优方法仍然是未知的,但已有许多方法在实验中,并被证明取得了不同程度的成功。

3.1量子点

一个量比执行的范例是“量子点”,它基本上是一个被困在原子牢笼中的单一电子。当量子点暴露在刚好合适波长的激光脉冲下并持续一段时间,电子就会达到一种激发态:而第二次的激光脉冲又会使电子衰落回它的基态。电子的基态和激发态可以被视为量比的0和1状态,而激光在将量比从0状态撞击到1状态或从1撞击到0的应用,能够被看成是一种对取非功能的控制。

如果激光持续时间只有取非功能要求的一半,那么电子将同时处于基态和激发态的重叠中,这也等价于量比的连贯性状态。而更多复杂的逻辑功能可以通过使用成对的安排好的量子点被模拟出来。因此,看起来量子点是一个合适的建造量子计算机的候选人。然而不幸的是,有许多实际问题阻止了这种情况的发生:

1.电子在衰落回基态之前只能在激发态维持一微秒(百万分之一秒)。需要记住的是,每种激光脉冲需要持续的时间大约是1纳秒。这就对在信息散失前所能做出的运算步骤的数量有了限制。

2.构建量子点是一个非常艰难的过程,因为它们如此微?R桓龅湫偷牧孔拥阒本督鲇?0个原子(1纳米)。而使用这些量子点制造一台计算机的技术到目前为止还不存在。

3.为了避免数以千计的激光射入一个狭小的空间,量子点应当制造以回应不同频率的光。一束能够可靠地进行自我调整的激光将会选择性地瞄准有着不同光频率特性的不同组

别的量子点。又一次的,这是一项还不存在的技术。

3.2计算流体

量子点并不是唯一的经过试验的执行量比,其它技术试图使用个体原子或激光的分化作为信息的媒体,而脱散性是这些技术的普遍问题。人们尝试将这些实验从它们周围环境屏蔽起来,例如在千分之一的绝对零度的温度下将其冷却,然而这些方法在减少这个问题的影响方面取得了极其有限的成功。

量子计算领域的最新发展采用了一个根本性的新方法。这种方法放弃了量子媒质应当小并且和它的周围环境隔离的假设,而是使用大量的分子来储存这些信息。当处于磁场中时,一个分子中的每个核子都会在一个特定方向上的旋转,这个旋转特性可以用来描述它的状态,上旋表示1而下旋代表0。核子磁性共振技术可以被用来检测这些旋转状态,特殊无线电波脉冲能够把核子从上旋(1)撞击到下旋(0),反之亦然。

使用这种技术的量子计算机本身就是一个分子,而它的量比就是分子内的那些核子。但是这种技术并不能只使用一个单一分子来实现这些计算,而是用一整“杯”流体分子。这种方法的优势在于,即使液体分子彼此撞击,每个分子中核子的旋转状态仍能保持不变。脱散性仍然是一个问题,但是到目前为止,在这种技术中脱散前的时间已经比任何其它技术的时间要长许多。研究人员相信,几千个原始逻辑操作能够在量比脱散前实现。

麻省理工学院的Dr.Gershenfield,是流体计算技术的倡导者之一。他的研究队伍已经能够将1和1加起来,这是一个远远超越其它任何正在研究中的技术能力的简单任务。而能够计算更复杂任务的关键在于拥有更多的原比,但是这要求更多复杂的分子以及大量的核子,因此咖啡因分子成为一个可能的候?N蘼壅庵址肿邮鞘裁矗?0量比系统的进步都是显而易见的。Dr.Gershenfield希望这样一个系统在年底,将能够乘以数字15。

超过10量比系统的进步可能会更加困难。在一个给定的“计算流体”样本中,将会有大约偶数个上下旋状态,但是将会有一点在超过一个方向上的旋转存在。正是这些少量额外旋转的所发出的表现得好像它是一个单一分子的信号,使它能够被检测出来以及进行运算操作,而剩下的旋转将会有力地彼此抵消掉。这种信号相当微弱,并且在每个量比被加入的时候,以大约2倍的速度持续性减弱。这就会限制一个系统可能拥有的量比的数目,而易读的输出将会更难以检测出来。

4.量子计算机的应用

非常需要注意的是,一台量子计算机并不一定在所以计算任务上都会比一台传统计算机做得好。例如,乘法运算在一台量子计算机上执行的不比在一台类似的传统计算机上快。为了显示量子计算机的优越性,就需要使用开发量子并行效应能力的算法。这些算法难以阐述,而值得记住的最显著理论化的算法当属Shor的算法和Grover的算法。通过使用好这些算法,量子计算机能够大大优于传统计算机。例如,Shor算法允许以极快的速度因式分解大数字。一台传统计算机在分解1000位阿拉伯数字时需要花费

10,000,000,000,000,000,000,000,000年,而一台量子计算机只需大约20分钟。

4.1Shor算法--Shor的算法--一个范例

这是Peter Shor在1995年发明的算法,它能够快速地分解大数字。如果它曾经被使用过,它将会对密码系统有着深刻的影响,它会威胁到由公钥密码学所提供的安全性(例如RSA)。

受到威胁--公钥密码学

这是当前最常用的发送密码数据的方法。它通过使用两把密钥来工作,一把公开的,一把私人的。公开的密钥用来给数据加密,而私人的密钥用来解密。公开的密钥可以容易地从私人的密钥获得,而反之却不可能。然而,一个掌握着你公开密钥的窃听者原则上可以计算出你的私人密钥,因为它们在数学上是相联系的。为了破解私人密钥,需要分解公开密钥,然而这项任务被认为是无法处理的。

例如,1234乘以3433容易算出来,但计算4236322的因子就不那么容易了。分解一个数的质因子的计算复杂度随该数增长而迅速膨胀。破解RSA129(有129位阿拉伯数字)时,花费了1600位因特网用户8个月的时间。密码破译着认为,更多的数字应当被加到密钥中以抵抗计算机性能的增长(这将花费比宇宙年龄还长的时间来计算RSA140)。然而,对于使用运行Shor算法的一台量子计算机,密钥中的阿拉伯数字个数对问题的难度有着极小的影响。破译RSA140只需花费几秒钟的时间。

Shor算法--一个范例

这部分的目的是说明Shor算法有关的基本步骤。为了使问题相对简单易懂,我们将考察找到数字15的质因子问题。因为算法主要由三步组成,讲解将会分为3个阶段...

