当前位置:文档之家› 材料焊接性考试重点试题及答案备课讲稿

材料焊接性考试重点试题及答案备课讲稿

材料焊接性考试重点试题及答案备课讲稿
材料焊接性考试重点试题及答案备课讲稿

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。

答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。

4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐

蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的溶合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化相继作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低含碳量,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。

4.7何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性和韧性差。现象与避免措施:{1}高温脆性:在900~1000℃急冷至室温,焊接接头HAZ的塑性和韧性下降。可重新加热到

750~850℃,便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以及预先冷变形有关。加入Mn、Nb使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在

400~500℃长期加热后可出现475℃脆化。适当降低含Cr量,有利于减轻脆化,若出现475℃脆化通过焊后热处理来消除。

4.10从双相不锈钢组织转变的角度出发,分析焊缝中Ni含量为什么比母材高及焊接热循环对焊接接头组织,性能有何影响?答:双相不锈钢的合金以F模式凝固,凝固结束为单相δ组织,随着温度的下降,开始发生δ→γ转变不完全,形成两相组织。显然,同样成分的焊缝和母材,焊缝中γ相要比母材少得多,导致焊后组织不均匀,韧性、塑性下降。提高焊缝中Ni含量,可保证焊缝中γ/δ的比例适当,从而保证良好的焊接性。在焊接加热过程,整个HAZ受到不同峰值温度的作用,最高接近钢的固相线,但只有在加热温度超过原固溶处理温度区间,才会发生明显的组织变化,一般情况下,峰值低于固溶处理的加热区,无显著组织变化,γ/δ值变化不大,超过固溶处理温度的高温区,会发生晶粒长大和γ相数量明显减少,紧邻溶合线的加热区,γ相全部溶于δ相中,成为粗大的等轴δ组织,冷却后转变为奥氏体相,无扎制方向而呈羽毛状,有时具有魏氏组织特征。

5.2.为什么Al-Mg及al-li合金焊接时易形成气孔?al及其合金焊接时产生气孔的原因是什么?如何防止气孔?为什么纯铝焊接易出现分散

小气孔?而al-mg焊接时易出现焊接大气孔?

答:1)氢是铝合金及铝焊接时产生气孔的主要原因。2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝

及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。3)氢在铝及合金中的溶解度在凝点时可从0.69ml/100g突降至

0.036ml/100g相差约20倍,这是促使焊缝产生气孔的重要原因之一。4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更

易促使形成气孔。防止措施:1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时间3)改变弧柱气氛中的氢含量。原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大2)氧化膜不致密,吸水性强的铝合金al-mg比氧化膜致密的纯铝具有更大的气孔倾向,因此纯铝的气孔分数小,而al-mg合金出现集中大气孔3)Al-mg合金比纯铝更易形成疏松而吸水性强的厚氧化膜,而氧化膜中水分因受热而分解出氢,

并在氧化膜上萌出气泡,由于气泡是附着在残留氧化膜上,不易脱离

浮出,且因气泡是在熔化早期形成有条件长大,所以常造成集中大的

气孔。因此al-mg合金更易形成集中的大气孔。

5.8分析O,N,H对钛及钛合金焊接接头质量的影响。分析C对钛及钛合金焊接质量的影响。

(1) 氧的影响氧在高温a-Ti、8-Ti中形成间隙固溶体,起固溶强化作用,造成软的晶格畸变,使强度、硬度提高,但塑性、韧性显著降低。(2) 氮的影响氮对提高工业纯钦焊缝的抗拉强度、硬度,降低焊缝的塑性方面比氧更为显著,即氮的污染脆化作用比氧更为强烈。(3)氢的影响含氢量对焊缝冲击性能的影响最为显著。对抗拉强度和塑性的影响并不很显著。(4)碳的影响在工业纯钦中,当碳的质量分数为0.13%以不时碳固溶在 a-Ti 中,强度极限提高和塑性下降,进一步

提高焊缝含碳量时,焊缝中出现网状TIC,其数量随碳增高而增多,焊缝塑性急剧下降,在焊接应力作用下易出现裂纹。当焊缝中碳的质量分数为0.55%时,焊缝塑性几乎全部消失而变成脆性材料。焊后热处理也无法消除这种脆性。

6.3

6.6

7.1陶瓷与金属焊接时主要问题是产生裂纹,分析裂纹产生的主要原因?从焊接工艺上应采取哪些措施避免裂纹?

