当前位置:文档之家› 高三数学第十二章 圆锥曲线—椭圆2 复习教案

高三数学第十二章 圆锥曲线—椭圆2 复习教案

高三数学第十二章 圆锥曲线—椭圆2  复习教案
高三数学第十二章 圆锥曲线—椭圆2  复习教案

第二课时 椭圆

———热点考点题型探析

一、复习目标:1、掌握椭圆的定义标准方程,会用定义和求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用;2、运用数形结合,围绕“焦点三角形”,用代数方法研究椭圆的性质,把握几何元素转换成参数c b a ,,的关系

二、重难点: 重点:掌握椭圆的定义标准方程,会用定义和求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用。

难点:椭圆的几何元素与参数c b a ,,的转换。

三、教学方法:讲练结合,探析归纳

四、教学过程

(一)、热点考点题型探析

考点1 椭圆定义及标准方程

题型1:椭圆定义的运用

[例1 ]椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是

A .4a

B .2(a -c)

C .2(a+c)

D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c);

(2)A B D B A ----, 此时小球经过的路程为2(a+c);

(3)A Q B P A ----此时小球经过的路程为4a,故选D 【反思归纳】考虑小球的运行路径要全面

题型2 求椭圆的标准方程

[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.

【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来

[解析]设椭圆的方程为122

22=+b y a x 或)0(12222>>=+b a a y b x , 则?????+=-=-=222)

12(4c b a c a c b ,解之得:24=a ,b=c =4.【反思归纳】准确把握图形特征,正确转化出参数c b a ,,的数量关系.[警示]易漏焦点在y 轴上的情况.

考点2 椭圆的几何性质

题型1:求椭圆的离心率(或范围)

[例3 ] 在ABC △中,

3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .

【解题思路】由条件知三角形可解,然后用定义即可求出离心率

[解析] 3sin ||||21=?=?A AC AB S ABC ,

32||=∴AC ,2cos ||||2||||||22=?-+=A AC AB AC AB BC

2132322||||||-=+=+=BC AC AB e

【反思归纳】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定(2)只要列出c b a 、、的齐次关系式,就能求出离心率(或范围)(3)“焦点三角形”应给予足够关注

题型2:椭圆的其他几何性质的运用(范围、对称性等)

[例4 ] 已知实数y x ,满足1242

2=+y x ,求

x y x -+22的最大值与最小值 [解析] 由1242

2=+y x 得2

2212x y -=, 2202122≤≤-∴≥-∴x x

]2,2[,23)1(212212222-∈+-=+-=-+∴x x x x x y x

当1=x 时,x y x -+22取得最小值23

,当2-=x 时,

x y x -+22取得最大值6 【反思归纳】注意曲线的范围,才能在求最值时不出差错

考点3 椭圆的最值问题

题型: 动点在椭圆上运动时涉及的距离、面积的最值

[例5 ]椭圆19162

2=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________.

【解题思路】把动点到直线的距离表示为某个变量的函数

[解析]在椭圆上任取一点P,设P(θθsin 3,cos 4). 那么点P 到直线l 的距离为: |9)sin(5|2211|

12sin 3cos 4|22-+=+-+?θθθ.22≥

【反思归纳】也可以直接设点),(y x P ,用x 表示

y 后,把动点到直线的距离表示为x 的函数,关键是要具有“函数思想”

(二)、强化巩固导练

1、 如果方程x2+ky2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.

椭圆方程化为22x +k y 22

=1. 焦点在y 轴上,则k 2

>2,即k<1.又k>0,∴0

2、 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于

D,且 901=∠BDB ,则椭圆的离心率为( B ) A 213- B 21

5- C 215- D 23

3、(09江西卷理)过椭圆22

221x y a b

+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为 。 因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a =

从而可得c e a == B 4、(07·广东)已知点P 是椭圆1

422

=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B ,

O 是原点,则四边形OAPB 的面积的最大值是_________.)2,0(),sin ,cos 2(π

θθθ∈P ,则

θθcos 221sin 21?+?=+=??OB OA S S S OPB OPA OAPB 2cos sin ≤+=θθ 5、椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程. [解析] ??