阶段1

算法的第一个阶段是将记忆寄存器放入一段它所有可能状态的连贯重叠中。字母“Q”将会用来表示一个处于连贯状态的量比。

图3 一个3量比寄存器可以同时表示8个传统状态

当一个量比处于连贯状态中,它可以被认为存在于两个不同的领域中。它作为“1”存在于一个领域中,而在另一个领域中,以“0”存在(见图1)。将这种想法扩展到3比特寄存器,我们可以想像为寄存器存在于8种不同的领域,在每个领域都可以表现一种传统的状态(例如,000, 001, 010, 011, 100, 101, 110, 111)。为了储存数字15,需要一个4比特的寄存器(能够同时在连贯状态下表现数字0到15)。

在寄存器上执行的计算可以被当做并行的一整组计算,每个领域一个。事实上,一个在寄存器上执行的计算是执行在寄存器所能够表现的所有可能值上的。

阶段2

第二个阶段的算法使用寄存器执行一个运算。运算细节如下:

1.数字N是我们希望分解的,N=15。

2.挑选一个随机数N,1

3.X达到存放在寄存器(寄存器A)中的大小,然后除以N。

4.这个操作的余数被放在第二个位寄存器中(寄存器B)。

图4 第二阶段的操作

这个操作之后,寄存器B包含有各个领域结果的叠加。这可以通过一个例子来极好的证明:如果我们令X为2,那么寄存器B中对应于寄存器A中的每个可能值的内容如下。

表格1 寄存器B的内容,N=15, X=2。

注意到寄存器B的内容符合一个重复的序列(1,2,4,8,1,2,4,8...),而这些重复的频率可以被称作f。在当前这种情况下,重复的频率(1, 2, 4, 8)有4个值,所以f=4。

阶段3

最后一个阶段可能是最难以理解的。重复的频率,f,在使用一台量子计算机时将会被发现,这是通过在寄存器B上执行一个复杂的操作,然后察看那些引起每个领域的结果彼此干扰的内容实现的。作为f的结果而发生的值在接下来的等式中被使用,以计算一个可能的质因子。

图5 用来计算质因子的等式

结果数字并不能保证它是一个质因子,但是是的可能性很大。而生成f值的干扰容易使正确答案作为不正确的答案而互相抵消掉。

在我们的例子中,f=4的值确实给出了一个正确的结果3。

答案并不能保证正确的事实并不重要,因为它可以通过乘法很容易地检查出来。如果答案是错误的,用不同的X值重复上述计算将会很有可能得到正确的解。

4.2Grover算法

Lov Grover曾经写过一个算法,使用量子计算机用比传统计算机快的速度检索一个未排序的数据库通常,这需要花费N/2个数字的时间来在一个具有N个入口的数据库中搜索发现一个特定的入口。Grover的算法使在N叉检索中进行相同的搜索变得可能。随着数据库的规模和综合程度增长,这种时间上的节省变得具有显著意义。这种算法所带来的加速是量子并行结构的结果。数据库有效地分布在大量的领域,并且允许一次单一的搜索定位要求的入口。更多数量的操作(与叉N成比例)要求实现,以满足显示一个可读结果的要求。

Grover的算法在密码系统领域有着重要的应用。使用这种算法破解数据加密标准(DES),一种用来保护银行间的经济事务及其它事物的标准,在理论上是可能的。这个标准是建立在一个双方都事先知道的56-比特的数字的基础上的,这个数字被用作加密和解密数据的密钥。

如果一个加密文档及它的原始资料都可以获得,那么就可能找到那个56-比特的密钥。一个使用传统方式的穷举搜索必须在找到正确解前搜索2的55次方个密钥。即使每秒钟尝试10亿个密钥,也需要花费超过一年的时间,而相比较而言Grover的算法找到密钥只需185次检索。对于传统的DES,一种阻止现代计算机破解密码的方法(例如,如果计算机越来越快),仅仅只要在密钥上添加额外的数字,就会使搜索的次数呈指数增长。然而,这对于量子算法速度的影响是可以忽略不计的。

4.3量子机械系统的模拟

1982年,Feynman推测说,量子计算机将能够比传统计算机更大程度地精确模拟量子机械系统。据推测,一台拥有几十个量子比特的量子计算机能够进行模拟,而这对于一台传统计算机来说,所需的时间是不现实的。这应当归因于计算机时间和内存的使用是按照讨论中的量子系统的规模呈指数增长的。

对于传统计算机,一个量子系统的动力学可以用近似值模拟。然而,一台量子计算机能够被“设计”,通过诱使它的变量发生交互作用来模拟一个系统的行为。它们模拟了正在讨论中的系统特性。例如,一台量子计算机能够模拟“笋瓜模型”(一种描述电子在晶体中移动的模型),而这样的任务是超出当今传统计算机的工作范围的。

5.量子通讯

在量子计算方面的研究开创了无旋转领域的量子沟通。这部分研究的目标是通过使用量子机械影响的特性,提供安全可靠的通讯设施。

5.1量子通讯是如何工作的

量子通讯利用光的偏振(例如,一个光子振动的方向)对数据进行编码。在一个方向上的振动可以被视为0,而另一个为1。常用的有两种偏振方式,直线型和对角型(见图6)。

图6 光的偏振可以被用来对数据进行编码。为了接收数据,滤光器的偏振化方向必须与光子的相匹配。

量子通讯开发的特性是,为了接收正确的信息,必须测量光子并使用正确的滤光器偏振方向。例如,和信息传送的偏振方向相同。如果一个接收器是处于直线型的偏振方向,那么就会发射出对角偏振的光子,然后一个完全随机的结果就会出现在接收器上。使用这种方法,特性信息能够发送而使窃听者无法不被发现地偷听。这种机械装置工作原理如下:

1.发送者用随机偏振方式传送信息至接收者。

2.接收者检测这个信息并记录下来(仍然使用随机偏振方式)。

3.然后,发送者通过公共线路通知接收者他所使用的偏振方式。

4.接收者和发送者对在正确偏振方式下获得的信息进行随机选取,进行比较。

5.如果一个窃听者中途截取并转寄信息,那么错误发生的比率将会比预期的要高,这就会引起接收者和发送者的警觉。

6.如果检测出窃听者,那么整个过程将会被重复。

例如,假设有一个发送者叫Alice,她希望传送信息给Bob而不希望被窃听者Eve听到。他们就会遵循上述步骤。如果Eve试图偷听,她就需要测量来自Alice的比特,然后再转寄给Bob(她不能仅仅察看信息,因为这样做会改变信息内容)。她必须使用随机偏振方式,因为她不知道Alice所使用的。可能,Eve会接收到50%的正确信息,而另外的50%由随机的值组成。而大约一半的随机值是正确的,这意味着Eve最好情况下可以将75%的正确信息发送给Bob。

假设通讯线路上的噪音是可以忽略的,Bob将能够检测出Eve偷听了,因为他按照正确的偏振方向所收到的信息包含超过25%的错误。他通过和Alice在公共线路上对随机选取的信息进行比较以检测错误。

另外一种Eve搅乱Bob和Alice通讯的方法是中途截取信息,再将她自己的发送出去。Alice和Bob讨论的一组随机选择的值将会阻碍Eve,并暴露出Eve修改了信息。无论Eve截取的信号有多么微小,Alice和Bob总能够发现她在线上偷听。这个系统只能在通讯线路的噪音可以忽略的情况下工作。如果线路有,例如25%的噪音,就无法将窃听

者从噪音中区分出来。英国电信已经成功地实现了在超过10公里的距离上只有9%的错误的线路,这为量子通讯提供了一个具有希望的未来。

5.2量子比特的任务

一个量子通讯不同的方法是量子比特的任务。使用这种方法,人们可以比较或结合信息,同时保持每个独立文献的隐秘性。这种技术的一个可能应用是合同出价(令公司提出它们最可能的出价,而不仅仅是比最高价位高)。

这种方法的基本操作如下:

1.Alice向Bob发送出一串光子,所有这些光子都具有相同的偏振方式。

2.Bob接收到这些光子,随机地改变他的偏振方式,然后记录下结果。

3.当Bob的偏振方式和Alice的相同时,通过告知他他所见的1和0的形式,Alice能够向Bob证明她所发出的信息。

这个系统的缺点是,Alice能够通过创建成对的光子而只向Bob发送一个来进行作弊。这些配对的光子有着奇怪的量子特性,无论它们分开多远,对一个的观察将会影响到令一个在接收者面前的样子。Alice可以通过修改她手中的副本来改变Bob的光子。研究者们已经发现这个问题一段时间了,而Mayor 最近证明了,这是所有量子比特系统的一个普遍缺点。

6.当今进展及未来展望

最近,在“流体计算”技术方面由Dr.Gershenfield和Dr.chuang(Los Alamos国家实验室,新墨西哥州)领导的工作给予量子计算一个有前景的未来。事实上,Dr.Gershenfield相信,如果现在进步的速度持续下去的话,在不到10年的时间内,量子联合处理器将会变成现实。其它技术,例如量子点,当我们的技术进步后,可能会产生出类似的结果。而乐观者指出,现在研究人员所试验的问题看起来像是技术问题而不是根本性问题。

尚未解决,并且许多人,包括IBM公司托马斯.沃森研究中心的Rolf Landauer,认为量子计算机不太可能发展超过10-量比系统(如上所述),因为脱散性使它们过于脆弱以至于不实用。

量子通讯方面的研究人员已经享受了很大程度上的成功。部分涉及到的计算机已经能够在大约10公路的距离上进行安全的通讯。根据发展这些线路的花费以及现存的对它们的需求,量子通讯将会有一个强大的未来。

7.结论

随着传统计算机渐渐接近它们的极限,量子计算机保证了给予一种新的计算能力水平。随着量子计算机的到来,一种结合了奇特的量子机械效应的,并将每种自然物体看做某种量子计算机的,全新的计算理论诞生了。因此,量子计算机具有模拟任何限定的自然

Two-bit heroes - Computing with

quanta. The Economist Volume

338 Issue 7948

两比特英雄--量子计算(The Economist Volume 338 Issue 7948) 一个量子计算的浅显介绍 Cue the qubits: Quantum

computing - How to make a

quantum computer. The Economist Volume 342 Issue 8005

量比的提示:量子计算--如何制造量子计算机(The Economist Volume 342 Issue 8005) 关于量子计算的有

益介绍 Wake up to Quantum Coffee.

Howard Baker, New Scientist

15/3/97

意识到量子咖啡(Howard Baker, New Scientist 15/3/97) 一个关于相对成功的量子计算方面的流体计算技术的全面讨论 Demonstrate logic gates for

quantum computing. Bertram

Schwarzchild, Physics Today

1/3/96 为量子计算证明逻辑门(Bertram Schwarzchild, Physics Today 1/3/96) 由物理学家指导的关于量子逻辑门的报告

Quantum cheats will always win. Robert Pool, New Scientist 17/5/97 量子欺骗总能获胜(Robert Pool, New Scientist 17/5/97) 一篇详细设计了量子比特任务通讯方案的基本基础的短文

Future of quantum computing

proves to be debatable.

Christopher Monroe, Physics

Today 1/11/96 量子计算的未来是具有争议的(Christopher Monroe, Physics Today 1/11/96) 现实地看待量子计算的可行性

Quantum computation. David P. DiVincenzo, Science 13/10/95 量子计算(DiVincenzo, Science

13/10/95) 一份关于量子计算

的全面报道,不幸的是,文章淹没在物理

符号中

Brewing a quantum computer in

a coffee cup. D. Vergano,

Science News 18/1/97 在咖啡杯中酿造量子计算机(D. Vergano, Science News 18/1/97) 关于量子计算方面的流体计算技术的

简要介绍

Universal Quantum Simulators. Seth Lloyd, Science 23/8/96 通用量子模拟器(Seth Lloyd, Science 23/8/96) 对于量子计算机在

模拟方面应用的深

入观察

When silicon hits its limits. Tom Thompson, Byte 1/4/96 当硅达到它的极限(Tom Thompson,

Byte 1/4/96) 这篇文章包括对量

子计算机的概念和它的可能优势的介

Quantum computation. Artur Ekert, American Institute of 量子计算(Artur Ekert, American Institute of Physics 1993)