(1)陶瓷的线膨胀系数比较小,与金属的线膨胀系数相差较大,陶瓷

与金属焊按时,接头区域会产生残余应力,残余应力较大时还会导致接头处产生裂纹,甚至引起断裂破坏。

(2)为避免陶瓷与金属接头出现焊接裂纹,除添加中间层或合理选用钎料外,可采用以下工艺并r施 1) 合理选择被焊陶瓷与金属,在不影

响接头使用性能的条件下,尽可能使两者的线膨胀系数相差最小。 2) 应尽可能地减小焊接部位及其附近的温度梯度,控制加热和冷却速度:降低冷却速度,有利于应力松弛而使应力减小 3) 采取缺口、突

起和端部变薄等措施合理设计陶瓷与金属的接头结构

材料焊接性

焊接性:同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。 工艺焊接性:指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。 冶金焊接性:熔焊高温下的熔池金属与气相、熔渣等相之间发生化学冶金反应所引起的焊接性变化。 屈强比:屈服强度与抗拉强度之比称为屈强比(σs/σb) 焊缝强度匹配系数:焊缝强度与母材强度之比S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一。碳当量法:各种元素中,碳对冷裂纹敏感性的影响最显著。可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。 点腐蚀:金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀 应力腐蚀:不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。 1、影响材料焊接性的因素:材料、设计、工艺和服役环境 2、合金结构钢按性能分类可分为:强度用钢和低中合金特殊用钢 3、强度用钢:热轧及正火钢、低碳调质钢、中碳调质钢 4、焊缝中存在较高比例针状铁素体组织时,韧性显著提高,韧脆转变温度降低 5、低碳调质钢的种类:高强度结构钢、高强度耐磨钢、高强度韧性钢;成分:碳质量分数不大于0.22%。热处理的工艺一般为奥氏体化→淬火→回火,经淬火回火后的组织是回火低碳马氏体、下贝氏体或回火索氏体 6、中碳调质钢成分:含碳量Wc=0.25%~0.5%较高,并加入合金元素(Mn、Si、Cr、Ni、B)以保证钢的淬透性 7、提高耐热钢的热强性三种合金方式:基体固溶强化、第二相沉淀强化、晶界强化 8、不锈钢的主要腐蚀形式:均匀腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀 9、铜及铜合金分为工业纯铜、黄铜、青铜及白铜 10、不锈钢的分类:按化学成铬不锈钢、铬镍不锈钢、铬锰氮不锈钢 按用途不锈钢、抗氧化钢、热强钢 按组织奥氏体钢、铁素体钢、马氏体钢、铁素体-奥氏体双相钢、沉淀硬化钢 11、铝合金的性质:化学活性强、表面极易氧化、导入性强、易造成不溶合、易形成杂质 12、铸铁分为:白口铸铁、灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁 13、引起应力腐蚀开裂条件:环境、选择性的腐蚀介质、拉应力 1、材料焊接性包含的两个含义 一是材料在焊接加工中是否容易形成接头或产生缺陷; 二是焊接完成的接头在一定的使用条件下可靠运行的能力。 2.焊接性的影响因素 1、材料因素:母材的化学成分,状态,性能 2、设计因素:接头的应力状态,能否自由变形 3、工艺因素:焊接方法和工艺措施 4、服役环境:服役温度、服役介质、载荷性质 3、“小铁研”实验的条件 1) 试验条件试验焊缝选用的焊条应与母材相匹配,所用焊条应严格烘干。试 验焊接参数:焊条直径4mm,焊接电流(170±10)A,焊接电压(24±2)V,焊接速度(150±10)mm/min 2) 检测与裂纹率

