当前位置:文档之家› 第十章 无线电测向体制概述

第十章 无线电测向体制概述

第十章 无线电测向体制概述
第十章 无线电测向体制概述

第十章无线电测向体制概述摘要:本文首先介绍了无线电测向的一般知识,说明了无线电测向机的分类方法和应用;着重从测向原理的角度说明了不同测向体制的特点和主要技术指标;最后从实际出发,提出选用建议。供读者参考。

无线电测向的一般知识。

随着无线电频谱资源的广泛应用和无线电通信的日益普及,为了有序和可靠地利用有限的频谱资源,以及确保无线电通信的畅通,无线电监测和无线电测向已经必不可少,其地位和作用还会与时俱进。

什么是无线电测向呢?无线电测向是依据电磁波传播特性,使用仪器设备测定无线电波来波方向的过程。测定无线电来波方向的专用仪器设备,称为无线电测向机。在测定过程中,根据天线系统从到达来波信号中获得信息以及对信息处理的方法,可以将测向系统分为两大类:标量测向系统和矢量测向系统。标量测向系统仅能获得和使用到达来波信号有关的标量信息数据;矢量测向系统可以获得和使用到达来波信号的矢量信息数据。标量测向系统仅能单独获得和使用电磁波的幅度或者相位信息,而矢量测向系统可以同时获得和使用电磁波的幅度和相位信息.

标量测向系统历史悠久,应用最为广泛。最简单的幅度比较式标量测向系统,是如图(1)所示的旋转环型测向机,该系统对垂直极化波的方向图成8字形。大多数幅度比较式的标量测向系统,其测向天线和方向图,都是采用了某种对称的形式,例如:阿德考克(Adcock)测向机和沃特森-瓦特(Watson-Watt)测向机,以及各种使用旋转角度计的圆形天线阵测向机;属于相位比较的标量测向系统,有如:干涉仪(Inteferometry)测向机和多普勒(Dopple)测向机等。在短波标量测向系统可以设计成只测量方位角,也可设计成测量方位角,同时测量来波的仰角。

矢量测向系统,具有从来波信号中获得和使用矢量信息数据的能力。例如:空间谱估计测向机。矢量系统的数据采集,前端需要使用多端口天线阵列和至少同时利用两部以上幅度、相位相同的接收机,后端根据相应的数学模型和算法,由计算机进行解算。矢量系统依据天线单元和接收机数量以及后续的处理能力,可以分辨两元以至多元波场和来波方向。矢量测向系统的提出还是近十几年的事,它的实现有赖于数字技术、微电子技术和数字处理技术的进步。目前尚未普及。

图1 比幅式环形测向

在上述的说明中,我们使用的是测定“来波方向”,而没有使用测定“辐射源方向”,这两者之间是有区别的。我们在这里侧重的是:测向机所在地实在的电磁环境,但是,无线电测向,通常的最终目的,还是要确定“辐射源的方向”和“辐射源的具体位置”。

无线电测向从上个世纪初诞生至今,已经形成了系统的理论,这就是无线电测向学。无线电测向学,是研究电磁波特性及传播规律、无线电测向原理及实现方法、测向误差规律及减小和克服误差的方法。总之,无线电测向学,是研究无线电测向理论、技术与应用的科学。无线电测向学是与无线电工程学、无线电电子学、地球物理学、无线电通信技术、计算机技术、数字技术紧密相关的一门科学。

图2 无线电测向系统的组成

无线电测向系统的组成,如图(2)所示。通常包括测向天线、输入匹配单元、接收机和方位信息处理显示四个部分。测向天线是电磁场能量的探测器、传感器,又是能量转换器,它把空中传播的电磁波能量感应接收下来,连同幅度、相位、到达时间等信息转换为交流电信号,馈送给接收机;输入匹配单元实现天线至接收机的匹配传输和必要的变换;接收机的作用是选频、下变频、无失真放大和信号解调;检测、比较、计算、处理、显示(指示)方位信息,是第四部分的任务。