一份全面但是技术

性的论文

Physics 1993

Searching a quantum phone book. Gilles Brassard, Science

Volume 275 31/1/97

搜索一个量子电话本(Gilles

Brassard, Science Volume 275 31/1/97) 尽管有些浅显,但仍然是对Grover 算法的良好解释 Quantum-quick Queries. Ivars

Peterson, Science News Volume

150 31/8/96

快速量子的置疑(Ivars Peterson, Science News Volume 150 31/8/96) 对于Grover 算法的良好快速介绍 Quantum code breaking. The Economist, Volume 331 30/4/94 量子密码破解(The Economist, Volume 331 30/4/94) 用外行术语解释的

密码破解

Quantum computation. David Deutsch, Physics World, 1/6/92 量子计算(David Deutsch, Physics World, 1/6/92)

一份关于量子计算

的全面而鼓舞人心

的指导 Experimental quantum

cryptography. C.H.Bennet,

F.Bessette,

G.Brassard,

L.Salvail, J.Smolin 1/11/91

实验性的量子密码系统技术(C.H.Bennet, F.Bessette, G.Brassard, L.Salvail, J.Smolin 1/11/91) 实例深入分析量子密码系统技术 Quantum keys for keeping

secrets. Artur Ekert, New Scientist Volume 137 16/1/93 保护秘密的量子关键(Artur Ekert, New Scientist Volume 137 16/1/93)

非常有用的对于量

子通讯的分析 其它文章:

Quantum Computation, Physics World, 1992, David Deutsch

A quantum leap in secret communications. William Bown, New Scientist 30/1/93 Tight Bounds on Quantum Searching, M. Boyer, G. Brassard, P. Hoyer, A. Tapp Quantum Cryptoanalysis introduction, Artur Ekert

Weirdest Computer of All, The Economist, 28 Sept. 1996

Is the universe a computer?. Julian Brown, New Scientist 14/6/1990

It takes two to tangle - in the quantum world. Ben Stein, New Scientist, 28/9/96 Quantum communication thwarts eavesdroppers. David Deutsch, New Scientist, 9/12/89

Quantum leap in code cracking computers. Mark Ward, New Scientist, 23/12/95 Quantum Code-breaking, The Economist, 30 Apr. 1994

Physical Revue Letters. (Vol. 78 p3414).

计算机发展历史的四个阶段

计算机发展历史的四个阶段 篇一:计算机发展的四个阶段 计算机技术发展的四个阶段 第一代电子计算机 第一台电子管计算机于1946年在美国制成,取名埃尼阿克(ENIAC)。在美国宾夕法尼亚大学诞生的。世界上第一台电子计算机是个庞然大物:重30吨,占地150平方米,肚子里装有18800只电子管。 1.第一代计算机:电子管数字计算机(1946-1958年) 硬件方面,逻辑元件采用电子管,主存储器采用汞延迟线、磁鼓、磁芯;外存储器采用磁带。软件方面采用机器语言、汇编语言。应用领域以军事和科学计算为主。特点是体积大、功耗高、可靠性差、速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。 2.第二代计算机:晶体管数字计算机(1958-1964年) 硬件方面,逻辑元件采用晶体管,主存储器采用磁芯,外存储器采用磁盘。软件方面出现了以批处理为主的操作系统、高级语言及其编译程序。应用领域以科学计算和事务处理为主。并开始进入工业控制领域。特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数十万次,可高达300万次)、性能比第一代计算机有很大的提高。

3.第三代计算机:中、小规模集成电路数字计算机(1964-1970年) 硬件方面,逻辑元件采用中、小规模集成电路,主存储器仍采用磁芯。软件方面出现了分时操作系统以及结构化、规模化程序方法。特点是速度更快(一般为每秒数百万 至数千万次)。而且可靠性有了显著提高,价格进一步下降,产品走向通用话、系列化和标准化。应用领域开始进入文字处理和图形图像处理领域。 4.第四代计算机:大规模集成电路计算机(1970年至今)硬件方面,逻辑元件采用大规模和超大规模集成电路,软件方面出现了数据库管理系统、网络管理系统和面向对象语言等。特点是1971年世界上第一台微处理器在美国硅谷诞生,开始了微型计算机的新时代。应用领域从科学计算、事务管理、过程控制伜步走向家庭。 篇二:计算机发展四个阶段 第一台计算机:1946年ENIAC(埃尼克),由美国宾西法尼亚大学研制成功,它的诞生宣布了电子计算机时代的到来。 随着电子计算机技术的发展,根据计算机所使用的电子逻辑器件的更替发展来描述计算机发展过程。 ◆第一代计算机:电子管计算机(1946—1957)

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

计算机的发展历史

计算机的发展历史 一、第一台计算机的诞生 第一台计算机(ENIAC)于1946年2月,在美国诞生。 ENIAC PC机 耗资100万美圆600美圆 重量30吨10kg 占地150平方米0.25平方米 电子器件1.9万只电子管100块集成电路 运算速度5000次/秒500万次/秒 二、计算机发展历史 1、第一代计算机(1946~1958) 电子管为基本电子器件;使用机器语言和汇编语言;主要应用于国防和科学计算;运算速度每秒几千次至几万次。 2、第二代计算机(1958~1964) 晶体管为主要器件;软件上出现了操作系统和算法语言;运算速度每秒几万次至几十万次。 3、第三代计算机(1964~1971) 普遍采用集成电路;体积缩小;运算速度每秒几十万次至几百万次。 4、第四代计算机(1971~ ) 以大规模集成电路为主要器件;运算速度每秒几百万次至上亿次。 三、我国计算机发展历史