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

材料焊接性

一、名词解释 1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预 期使用要求的能力。 2.Ceq(碳当量):把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略 评定钢材冷裂纹倾向的参数指标。 3.焊接线能量:单位长度焊缝上吸收热源的能量 4.熔合比:焊缝是由局部熔化的母材和填充金属组成,局部熔化的母材所占总体的质量比 为熔合比 5.t8/5:在HAZ区中,温度从800到500℃的冷却时间 6.t8/3:在HAZ区中,温度从800到300℃的冷却时间 7.t100:在HAZ区中,温度从峰值温度到100℃的冷却时间 8.微合金化:加入微量的合金元素形成碳化物或氮化物,析出微小的这些化合物产生明显 的沉淀强化作用,在固溶强化的基础上屈服强度提高50~100MPa,并保持了韧性,故称为微合金化。 9.焊缝成形系数:熔焊时,在单道焊缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比 值(F AI=B/H) 10.回火脆性:铬钼耐热钢及其焊接接头在350~500℃温度区间长期运行过程中发生脆变的 现象称为回火脆性 11.点腐蚀:是指在金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀 12.凝固模式:首先是指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种 相完成凝固过程。 13.稳定化处理:将含有T i和N b的不锈钢,先经过固溶处理,再经850~950℃,保温1~4 小时后,空冷的一种处理方式,其目的是使——的碳化物溶解,使碳化物保留,从而达到防止晶间腐蚀的目的 14.铬当量:为把每一铁素体元素,按其铁素体化的强烈程度折合成相当若干铬元素后的总 和 15.应力腐蚀:是指不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开 裂现象 16.镍当量:为把每一奥氏体元素折合成相当若干镍元素后的总和 17.均匀腐蚀:是指接触腐蚀介质的金属表面全部产生腐蚀的现象 18.晶间腐蚀:在晶粒边界附近发生的有选择性的腐蚀现象 19.敏化处理:指经过固溶处理的奥氏体不锈钢,在500~850℃加热,将铬从固溶体中以碳 化铬的形式析出,由于碳比铬扩散快,铬来不及从晶内补充到晶界,造成奥氏体不锈钢的晶界“贫铬”现象,产生晶界腐蚀敏感性 20.热强性:是指在高温下长时间工作时对断裂的抗力(持久强度),或在高温下长时间工 作抗塑性变形的能力(蠕变抗力) 21.耐热性能:是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时又有足 够的强度即热强性 22.475℃脆化:在430~480℃之间长期加热并缓冷,就可导致在常温时或负温时出现强度升 高而韧性下降的现象,称之为475℃脆性 二、选择题 1.焊接性试验(冷裂、热裂) 冷:斜Y形坡口对接裂纹试验、刚性拘束裂纹试验、刚性固定对接裂纹试验、窗形拘束裂纹试验、搭接接头焊接裂纹试验、插销试验

焊接冶金学—材料焊接性课后答案

第三章:合金结构焊接热影响区( HAZ最高硬度 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:( 1)固溶强化,主要强化元素:Mn,Si 。( 2)细晶 强化,主要强化元素: Nb,V。(3)沉淀强化,主要强化元素:Nb,V. ;正火钢的强化方式:( 1)固溶强化, 主要强化元素:强的合金元素( 2)细晶强化,主要强化元素:V,Nb,Ti,Mo ( 3)沉淀强化,主要强化元素: Nb,V,Ti,Mo. ;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200 C以上的热影响区可能产生粗晶脆 化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制 A长大及组织细化作用被 削弱,粗晶区易出现粗大晶粒及上贝氏体、 M-A 等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 2. 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答:Q345钢属于热轧钢,其碳当量小 于0.4 %,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠 光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏 体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达 到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200 C以上的热影响区过热区可能产生粗晶脆 化,韧性明显降低,Q345钢经过600CX 1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂 SJ501,焊丝H08A/H08MnA电渣焊:焊剂HJ431、 HJ360焊丝H08MnMo A CO2气体保护焊:H08系列和YJ5系列。预热温度:100?150C。焊后热处理:电弧焊一般不进行或600?650 C回火。电渣焊 900?930 C正火,600?650 C回火 3. Q345与Q390焊接性有何差异? Q345焊接工艺是否适用于 Q390焊接,为什么?答:Q345与Q390都属 于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于 Q345,所以Q390 的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于 Q390的焊接, 因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 4. 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原 则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 5. 分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如 (14MnMoNiB HQ70 HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影 响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一自回火” 作用,以防止冷裂纹的产生;② 要求在800~500C之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术 ; 典型的低碳调质钢在 Wc> 0.18 %时不应提高冷速,Wc< 0.18 %时可提高冷速(减小热输入)焊接热输入应控制在小于 481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800?500C的冷却速度低于出现脆性混合组织的临界冷却速度,使 热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 6. 低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质 状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下, t8/5 继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由