??==-c a c a 23?????==332c a ,3=∴b ,所求方程为122x +92y =1或92x +122y =1. (三)、小结:本课主要探析了三个考点五种题型,它是高考考查的重点,要求大家掌握五种题型的解法,并在题目中能熟练的识别和运用。

(四)、作业布置:复资P120页中3、4、5

课外练习;限时训练49中2、3、6、9、10、11

五、教学反思:

高中数学《椭圆》教案设计

教案设计高中数学 《椭圆》 一、椭圆的定义 1、平面内与两定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的点的轨迹叫做椭圆。 定点F1, F2叫做椭圆的焦点,|F1F2|叫做椭圆的焦距。 2、点集P=﹛M | |MF1| + |MF2|=2a,2a2a>|F1F2|﹜,其中两定点F1,F2叫做椭圆的焦点,两 焦点的距离叫做椭圆的焦距。 二、椭圆的标准方程 1、焦点在x轴上,焦点坐标(±c,0),焦距为2c。 2、焦点在y轴上,焦点坐标(0,±c),焦距为2c。 三、一般方程式 1、Ax2+By2=C 2、Ax2+By2=1 四、椭圆标准方程的求解方法 1、定义法 2、待定系数法 五、几种题型的讲解 1、共焦点 2、焦点三角形 3、与椭圆有关的的轨迹方程的求解 4、直线与椭圆关系 5、中点弦问题及点差法 例题1:过已知圆内的一个定点作圆C与已知圆相切,则圆心C的轨迹是()。 A.圆 B.椭圆 C.圆或椭圆 D.线段 例题2:如图,Rt△ABC中,|AB|=|AC|=1,以点C为一个焦点的椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A,B两点,则这个椭圆的焦距长为。

例题3:求适合下列条件的椭圆的标准方程。 (1)、两个焦点的坐标分别是(-4,0),(0,-4),椭圆上任意一点p 到两焦点距离之和等于10; (2)、两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过 (23 -,25) (3)、焦点在y 轴上,且经过两个点(0,2),(1,0); (4)、经过点P(-23,1),Q(3,-2). 共焦点问题: 例题4:过点(-3,2)且与92x +142 =y 有相同焦点的椭圆的方程为 。 焦点三角形问题: 例题5:已知P 为椭圆174252 2=+y x 上的一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积。 与椭圆有关的的轨迹方程的求解问题: 例题6:已知圆922=+y x ,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且 求点M 的轨迹。 直线与椭圆关系问题 例题7:已知椭圆的中心在原点,焦点在x 轴上,直线y=x+1与该椭圆交于点P 、Q ,且 0·=→ → OQ OP ,|PQ|=210 ,求椭圆的方程。 ' =→→MP PM 2

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

人教版高中数学选修2-1《椭圆及其标准方程》教案 一、课型 新授课 二、教学内容 1、椭圆的定义; 2、椭圆的两类标准方程; 3、根据椭圆的定义及标准方程的知识解决一些简单的问题。 三、教学目标 1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标 准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。让学生感知数学知识与实际生活的普遍联系; 3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学 习数学的积极性,培养学生的学习兴趣和创新意识。培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。 四、教学重点、难点 重点:椭圆的定义及椭圆的标准方程; 难点:椭圆标准方程的推导过程。 五、教学方法 教师引导为主、学生自主探究为辅。 六、教学媒体

幻灯片、黑板。 七、教学过程 (一)创设情境,导入新课 用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。这就是我们这节课所要学习的内容——椭圆及其标准方程。 (二)问题探究 老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何? 1、椭圆的形成 下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢? 如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。我们发现笔尖只能在两个钉子之间来回运动,这时笔尖运动的轨迹是两个钉子之间的线段。 将两个钉子之间的距离再增大,此时就可以发现,细绳的长度比两个钉子之间的距离小,笔尖没有轨迹。 再用课件给学生进行演示: 通过演示可以发现,绳长大于图钉间的距离是画出椭圆的关键。 请同学们根据作图的过程和老师刚才的演示,思考:在作图过程中,有哪些物体的位置没变化?有哪些量没有变化?如何来归纳椭圆的定义呢? 2、椭圆的定义 平面内到两定点F 1、F 2 的距离之和等于常数(大于|F 1 F 2 |)的点的轨迹叫做 椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。通常常数

圆锥曲线解题技巧教案整理后1

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 --- ) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学精讲教案-椭圆及其性质

高中数学-圆锥曲线与方程 第1讲椭圆及其性质 考点一椭圆的标准方程 知识点 1椭圆的定义 (1)定义:在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. (2)集合语言:P={M||MF1|+|MF2|=2a,且2a>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数. 2椭圆的焦点三角形 椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形. 如图所示,设∠F1PF2=θ. (1)当P为短轴端点时,θ最大. (2)S△PF 1F 2 = 1 2|PF1||PF2|·sinθ=b 2· sinθ 1+cosθ =b2tan θ 2=c|y0|,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为 bc. (3)焦点三角形的周长为2(a+c). 3椭圆的标准方程 椭圆的标准方程是根据椭圆的定义,通过建立适当的坐标系得出的.其形式有两种: (1)当椭圆的焦点在x轴上时,椭圆的标准方程为x2 a2+ y2 b2=1(a>b>0). (2)当椭圆的焦点在y轴上时,椭圆的标准方程为y2 a2+ x2 b2=1(a>b>0). 4特殊的椭圆系方程 (1)与椭圆x2 m2+y2 n2=1共焦点的椭圆可设为 x2 m2+k + y2 n2+k =1(k>-m2,k>-n2). (2)与椭圆x2 a2+y2 b2=1(a>b>0)有相同离心率的椭圆可设为 x2 a2+ y2 b2=k1(k1>0,焦点在x轴上)或 y2 a2+ x2 b2=k2(k2>0,焦 点在y轴上).