从1953年开始研究,到1958年研制出了我国第一台计算机 在1982年我国研制出了运算速度1亿次的银河I、II型等小型系列机。 计算机的历史 计算机是新技术革命的一支主力,也是推动社会向现代化迈进的活跃因素。计算机科学与技术是第二次世界大战以来发展最快、影响最为深远的新兴学科之一。计算机产业已在世界范围内发展成为一种极富生命力的战略产业。 现代计算机是一种按程序自动进行信息处理的通用工具,它的处理对象是信息,处理结果也是信息。利用计算机解决科学计算、工程设计、经营管理、过程控制或人工智能等各种问题的方法,都是按照一定的算法进行的。这种算法是定义精确的一系列规则,它指出怎样以给定的输入信息经过有限的步骤产生所需要的输出信息。 信息处理的一般过程,是计算机使用者针对待解抉的问题,事先编制程序并存入计算机内,然后利用存储程序指挥、控制计算机自动进行各种基本操作,直至获得预期的处理结果。计算机自动工作的基础在于这种存储程序方式,其通用性的基础则在于利用计算机进行信息处理的共性方法。 计算机的历史 现代计算机的诞生和发展现代计算机问世之前,计算机的发展经历了机械式计算机、机电式计算机和萌芽期的电子计算机三个阶段。 早在17世纪,欧洲一批数学家就已开始设计和制造以数字形式进行基本运算的数字计算机。1642年,法国数学家帕斯卡采用与钟表类似的齿轮传动装置,制成了最早的十进制加法器。1678年,德国数学家莱布尼兹制成的计算机,进一步解决了十进制数的乘、除运算。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

中国计算机发展史

编年(1956-2006)1956年,周恩来总理亲自提议、主持、制定我国《十二年科学技术发展规划》,选定了“ 计算机、电子学、半导体、自动化”作为“发展规划”的四项紧急措施,并制定了计算机科研、生产、教育发展计划。我国计算机事业由此起步。1956年3月,由闵乃大教授、胡世华教授、徐献瑜教授、张效祥教授、吴几康副研究员和北大的党政人员组成的代表团,参加了在莫斯科主办的“ 计算技术发展道路” 国际会议。这次参会可以说是到前苏联“取经”,为我国制定12年规划的计算机部分作技术准备... 1956年,周恩来总理亲自提议、主持、制定我国《十二年科学技术发展规划》,选定了“计算机、电子学、半导体、自动化”作为“发展规划”的四项紧急措施,并制定了计算机科研、生产、教育发展计划。我国计算机事业由此起步。 1956年3月,由闵乃大教授、胡世华教授、徐献瑜教授、张效祥教授、吴几康副研究员和北大的党政人员组成的代表团,参加了在莫斯科主办的“计算技术发展道路”国际会议。这次参会可以说是到前苏联“取经”,为我国制定12年规划的计算机部分作技术准备。随后在制定的12年规划中确定中国要研制计算机,批准中国科学院成立计算技术、半导体、电子学及自动化四个研究所。 1956年8月25日我国第一个计算技术研究机构──中国科学院计算技术研究所筹备委员会成立,著名数学家华罗庚任主任。这就是我国计算技术研究机构的摇篮。 1956年,夏培肃完成了第一台电子计算机运算器和控制器的设计工作,同时编写了中国第一本电子计算机原理讲义。 1957年,哈尔滨工业大学研制成功中国第一台模拟式电子计算机。 1958年8月1日我国第一台小型电子管数字计算机103机诞生。该机字长32位、每秒运算30次,采用磁鼓内部存储器,容量为1K字。 1958年我国第一台自行研制的331型军用数字计算机由哈尔滨军事工程学院研制成功。 1959年9月我国第一台大型电子管计算机104机研制成功。该机运算速度为每秒1万次,该机字长39位,采用磁芯存储器,容量为2K~4K,并配备了磁鼓外部存储器、光电纸带输入机和1/2寸磁带机。 1960年,中国第一台大型通用电子计算机──107型通用电子数字计算机研制成功。 1964年我国第一台自行研制的119型大型数字计算机在中科院计算所诞生,其运算速度每秒5万次,字长44位,内存容量4K字。在该机上完成了我国第一颗氢弹研制的计算任务。 1965年,中国第一台百万次集成电路计算机“DJS-?”型操作系统编制完成。 1965 年6月我国自行设计的第一台晶体管大型计算机109乙机在中科院计算所诞生,字长32位,运算速度每秒10万次,内存容量为双体24K字。 1967年9月中科院计算所研制的109丙机交付用户使用。该机为用户服役15年,有效算题时间10万小时以上,平均使用效率94%以上,被用户誉为“功勋机”。 1972年华北计算所等十几个单位联合研制出容量为7.4兆字节的磁盘机。这是我国研制的能实际使用的最早的重要外部设备。 1974年8月DJS 130小型多功能计算机分别在北京、天津通过鉴定,我国DJS 100系列机由此诞生。该机字长16位,内存容量32K字,运算速度每秒50万次,软件与美国DG公司的NOV A系列兼容。该产品在十多家工厂投产,至1989年底共生产了1000台。

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

计算机网络技术发展史【计算机网络发展的历史】

计算机网络技术发展史【计算机网络发展的历 史】 【计算机网络发展的历史】 本文从网络收集而来,上传到平台为了帮到更多的人,如果 您需要使用本文档,请点击下载按钮下载本文档(有偿下载), 另外祝您生活愉快,工作顺利,万事如意! 一、计算机网络的发展 事实上计算机网络是二世纪60年代起源于美国,原本用于 军事通讯,后逐渐进入民用,经过短短40年不断的发展和完善,现 已广泛应用于各个领域,并正以高速向前迈进。 20年前,在我国很少有人接触过网络。现在,计算机通信网络 以及Inter已成为我们社会结构的一个基本组成部分。网络 被应 用于工商业的各个方面,包括电子银行、电子商务、现代化的企业管 理、信息服务业等都以计算机网络系统为基础。从学校远程 教育到 政府日常办公乃至现在的电子社区,很多方面都离不开网络技术。

可以不夸张地说,网络在当今世界无处不在。 随着计算机网络技术的蓬勃发展,计算机网络的发展大致可划分为4个阶段。 第一阶段:诞生阶段 20世纪60年代中期之前的第一代计算机网络是以单个计算 机为中心的远程联机系统。典型应用是由一台计算机和全美范围内 2 000多个终端组成的飞机定票系统。终端是一台计算机的外部设 备包括显示器和键盘,无CPU和内存。随着远程终端的增多,在主 机前增加了前端机。当时,人们把计算机网络定义为“以传 输信息为目的而连接起来,实现远程信息处理或进一步达到资源共 享的系统”,但这样的通信系统已具备了网络的雏形。 第二阶段:形成阶段 20世纪60年代中期至70年代的第二代计算机网络是以多个主机通过通信线路互联起来,为用户提供服务,兴起于60年代后 期,典型代表是美国国防部高级研究计划局协助开发的 ARPA。主机之间不是直接用线路相连,而是由接口报文处理机转接后互联的。IMP和它们之间互联的通信线路一起负责