材料焊接性考试重点试题及答案备课讲稿

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐

焊接冶金学-材料焊接性-课后答案 李亚江版

焊接冶金学材料-焊接性课后习题答案 第一章:概述 第二章:焊接性及其实验评定 1.了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 答:焊接性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。影响因素:材料因素、设计因素、工艺因素、服役环境。 第三章:合金结构钢 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题? 答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以

上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接。 2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。 答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现

腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的溶合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化相继作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低含碳量,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。 4.7何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在 什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性 和韧性差。现象与避免措施:{1}高温脆性:在900~1000℃急冷至 室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃, 便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相 。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以 及预先冷变形有关。加入Mn、Nb使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出 现475℃脆化。适当降低含Cr量,有利于减轻脆化,若出现475℃脆

作业6焊接复习题及参考答案

焊接 一、思考题 1. 常用的焊接方法有哪些?各有何特点?应用范围如何? 2. 手工电弧焊为什么不能用光焊丝进行焊接?(氧化烧损严重,吸气多)焊条药皮 对保证焊缝质量能起什么作用?(保护、脱氧、合金化) 3. 酸性焊条与碱性焊条的特点和应用场合有何不同? 酸性焊条:熔渣呈酸性;工艺性能好;力学性能差,成本低,生产率高。用于一般结构件。 碱性焊条:熔渣呈碱性;工艺性能差;力学性能好,成本高,生产率低。用于重要结构件。 4. 试比较埋弧焊(质量好,生产率高,用于中等厚度的平直长焊缝的焊接)、CO2 气体保护焊(质量一般,生产率高,成本低。可全方位焊接,可焊薄板,用于焊接低碳钢,低合金结构钢)、氩弧焊(质量最高、成本高,可全方位焊接,可焊薄板,用于有色金属和高合金钢的焊接)电阻焊(质量好,生产率高,可焊薄臂结构或中小件)和钎焊的特点和应用范围(1.钎焊接头组织性能变化少,应力、变形小,光洁美观。 2.可焊接材料范围广,也可焊异种材料。 3.可焊接各种精密、复杂、微型的焊件。钎焊接头强度低,工作温度受到焊 料熔点的限制) 5. 产生焊接应力与变形的主要原因是什么?(不均匀的加热)如何消除或减少焊 接应力和焊接变形?(预热、缓冷、后热,锤击,反变形,退焊,跳焊等)6. 焊接接头由哪几部分组成,(焊缝金属、热影响区)它们对焊接接头的力学性 能有何影响? 1.半熔化区(熔合区)(塑韧性差) 2.过热区(塑韧性差) 3. 正火区(性能好) 4.部分相变区(性能基本不变) 5.再结晶区 7. 何谓焊接热影响区?低碳钢的热影响区组织有何变化?焊后如何消除热影响区 的粗晶和组织不均匀性?(正火) 8. 为什么低碳钢有良好的可焊性?(含碳量低,塑韧性好,不易开裂;不易产生 气孔)易淬火钢的可焊性为什么较差?(淬火马氏体的脆性大,易裂) 9. 铸铁的焊接特点如何?(易白口、易开裂、易流失)