无线电测向以测向机所在地,以及过地理北极的子午线为参考零度方向。两点之间方位度数按下述方法确定:假设地球表面A、B两点,A点为测向机所在地,基准方向与方位角如图(3)所示。量判B点相对于A点的方位角,是从过A点的子午线(零度)顺时针旋转到A至B的大圆路连线的度数。B点相对于A点的方位角度数具有唯一性

图3 基准方向与方位角

测向机在测向过程中显示(指示)的测向读数称为示向度。由于电波传播以及测向仪器的误差等原因,测向时,示向度通常不是一个十分精确的单值。示向度与方位角之差,称为测向误差。如果在测向中,示向度与方位角重合,则测向误差为零。实际上,在测向过程中导致产生误差的原因是多方面的,但是基本上可以归纳为主观误差和客观误差两大方面。影响和产生客观误差的因素很多,以后我们还将另文专述。

在测向中,为了获得比较准确的示向度,通常有四个必须具备的条件:优良的测向台址环境、匹配的测向体制、高精度的测向机、经验丰富的操作人员。优良的测向台址环境为电波的正常传播提供条件;正确选择测向体制,以满足使用中的不同要求;精良的测向机是设备基础;在测向的过程中,常常需要处理预想不到的情况,人的知识经验十分宝贵,经验丰富的操作人员,有着非常重要的作用。这是四个必须同时具备的条件。

测向设备、通信系统和附属设备,可以组成测向站(台)。测向站是专门执行测向任务的机构,它有固定站和移动站之分。

无线电测向测定电波来波方向,通常是为了确定辐射源的位置,这时往往需要以几个位置不同的测向站(台)组网测向,用各测向站的示向度(线)进行交汇。如图(4)所示。条件允许时,也可以用移动测向站,在不同位置依次分时交测。

图4 各测向站的示向交汇

短波的单台定位,是在测向的同时测定来波的仰角,以仰角、电离层高度计算距离,用示向度和距离粗判台位。单台定位如图(5)所示。

图5短波单台(站)定位

实际操作上要确定未知辐射源的具体位置,往往需要完成由远而近分步交测,以逐步实现接近和确定辐射源的具体位置。

无线电测向的应用。

无线电测向系统的应用在三个方面:一、测定未知辐射源方向和位置的测向系统。测向站(台)可以是固定的,也可能是移动的。例如:在无线电频谱管理中,对未知干扰源的测向与定位。二、测定已知辐射源方向,用以确定自身位置的测向系统。这时测向机通常安装在运动载体上。例如:在船舶航海与飞机飞行中的导航设备。三、引导带有辐射源的运动载体到达预定目标的测向系统。测向站(台)可以是固定的,也可以是移动的。

无线电测向的应用领域包括民用和军用两大方面。无线电频谱管理、自然生态科研、航空管理、寻地与导航、内防安全和体育运动等,属于前者;通信与非通信信号侦察、战略战术电子对抗与反对抗等,在电子战中的应用,属于后者。

无线电测向机的分类方法。

经过了近百年的研究、实践与发展,无线电测向机已经拥有了一个庞大的家族。基于着眼点的不同,测向机有着下列各种不同的分类方法(分类中的交叉不可避免):1.依照工作频段分类有:超长波、长波、中波、短波、超短波和微波测向机;2.依照工作方式分类有:固定测向机、移动测向机。移动测向机又因为运载工具的不同,可以进一步分为车载、船载、机载(飞机)测向机以及手持和佩带式测向机;3.依照测向机的作用距离分类(主要指短波)有:近距离测向机、中距离测向机、远(程)距离测向机;4.依照测向天线间隔(基础、孔径)尺寸的大小分类有:大基础测向机、中基础测向机、小基础测向机;5.依照测向天线是否具有放大器分类有:有源天线测向机、无源天线测向机;6.依照测向机所使用的测向天线种类分类有:环(框)形天线测向机、交叉环(框)形天线测向机、间隔双环(框)形天线测向机、单极子(加载)天线测向机、对称阵子(垂直、水平)天线测向机、对数天线测向机、行波环天线测向机、磁性天线测向机、微波透镜天线测向机等;7.依照测向机示向度读出方式分类有:听觉测向机、视觉测向机、数字测向机;8.依照测向机使用接收机的信道分类有:单、双信道测向机、多信道测向机。像上面的分类方法,可能还有一些,这里不再赘述。