量子力学的发展及应用

量子力学论文题目: 量子力学发展历史及应用领域 学生姓名武术 专业电子科学与技术 学号_ 222009322072082 班级2009 级 2班 指导教师张济龙 成绩 _ 工程技术学院 2011年12 月

量子力学发展历史及应用领域 武术 西南大学工程技术学院,重庆 400716 摘要:量子力学发展至今已有一百年了,它发展的道路并不是一帆风顺的。这一百年虽是艰难的,但是辉煌的。此后,人们发现量子力学与现代科技的联系日益紧密,它的发展潜力是不能低估的。本文从两个部分逐次论述了量子力学的发展及应用。第一部分是量子力学的发展,这部分阐述了早期量子论。第二部分是量子力学的应用,这部分阐明了量子力学在固体物理和信息科学中的应用。 关键词:早期量子论;量子力学的发展;量子力学的应用 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。 建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学可谓是量子理论的第二次发展层次,第一次常称作早期量子论,第三次就是量子场论。本文除了论述这三个层次以外,又说了它在现代物理乃至现代物质科学中的地位,阐述了它应用的状况。 一.量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的

计算机的发展历史与未来展望

电子信息工程1班201207020122 杨若雯

计算机的发展历史与未来展望 杨若雯 电子信息工程1班 201207020122 摘要:无处不在、无所不能的电脑,已历经了50多个春华秋实。50余年在人类的历史长河中只是一瞬间,电脑却彻底改变了我们的生活。回顾电脑发展的历史,并依此上溯它的起源,真令人惊叹沧海桑田的巨变;历数电脑史上的英雄人物和跌宕起伏的发明故事,将给后人留下了长久的思索和启迪。 关键词:机械、电子、晶体管、集成电路计算机、第五代计算机 引言:计算的历史十分悠久,可以追溯到原始人用手指计算、石头计算或绳结计算,当文化越来越复杂、社会越来越进步,计算工具也在相应变化,现代计算机的出现就源于这种需求。而计算机无疑是人类历史上最伟大的发明之一。如果说,蒸汽机的发明导致了工业革命,使人类进入了工业社会,那么计算机的发明则导致了信息革命,使人类社会进入了信息社会。 世界上第一台电子计算机于1946年诞生于美国宾夕法尼亚大学,名叫ENIAC。60余年来,计算机及计算机科学与技术发展之迅猛是当初发明者所始料未及的,如今,“计算”已经无所不在,计算机及计算机技术已经深入生产、生活各个方面。而再从头回顾,我们会惊喜而又毫无意外地发现,其实这一切,都是人类文明史的必然产物,是长期的客观需求和技术准备的结果,那些令人惊艳的天才们与无数的专家们用毕生的精力创造了今天的一切——那么庞大迅捷的联系网与媒介,而我们这些站在巨人肩膀上的人,所要做的,就是在计算机的未来历史上,添上浓墨重彩的一笔。 计算机的史前时代 计算机的史前史至少可以追溯到我们祖先用手指或者石头绳结帮助计数的远古时代。数学的萌芽让公元前四五千年的苏美尔人开始了“数字化生存”的初次尝试,他们在发明楔形文字的同时,也在泥板上刻下了人类最早的数字符号。 随后,计算工具开始了快速的演变。中国古代的筹算发展成了算盘,这是人类经过加工制造出来的第一种计算工具,是我国古代发明创造的重要成就之一。而西方自17世纪初起,也开始出现了计算尺,至1957年,卡西欧公司制作了世界上第一台商用小型电子计算器。 机械式计算机 在电子计算机出现之前,从17世纪至19世纪长达两百多年的时间里,一批杰出的科学家相继进行了“机械计算机”的研究,这些计算机虽然构造简单、性能不够好,但其工作原理与现代计算机极为相似,为现代计算机的产生奠定了基础。 世界上第一台机械计算机的荣誉应归功于德国图宾根大学的教授威廉·契克卡德,他的发明早于1642年法国数学家、物理学家和思想家布莱斯·帕斯卡的加法机。1674年,德国伟大的数学家、因独立发明微积分而与牛顿齐名的戈特弗里德·莱布尼茨发明了乘法机。1805年,法国一位机械大师约瑟夫·杰卡德完成了法国纺织机械师贝斯莱·布乔关于“穿孔纸带”的构想,设计制造了“自动提花编织机”,这意味着程序控制思想的萌芽。1822年,被誉为“现代计算机的奠基人”的英国剑桥大学教授查尔斯·巴贝奇从杰卡德的“自动提花编织机”上获得灵感,制成了差分机,并提出了“分析机”的构想,为现代计算机的诞生奠定了理论基础。1873年,美国人弗兰克·鲍德温制造出手摇式计算机,这在电子计算器发明之前是办公室和家庭主要的计算装置。 从机械到电子的进程 机械式计算机采用的都是机械零件,利用机械转动原理工作,而在社会的发展中,电气控制技术逐渐取代了纯机械装置,这代表了计算机发展史上的一次重大飞跃,也标志着由机械计算机时代向电子计算机时代迈进。 1888年,美国统计专家赫尔曼·霍列瑞斯博士首次使用了穿孔卡技术的数据处理机器,

量子力学的历史和发展

量子力学的历史和发展 量子论和相对论是现代物理学的两大基础理论。它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。量子论的创立经历了从旧量子论到量子力学的近30年的历程。量子力学产生以前的量子论通常称旧量子论。它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。 热辐射研究和普朗克能量子假说 十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。德国成为热辐射研究的发源地。所谓热辐射就是物体被加热时发出的电磁波。所有的热物体都会发出热辐射。凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。一个物体被加热从暗到发光,从发红光到黄光、蓝光直至白光。1859年,柏林大学教授基尔霍夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理想物体。1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐射性能可以看作一个黑体。实验表明这样的黑体所发射的辐射的能量密度只与它的温度和频率有关,而与它的形状及其组成的物质无关。黑体在任何给定的温度发射出特征频率的光谱。这光谱包括一切频率,但和频率相联系的强度却不同。怎样从理论上解释黑体能谱曲线是当时热辐射理论研究的根本问题。1896年,维恩根据热力学的普遍原理和一些特殊的假设提出一个黑体辐射能量按频率分布的公式,后来人们称它为维恩辐射定律。普朗克就在这时加入了热辐射研究者的行动。普朗克(1858—1947年)出身于一个书香门第之家,曾祖父和祖父曾在哥廷根大学任神学教授,伯父和父亲分别是哥廷根大学和基尔大学的法学教授。他出生在基尔,青年时期在慕尼黑度过。17岁进慕尼黑大学攻读数学和物理学,后来转到柏林大学受教于基尔