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

焊接工艺试题及答案

一、填空题 1焊接结构是以金属材料轧制的—板材—和—型材—作基本元件,采用—焊接—加工方法,按照一定的—结构_组成的,并能承受载荷的(金属)结构。P1 2、焊接结构的分类:按钢材类型可分为_板_结构和格架—结构;按综合因素分类可分为容器和管道结构、—房屋建筑—结构、—桥梁—结构、船舶与海洋—结构、—塔桅—结构和—机器—结构。P2-4 3、管材对接的焊接位置可分为:_平焊—位置、横焊位置和多位置:板材对接的焊接位置可分 为:平焊位置、横焊位置和立焊位置;板材角接的焊接位置可分为: 平焊位置、横焊 位置和立焊位置。P15 5、凡是用文字、图形和表格等形式,对某个焊件科学地规定其工艺过程方案和规范及采用相应工艺装备的技术文件,称之为焊接生产工艺规程。它是生产中的技术指导性文件,是技术准备和生产管理及制定生产进度计划的依据。P21 6、焊接结构制造工艺过程的主要工序有:划线(放样或号料)、切断、成形、边缘加工、制孔、装 配_、焊接、检验、涂漆等。P22 7、焊接结构的生产通常由四部分组成,分别是:1生产前的准备、2金属加工或零、部件的制作、3装配焊接、4 成品加工、检查验收和包装出厂。P27 8在焊接结构制造的零件加工过程中,根据对工件所产生的作用和加工结果,钢材的基本加工方法可分为:变形加工和分离加工。P38 9、在焊接结构制造的零件加工过程中,钢材经过划线和号料后,就转入下料工序,其中,主要的完成方式主要有:机械切割和热切割。P62 10、在进行焊接结构生产的装配过程中,必须具备以下三个基本条件:定位、夹紧、以及测量。 11、在焊接结构生产中,选择合理的装配一焊接顺序很关键,目前,装配一焊接顺序基本有三种类型: 整装整焊、分部件装配、和随装随焊。P144 12、在焊接结构生产的转配过程中,根据不同产品、不同生产类型,有不同的装配工艺方法,主要有:互换法、选配法、和修配法。P144 13、焊接变位机械是改变焊件、焊机或焊工的空间位置来完成机械化、自动化焊接的各种机械装备。P174 14、焊接机器人工作站通常由工业机器人、焊接设备、周边设备、系统控制设备、辅助装置、等部分组成。P208 15、焊接生产线可分为三种类型,分别是:刚性焊接生产线、柔性焊接生产线、和介于二者之间的过渡型生产线。P225

焊接冶金学-材料焊接性 思考题(课后)

第二章:焊接性及其实验评定 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 答:焊接性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能 力。影响因素:材料因素、设计因素、工艺因素、服役环境。 第三章:合金结构钢 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题? 答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si 。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V. ;正火钢的强化方式:(1) 固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo (3)沉淀强化,主要强化元素:Nb,V,Ti,Mo. ; 焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元 素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相 基本固溶,抑制A 长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时效敏感性增大。 制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接。 2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。 答:Q345 钢属于热轧钢,其碳当量小于0.4 %,焊接性良好,一般不需要预热和严格控 制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具 有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345 刚中加入V、Nb 达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响 区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h 退火处理,韧性大 幅提高,热应变脆化倾向明显减小。; 焊接材料:对焊条电弧焊焊条的选择:E5 系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA. 电渣焊:焊剂HJ431、HJ360 焊丝H08MnMoA 。CO2气体保护焊:H08系列和YJ5 系列。预 热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~ 930℃正火,600~650℃回火 3.Q345 与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么? 答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大, 一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 4. 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