测向原理及测向体制概述。

在测向机家庭中,依据不同的测向原理,可以把现有的测向机归纳为不同的测向体制、体系和样式。以下将分别介绍它们的工作原理和特点。

一、幅度比较式测向体制

幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或

测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。

例如:间隔设置的四单元U形天线阵、小基础测向(阿德考克)机,如图(6)所示。其表达公式如公式(1)所示。

U ns=kU13SinθCosε

U ew=kU24CosθCosε

U ns

θ=arctg—— (1)

U ew

上面的公式中:U ns、U ew分别为北-南、东-西天线感应电压,θ为来波方位角,ε为来波仰角,k为相位常数,

2bπ

k= ———

λ

其中:b为天线间距,λ为工作波长。

对于360度(θ)不同方向的来波,北-南天线感应接收信号的幅度遵循正弦Sinθ规律,东西天线感应接收信号的幅度遵循余弦Cosθ规律,有了两组信号幅度,测向时设法对二者求解或显示它们的反正切值,即可得到来波方向。这只是幅度比较式测向体制中的一个典型的测向机例子。

图6 四单元阿德考克天线阵

幅度比较式测向体制的原理应用十分广泛,其测向机的方向图也不尽相同。例如:环形天线测向机、间隔双环天线测向机、旋转对数天线测向机等,属于直接旋转测向天线和方向图;交叉环天线测向机、U形天线测向机、H 型天线测向机等,属于间接旋转测向天线方向图。间接旋转测向天线方向图,是通过手动或电气旋转角度计实现的。手持或佩带式测向机通常也是属于幅度比较式测向体制。这是不再赘述。

幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。小基础测向体制(阿德考克)存在间距误差和极化误差,抗波前失真的能力受到限制。频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。

二、沃特森-瓦特测向体制

沃特森-瓦特测向体制的工作原理:沃特森-瓦特测向机实际上也是属于幅度比较式的测向体制,但是它在测向时不是采用直接或间接旋转天线方向图,而是采用计算求解或显示反正切值。鉴于它在测向机家族中的特殊地位和目前仍然在广泛应用,所以在此单独说明。基本公式同公式(1)。正交的(Sinθ、Cosθ)测向天线信号,分别经过两部幅度、相位特性相同的接收机进行变频、放大,最后求解或显示反正切值,解出或显示来波方向。属于沃特森瓦特测向机的有:多信道沃特森-瓦特测向机、单信道沃特森-瓦特测向机。这里所说的多信道,通常是指三信道,另外一个信道的作用是与全向天线相接,以解决“180度不确定性”和“值班收信”问题。多信道沃特森-瓦特测向原理方框图如图(7)所示。

图7 多信道沃特森-瓦特框图

单信道沃特森-瓦特测向机是将正交的测向天线信号,分别经过两个低频信号进行调制,而后通过单信道接收机变频、放大,解调出方向信息信号,然后求解或显示反正切值,给出来波方向。单信道沃特森-瓦特测向机原理方框图如图(8)所示。

图8 单信道沃特森-瓦特框图

沃特森-瓦特测向体制的特点:多信道沃特森-瓦特测向机测向时效高,速度快,在良好场地上测向准确,而且CRT显示方式,还可以分辨同信道干扰。该体制测向天线属于小基础,测向灵敏度和抗波前失真受到限制。多信道体制系统复杂;双信道接收机实现幅度、相位一致,有一定技术难度;单信道体制同属于小基础,系统简单,体积小,重量轻,但是测向速度受到一定限制。