一、计算机发展史简介

完成以下操作: 1.标题设置为黑体三号居中,其它各段首行缩进2个字符。 2.设置纸张大小为A4纸,方向为横向。 3.设置上下左右边距为1.5厘米。 4.设置为2栏。 ※※※※※※※※※※※※※※※※以下为答题区※※※※※※※※※※※※※※※ 一、计算机发展史简介 人类所使用的计算工具是随着生产的发展和社会的进步,从简单到复杂、 从低级到高级的发展过程,计算工具相继出现了如算盘、计算尺、手摇机械 计算机、电动机械计算机等。1946年,世界上第一台电子数字计算机(ENIAC)在美国诞生。这台计算机共用了18000多个电于管组成,占地170m2,总重量为30t,耗电140kw,运算速度达到每秒能进行5000次加法、300次乘法。从计算机的发展趁势看,大约2010年前美国就可以研制出千万 亿次计算机。 电子计算机在短短的50多年里经过了电子管、晶体管、集成电路(IC) 和超大规模集成电路(VLSI)四个阶段的发展,使计算机的体积越来越小, 功能越来越强,价格越来越低,应用越来越广泛,目前正朝智能化(第五代) 计算机方向发展。 1.第一代电子计算机 第一代电于计算机是从1946年至1958年。它们体积较大,运算速度较低,存储容量不大,而且价格昂贵。使用也不方便,为了解决一个问题,所 编制的程序的复杂程度难以表述。这一代计算机主要用于科学计算,只在重 要部门或科学研究部门使用。 2.第二代电子计算机 第二代计算机是从1958年到1965年,它们全部采用晶体管作为电子器件,其运算速度比第一代计算机的速度提高了近百倍,体积为原来的几十分 之一。在软件方面开始使用计算机算法语言。这一代计算机不仅用于科学计算,还用于数据处理和事务处理及工业控制。 3.第三代电子计算机 第三代计算机是从1965年到1970年。这一时期的主要特征是以中、小规模集成电路为电子器件,并且出现操作系统,使计算机的功能越来越强,应用范围越来越广。它们不仅用于科学计算,还用于文字处理、企业管理、自动控制等领域,出现了计算机技术与通信技术相结合的信息管理系统,可用于生产管理、交通管理、情报检索等领域。 4.第四代电子计算机 第四代计算机是指从1970年以后采用大规模集成电路(LSI)和超大规模集成电路(VLSI)为主要电子器件制成的计算机。例如80386微处理器,在面积约为10mm X l0mm的单个芯片上,可以集成大约32万个晶体管。 第四代计算机的另一个重要分支是以大规模、超大规模集成电路为基础发展起来的微处理器和微型计算机。 5.第五代计算机 第五代计算机将把信息采集、存储、处理、通信和人工智能结合一起具有形式推理、联想、学习和解释能力。它的系统结构将突破传统的冯?诺依曼机器的概念,实现高度的并行处理。 二、微型计算机大致经历了四个阶段: 第一阶段是1971~1973年,微处理器有4004、4040、8008。1971年Intel公司研制出MCS4微型计算机(CPU为4040,四位机)。后来又推出以8008为核心的MCS-8型。 第二阶段是1973~1977年,微型计算机的发展和改进阶段。微处理器有8080、8085、M6800、Z80。初期产品有Intel公司的MCS一80型(CPU为8080,八位机)。后期有TRS-80型(CPU为Z80)和APPLE-II型(CPU为6502),在八十年代初期曾一度风靡世界。 第三阶段是1978~1983年,十六位微型计算机的发展阶段,微处理器有8086、808880186、80286、M68000、Z8000。微型计算机代表产品是IBM-PC (CPU为8086)。本阶段的顶峰产品是APPLE公司的Macintosh(1984年)和IBM公司的PC/AT286(1986年)微型计算机。 第四阶段便是从1983年开始为32位微型计算机的发展阶段。微处理器相继推出80386、80486。386、486微型计算机是初期产品。1993年,Intel 公司推出了Pentium或称P5(中文译名为"奔腾")的微处理器,它具有64位的内部数据通道。现在Pentium III(也有人称P7)微处理器己成为了主流产品,预计Pentium IV 将在2000年10月推出。

(完整版)物理学发展简史

欢迎共阅 一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以 微观的角度研究物理,量子力学与相对论为近代物理的两大基石。 理

1 2 3 4 1 )和化 (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳 上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集 成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并 放射同频率之光子,藉以将光加以增强。

(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用: (1)工业上:测量、切割、精密加工…… (2)医学上:切割手术(肿瘤、近视)…… (3)军事上:定位、导引…… (4)生活、娱乐上:激光视盘、光纤通讯…… 3、光纤: (一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包 层)两层。 (二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而 传递至另一端。 (三)特性: (核 2。 (1)向量:兼具大小及方向性者,如:速度、力…… (2)纯量:仅具大小无方向性者,如:体积、时间、功…… (二)依定义方式而分: (1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强 度(光度)、物质的量(物量)七种。 (2)导出量:由基本量所定义出之物理量,如:体积、面积、速度等。 (3)物理学(力学)上最常用的三个基本量:时间、长度、质量。 二、测量: 1、定义:将待测物理量与一标准量做比较的过程。

量子力学在现实中的十大应用

数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途,譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种虽缓慢、成效却十分积极的积累过程中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界才变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书的引言中所述:“量子力学在哪?你不正沉浸于其中吗。” 陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息