材料焊接性试卷(F)答案

《材料焊接性》试卷(F卷)答案(本题15 分)一、名词解释 1、焊接性: 2、热焊接性 3、低温钢:通常指在-10~-196℃温度范围正常使用的钢材。 4、耐热钢:是抗氧化钢和热强钢的总称,在高温下具有较好的抗氧化性并有一定强度的钢材为抗氧化性钢,在高温下具有一定的抗氧化能李和较高强度的钢称为热强钢 5、晶间腐蚀:在晶界附近发生的有选择性的腐蚀现象。 (本题16 分)二、填空 1、低合金钢,船舶用低合金钢,低温钢。 2、针对性,经济性。 3、通常不绣钢,抗氧化钢,热强钢 4、焊条电弧焊,自动焊,氩弧焊 5、材质,工艺因素 6、高温脆化,σ相脆化,475℃脆化 (本题63 分)三、简答 1、低合金钢焊接中焊缝热裂纹的产生原因,分析低碳高Mn热轧钢焊接时焊缝的热裂倾向。 2、热轧及正火钢焊接中焊接材料选择时选用要点。 3、分析低碳调质钢焊接中热输入量如何确定,并分析原因。 热输入量增加使热影响区晶粒粗化,同时促使形成上贝氏体,甚至形成M-A组元,使韧性下降。当热输入过小时,热影响区的淬硬性明显增强,也使韧性下降。焊接热输入的确定以抗裂纹和对热影响区韧性要求为依据。从防止冷裂纹出发,要求冷却速度慢为佳,但对防止脆化来说,冷却速度快较好,因此应兼顾两者的冷却速度范围,这个范围的上限取决于不产生冷裂纹,下限取决于热影响区不出现脆化的混合组织,因此,选择的焊接热输入应保证热影响区过热区的冷却速率刚好在该区域内。 4、中碳调质钢焊接中热影响区软化明显的区段,并分析原因。 中碳调质钢热影响区软化明显的部位是温度处于Ac1?Ac3之间的区段,这与该段的不完全淬火过程有关系,因为不完全淬火区的奥氏体成分远未达到平衡浓度,铁素体和碳化物均未充分融解,冷却是奥氏体易发生分解,造成这个区段的组织强度和硬度都较低。 5、珠光体耐热钢焊接中热影响区冷裂纹产生的原因及消除办法。 淬硬性大的珠光体耐热钢焊接中可能出现冷裂纹。裂纹倾向一般随着钢材中Cr,Mo含量的增加而提高。当焊接中扩散氢含量过高,焊接热输入较小时,由于淬硬组织和扩散氢的作用,常在珠光体耐热钢的焊接接头出现冷裂纹。可采用低氢焊条和控制焊接热输入在合适的范围,加上适当的预热,后热措施,来避免产生焊接冷裂。 6、铁素体不绣钢焊接时焊接材料的选择。 同质焊接材料:与母材金属有相同的颜色和形貌,相同的线膨胀系数和大体相似的耐蚀性,但焊缝金属呈粗大的铁素体组织,韧性较差,为了改善性能,应尽量限制杂质含量,提高纯度,同时进行合理的合金化。 异质焊接材料: 焊后不热处理,奥氏体钢焊缝的颜色和性能与母材不同,这种异质接头的耐蚀性可能低于同质接头,必须根据用途确定适用性。 7、奥氏体不锈钢18-8Ti不发生热影响区晶间腐蚀的具体原因 热影响区晶间腐蚀是指焊接热影响区中加热峰值温度处于敏化加热区的部位所发生的晶间腐蚀。在冷却过程中由于Cr23C6的析出温度为600~850℃,TiC的高达1100℃,冷却速度较快时,碳主要以TiC 的形式析出,而不出现Cr23C6的析出相,从而不发生贫Cr区,不发生晶间腐蚀。 8、铝合金焊接中接头的耐蚀性及提高耐蚀性的方法。 9、灰铸铁焊接中手工电弧焊的概念及优缺点。

材料焊接性.