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学椭圆的教学设计

选修1-1《2.1.1 椭圆及其标准方程》教学设计 一、指导思想与理论依据 1. 新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。 2. 建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。 二、教学背景分析 1. 教材分析 解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。 在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。 2. 学情分析 知识方面 (1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础; (2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战; (3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题; 自身特征方面 (1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。并且具备了初步的探索能力;

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

高三年级数学椭圆的教学设计与反思

《椭圆及其标准方程》教学设计及反思 教学目标: (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程. (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力. (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神. 教学重点:椭圆的定义和椭圆的标准方程. 教学难点:椭圆标准方程的推导. 教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力. 教具准备:多媒体课件和自制教具:绘图板、图钉、细绳. 教学过程 (一)设置情景,引出课题: 1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的 实 物和图片,让学生从感性上认识椭圆. 2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规 律”运动的轨迹。 提问:点M 运动时,F 1、F 2移动了吗?点M 按照什么条件运动形成的轨迹是椭圆? 下面请同学们在绘图板上作图,思考绘图板上提出的问题: 1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何? 2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3.当绳长小于两图钉之间的距离时,还能画出图形吗? . (二)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? 2、研讨探究 问题:如图已知焦点为21,F F 的椭圆,且21F F =2c,对椭圆上任一点M ,有 a MF MF 221=+,尝试推导椭圆的方程。 M

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

椭圆的标准方程教案

河北阜城中学--高二数学组 组题人:高泽宁 审核人:沈志华 日期:2019年 月 日 …………○…………内…………○…………装…………○…………订…………○ 学校: 姓名:___________ 班级:___________ 考号:___________ …………○…………内…………○…………装…………○…………订…………○ 第 1 页 共 3 页 学习目标: 1:熟练掌握椭圆的定义。 2:熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆并确定椭圆的标准方程。 学习重点:椭圆的定义及标准方程。 学习难点:椭圆的定义及标准方程的推导。 教学过程: 一:椭圆概念的引入: 1:动画演示:(1)天体行星和卫星运行的轨道。 (2)立体几何中作圆的一种直观图。 2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的F 1,F 2两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。 分析:在这个运动过程中,什么是不变的? 答:两个定点,绳长。 即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 3:由此总结椭圆定义: 平面内与两个定点F 1,F 2的距离之和等于常熟(大于)的点的轨迹叫作椭圆, 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 说明 注意椭圆定义中容易遗漏的两处地方: (1)两个定点------两点间距离确定。 (2) 绳长------轨迹上任意点到两定点距离和确定。 思考: 改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 绳长能小于两图钉之间的距离吗? 二:根据定义推导椭圆标准方程: 1:复习求轨迹方程的基本步骤: 2:推导:取过焦点21F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴。 设P (x,y )为椭圆上的任意一点,椭圆的焦距是2c ( c>0). 则:)0,()0,(21c F c F -,又设M 与F 1,F 2距离之和等于2a (常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又, a y c x y c x 2)()(2222=+-+++∴,化简,得: )()(22222222c a a y a x c a -=+-,由定义c a 22> 022>-∴c a 令222b c a =-∴代入,得: 222222b a y a x b =+,两边同除22b a 得: 选修2-1 第一章 2.2.2 椭圆的标准方程 教案 试卷类型 学案 ※ 数学是一切知识的最高形式----柏拉图 条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a =|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

人教版高中数学《圆锥曲线和方程》全部教案

椭圆及其标准方程 一、教学目标 (一)知识教学点 使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程. (二)能力训练点 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力. (三)学科渗透点 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力. 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、活动设计 提问、演示、讲授、详细讲授、演板、分析讲解、学生口答. 四、教学过程 (一)椭圆概念的引入 前面,大家学习了曲线的方程等概念,哪一位同学回答: 问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?

对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识. 提出这一问题以便说明标准方程推导中一个同解变形. 问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索? 一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如: “到两定点距离之和等于常数的点的轨迹.” “到两定点距离平方差等于常数的点的轨迹.” “到两定点距离之差等于常数的点的轨迹.” 教师要加以肯定,以鼓励同学们的探索精神. 比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图: 取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆. 教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等…… 在此基础上,引导学生概括椭圆的定义: 平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.

相关主题
文本预览
相关文档 最新文档