量子理论发展史

量子理论发展史 20世纪初,Planck提出了能在全波段与观测结果符合的黑体辐射能量密度随频率分布的公式,即Planck公式。要从理论上导出Planck公式,需假定物体吸收或发射电磁辐射,只能以“量子”(quantum)的方式进行,每个“量子”的ε.由于能量不连续的概念在经典力学中是完全不容许的,所以尽管这能量为hv = 个假设能堆到出与实际观测极为符合的Planck公式,在相当长的时间内量子假设并未受到重视。 Einstein在用量子假设说明光电效应问题时提出了光量子概念,他认为辐射场就是由光量子组成,采用光量子概念后光电效应中的疑难迎刃而解。Einstein 和P.J.W.Debye进一步把能量不连续的概念应用于固体中原子的振动,成功解释了温度趋于零时固体比热容趋于零的现象。至此,物理学家们才开始重视能量不连续的概念,并用它来解决经典物理学中的其它疑难问题。比较突出的是原子结构与原子光谱的问题。 1896年,汤姆生提出原子结构的葡萄干面包模型,即正电荷均匀分布于原子中,电子以某种规则排列镶嵌其中。1911年,卢瑟福根据α粒子的散射实验提出了原子的有核模型:原子的正电荷及几乎全部质量集中于原子中心很小的区域,形成原子核,电子围绕原子核旋转。有核模型可以很好解释α粒子的大角度散射实验,但引来了两大问题:(1)原子的大小问题。在经典物理框架中思考卢瑟福的有核模型,找不到一个合理的特征长度。(2)原子的稳定性问题。电子围绕原子核的加速旋转运动。按照经典电动力学,电子将不断辐射能量而减速,轨道半径不断缩小,最后掉到原子核上,原子随之塌缩。但现实世界表明,原子稳定地存在于自然界。矛盾就这样尖锐地摆在面前,亟待解决。 此时,丹麦年轻的物理学家玻尔来到卢瑟福的的实验室,他深深为此矛盾吸引,在分析了这些矛盾后,玻尔深刻认识到原子世界必须背离经典电动力学。玻尔把作用量子h(quantum of action)引进卢瑟福模型,提出原子的量子论:一是原子的具有离散能量的定态概念,一是两个定态之间的量子跃迁概念和频率条件。[4]然而,玻尔理论应用到简单程度仅次于氢原子的氦原子时,结果与实验不符。对微观粒子的运动规律的探索显得紧迫。为了达到这个目的,1924年德布罗意在光有波粒二象性的启示下,提出了微观粒子也具有波粒二象性的假说。[5]提出了德布罗意关系,按照德布罗意关系,与自由粒子联系的波是一个平面波。1927年,戴维孙和革末的电子衍射实验证明了德布罗意假说的正确性。 量子力学理论在1923—1927年间建立起来。微观粒子的量子态用波函数来描述,Schrodinger 方程表示微观粒子波函数随时间变化的规律。海森堡的矩阵

量子力学发展历程

量子力学发展历程 摘要:量子理论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学;量子理论;矩阵力学;波动力学;测不准原理 量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学揭示了微观物质世界的基本规律,为原子物理、固体物理学、核物理学和粒子物理学奠定了基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质,光的吸收与辐射等等方面。从1900年到1913年量子论的早期提出,到经过许多科学家如玻恩、海森伯、玻尔等人的努力诠释,量子力学得到了进一步发展。后来遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的论战,至今尚未结束。 1 普朗克的能量子假设 普朗克在黑体辐射的维恩公式(u = b(λ^-5)(e^-a/λT))和瑞利公式(u = 8π(υ^2)kT / c^3)之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。 2光电效应和固体比热的研究 普朗克的出能量子假说具有划时代的意义,但是,不论是他本人还是同时代人当时对这一点都没有充分认识。爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.1905年,爱因斯坦在其论文《关于光的产生和转化的一个试探性观点》中,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。在那篇论文中,爱因斯坦总结了光学发展中微粒说和波动说长期争论的历史,提示了经典理论的困境,提出只要把光的能量看成不是连续的,而是一份一份地集中在一起,就可以作出合理的解释。与此同时,他还大胆地提出了光电方程,当时还没有足够的实验事实来支持他的理论,因此,爱因斯坦称之为“试探性观点”。但他的光量子理论并没有及时地得到人们的理解和支持,直到1916年,美国物理学家密立根对爱因斯坦的光电方程作出了全面的验证,光量子理论才开始得到人们的承认。1906年,爱因斯坦将普

计算机软件发展历史(简史)

计算机软件发展历史(简史) 来源:互联网 计算机软件技术发展很快。50年前,计算机只能被高素质的专家使用,今天,计算机的使用非常普遍,甚至没有上学的小孩都可以灵活操作;40年前,文件不能方便地在两台计算机之间进行交换,甚至在同一台计算机的两个不同的应用程序之间进行交换也很困难,今天,网络在两个平台和应用程序之间提供了无损的文件传输;30年前,多个应用程序不能方便地共享相同的数据,今天,数据库技术使得多个用户、多个应用程序可以互相覆盖地共享数据。了解计算机软件的进化过程,对理解计算机软件在计算机系统中的作用至关重要。 第一代软件(1946-1953) 第一代软件是用机器语言编写的,机器语言是内置在计算机电路中的指令,由0和1组成。例如计算2+6在某种计算机上的机器语言指令如下:10110000 00000110 00000100 00000010 10100010 01010000 第一条指令表示将“6”送到寄存器AL中,第二条指令表示将“2”与寄存器AL 中的内容相加,结果仍在寄存器AL中,第三条指令表示将AL中的内容送到地址为5的单元中。 不同的计算机使用不同的机器语言,程序员必须记住每条及其语言指令的二进制数字组合,因此,只有少数专业人员能够为计算机编写程序,这就大大限制了计算机的推广和使用。用机器语言进行程序设计不仅枯燥费时,而且容易出错。想一想如何在一页全是0和1的纸上找一个打错的字符! 在这个时代的末期出现了汇编语言,它使用助记符(一种辅助记忆方法,采用字母的缩写来表示指令)表示每条机器语言指令,例如ADD表示加,SUB表示减,MOV表示移动数据。相对于机器语言,用汇编语言编写程序就容易多了。例如计算2+6的汇编语言指令如下: MOV AL,6 ADD AL,2 MOV #5,AL 由于程序最终在计算机上执行时采用的都是机器语言,所以需要用一种称为汇编器的翻译程序,把用汇编语言编写的程序翻译成机器代码。编写汇编器的程序员简化了他人的程序设计,是最初的系统程序员。

相关主题
文本预览
相关文档 最新文档