一、焊接性概念 材料在限定的焊接施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力。(国家标准) 一是结合性能----工艺焊接性材料在焊接加工中是否容易形成接头或产生缺陷 二是使用性能焊接完成的接头在一定使用条件下可靠运行的能 二、研究焊接性的目的 1查明指定材料在指定焊接工艺条件下可能出现的问题 2确定焊接工艺的合理性或材料的改进方向 三、影响焊接性的因素 1材料因素2设计因素3工艺因素4服役环境 四、评定焊接性的原则 一是评定焊接接头产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据; 二是评定焊接接头能否满足结构使用性能要求 五、评定焊接接头工艺缺陷的敏感性主要进行抗裂性试验,其中包括热裂纹试验、冷裂纹试验、消除应力裂纹试验和层状撕裂试验。 六、实焊类方法包含:裂纹敏感性试验、焊接接头的力学性能测试、低温脆性试验、断裂韧性试验、高温蠕变及持久强度试验。(较小的焊件直接做试验,较大的实物缩小化) 七、碳当量的间接估测法 定义:可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。 焊接热影响区的淬硬及冷裂纹倾向与钢种的化学成分有密切关系 化学成分间接地评估钢材冷裂纹的敏感性。 将钢中各种合金元素折算成碳的含量。 钢中决定强度和可焊性的因素主要是含碳量。 以Ceq值的大小估价冷裂纹倾向的大小,认为Ceq值越小,钢材的焊接性能越好。缺点: 1碳当量公式没有考虑元素之间的交互作用 2没有考虑板厚、结构拘束度、焊接工艺、含氢量等因素的影响。 3用碳当量评价焊接性是比较粗略的,使用时应注意条件。 所以,碳当量法只能用于对钢材焊接性的初步分析 1)使用国际焊接学会(IIW) 推荐的碳当量公式时,对于板厚δ<20mm的钢材 CE<0.4%焊接性良好,焊前不需要预热; CE=0.4%-0.6%,尤其是CE>0.5%时,焊接性差,钢材易淬硬,表焊接性已变差,焊接时需预热才能防止裂纹,随板厚增大预热温度要相应提高。 2)日本工业标准(JIS)的碳当量公式时 当钢板厚度δ<25mm和采用焊条电弧焊时(焊接热输入为17kJ/cm),对于不同强度级别的钢材规定了不产生裂纹的碳当量界限和相应的预热措施 斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。

材料的焊接性试验方案

材料的焊接性试验方案 1、在确认了材料的可焊性后,为验证拟订的焊接工艺的可靠性,应进行焊接性试验。 2、焊条、焊丝、焊剂和保护气体的型号或成分改变时,应做焊接工艺试验。但仅是制造厂牌号改变时,不需要再做焊接性试验。 3、自动焊或半自动焊,坡口型式的重量改变,需要进行焊接性试验。 4、对于手工焊接坡口型式的改变,如能保证接头的良好熔合,可以不做新的焊接性试验。 5、焊接性试验所使用的母材及焊接材料应与工程上使用的相同。 6、试验中所取的焊接位置应包含现场作业中所有的焊接位置。 7、焊接性试验每次最少需要做两个试验管接头或板接头,两组接头的试验结果全部合格时,试判定为合格。 8、试件焊完后,应按试验规定程序进行外观检查及无损探伤。 9、当设计文件及专用技术条件无规定时,焊接接头的机械性能试验、试件的截取、加工及试验方法按《焊缝金属及焊接接头机械性能试验》(JB303-62)规定进行。 10、所有板、管接头的焊接性试验均应做拉伸及冷弯试验。 11、根据设计要求,做常温冲击或低温冲击试验,或不做冲击试验。 12、当设计厚度小于20㎜时,冷弯试验应做面弯及背弯试验。 13、当设计厚度大于或等于20㎜时,冷弯试验只做侧弯试验。 14、每个焊接位置试样数量:拉伸试验(2个),面弯试验(2个),背弯试验(2个),侧弯试验(2个),冲击试验(9个)(焊缝、熔合线、热影响区各3个)。 15、机械性能试验的合格标准规定如下: 16、拉伸试验:接头的强度不得低于母材强度的最低保证值。 17、冷弯试验:见下表: 焊接方法 钢材种类弯曲直 径 支座间距弯曲角度碳素钢抗拉<442α 4.2α180°

武汉理工大学2011级《材料焊接性》复习资料

1什么叫焊接性?其影响因素有哪些? 答:焊接性是指同质或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力 影响因素:影响焊接性的四大因素是材料,设计,工艺及服役环境。 2焊接性直接试验方法有哪些?间接试验方法有哪些? 答:直接实验方法:焊接冷裂纹实验方法,焊接热裂纹实验方法,焊接消除应力裂纹实验方法,层状撕裂实验方法。 间接实验方法:碳当量法,焊接冷裂纹敏感指数法,热裂纹敏感性指数法,消除应力裂纹敏感性指数法,层状撕裂敏感性指数法,焊接热影响区最高硬度法。 3如何利用插销试验来确定某种低合金高强钢所需要的预热温度? 答:按插销试验方法的要求制备若干试样,设置一系列温度梯度的预热温度,按选定的焊接方法和严格控制的工艺参数,在底板上熔敷一层堆焊道,焊道中心线通过试棒的中心,其熔深应使缺口尖端位于热影响区的粗晶区,焊道长度约为100~150mm,焊前预热时,应在高于预热温度50~70度时加载,载荷保持至少24h才可卸载,用金相或氧化等方法检测缺口根部是否存在断裂,经多次改变载荷,可求出在试验条件下不出现断裂的临界应力σcr,满足σcr>σs条件所对应的最低温度及即为所需预热温度 Q345(16Mn)与Q390(15MnTi)的强化机制有何不同?二者过热区的脆化机制有何不同?焊接线能量的影响有何不同? 答:1 Q345(16Mn)属于热轧钢,是在Wc<0.2%的基础上通过Mn.Si等合金元素的固溶强化作用来保证钢的强度,Q390(15MnTi)属于正火钢,是在Q345基础上加入一些沉淀强化的合金元素如V.Ti等强碳化物,氮化物形成元素以达到沉淀强化和细化晶粒的作用来达到良好的综合性能2 Q345过热区的脆化主要是由于晶粒长大,出现魏氏组织而降低韧性,或粗晶区中马氏体组织所占的比例增大而降低韧性,Q390是由于出现粗大晶粒及上贝氏体,M-A组元等,导致粗晶区韧性降低3对于Q345,线能量太大出现粗晶脆化,太小出现组织脆化,焊接线能量要适中,因Q345含碳量很小,故焊接线能量的选择可适当放宽,可用较小的线能量,对于Q390,为了避免焊接中由于沉淀析出相的溶入以及晶粒过热引起的热影响区脆化,焊接线能量应偏小一些 3中碳调质钢在调质态焊接与在退火态焊接的工艺方案有哪些差别? 答:1退火态焊接的主要问题是裂纹问题,调质态为防止焊接裂纹和避免热影响软化及HAZ 的脆化,硬化2退火态焊接HAZ和焊缝区的性能通过焊后的调质处理来保证,调质态后不调质处理,HAZ和焊缝区的性能通过焊接工艺及焊材保证3退火态焊接时,焊接方法的选择几乎没有限制,常用焊接方法都能采用,调质态焊接时为减少HAZ的软化,应采用热量集中,能量密度高的方法,焊接热输入越小越好4选择焊接材料时,退火除要求保证不产生冷裂纹外,还要求焊缝金属的调质处理规范应与母材一致,主要合金组成应当与母材相似,对引起焊缝热裂纹倾向和促使金属脆化的元素应加以严格控制,而调质态焊缝金属可与母材有区别,可采用塑韧性较好的奥氏体铬钢焊条或镍或镍基焊条5退火态可采用较高的预热温度和层间温度,焊后及时进行中间热处理,调质态为消除热影响区的淬硬组织和防止延迟裂纹的产生,必须适当采用预热。层间温度控制,中间热处理焊后及时进行回火处理,以上温度应比母材淬火后的回火温度至少低50度 4通过本章学习,归纳在确定钢材是否需要焊后热处理以及确定焊后热处理温度时,应考虑哪些问题? 答:1焊后回火温度不要超过母材原来的回火温度,以免影响母材性能2对于有回火脆性的材料,要避开出现回火脆性的区间3为保证材料的强度性能,焊后热处理温度必须比母材回火温度低4若焊后不得及时进行热处理,应进行保温或中间热处理

相关主题
文本预览
相关文档 最新文档