三、干涉仪测向体制

干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。基本公式如公式(2)所示

Φ13=Φ1-Φ3=k*SinθCosε

Φ24=Φ2-Φ4=k*SinθCosε

Φ13

θ=arctg———— (2)

Φ24

上式中:Φ13、Φ24分别为北-南、东-西天线之间来波的相位差,k为相移常数,θ为欲求来波方向角。

在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,由公式(2)可见与幅度比较式测向的公式十分相似。

为了能够单值地确定电磁波来波的方向,干涉仪测向在工作时,至少需要在空间架设三付分立的测向天线。干涉仪测向是在±180度范围内单值地测量相位,当天线间距比较小时,相位差的分辨能力受到限制,天线间距大于0.5个波长时,会引起相位模糊。通常解决上述矛盾的方法是,沿着每个主基线插入一个或多个附加阵元,这些附加阵元提供附加相位测量数据,由这些附加相位数据,解决主基线相位测量中的模糊问题。这种变基线的技术已经为当代干涉仪测向机所广泛采用。干涉仪测向机的测向原理方框图如图(9)所示。

图(9)干涉仪测向原理框图相关干涉仪测向,是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。

干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。该体制极化误

差不敏感。干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。例如:可以是三角形,也可以是五边形,还可以是L形等。

四、多普勒测向体制

多普勒测向体制的测向原理:依据电波在传播中,遇到与它相对运动的测向天线时,被接收的电波信号产生多普勒效应,测定多普勒效应产生的频移,可以确定来波的方向。

为了得到多普勒效应产生的频移,必须使测向天线与被测电波之间做相对运动,通常是以测向天线在接收场中,以足够高的速度运动来实现的,当测向天线完全朝着来波方向运动时,多普勒效应频移量(升高)最大。多普勒测向的基本公式如公式(3)所示。

当测向天线做圆周运动时,会使来波信号的相位受到正弦调制。设:以天线场中心0点为相位参考点,信号的相位为Φ,天线接收信瞬时相位为Φ(t),于是有:

Φt=ωt+Φ+kcCos(Ωt-θ)

式中:ω为信号角频率,Ω为天线旋转角频率,θ为来波方向角度,相位常数kc=2πr/λ,其中r为天线间距,λ为信号波长。

这时测向天线所收到信号U t的表达式为:

U t=Acos[ωt+Φ+k c Cos(Ωt-θ)]

多普勒效应使测向天线接收到的信号产生调相,多普勒相移为ΦD,于是有:

ΦD=k c Cos(Ωt-θ)

相应的多普勒频移为:

f=dΦD/dt=-k c Sin(Ωt-θ) (3)

多普勒频移f,可以从旋转的测向天线接收到的信号,经过接收机变频、放大、鉴频以后得到。多普勒频移f与0点参考频率相比较,即可得到来波方向角θ。

多普勒测向,通常不是直接旋转测向天线,因为这在工程上难于实现,它是将多郭天线架设在同心圆的圆周上,电子开关顺序快速接通各个天线,等效于旋转测向天线。人们称这种测向机为准多普勒测向机。准多普勒测向原理方框图如图(10)所示。

图10 准多普勒测向原理框图

通常人们希望得到大的多普勒频移,增加天线孔径和开关速度是基本途径。多普勒测向机的测向天线孔径可以使用大、中基础;开关旋转频率数百赫兹,多普勒频称f可以达到数百赫兹,但是开关旋转换频频率的升高,会使产生的边带带宽增加,于是限制了转速。

多普勒测向体制的特点:可以采用中、大基础天线阵,测向灵敏度高,准确度高,没有间距误差,极化误差小,可测仰角,有一定的抗波前失真能力。多普勒测向体制的缺欠是抗干扰性能较差,如:遇到同信道干扰、调频调制干扰时,会产生测向误差。该体制尚在发展之中,改进会使系统变得复杂,造价会随之升高。

五、乌兰韦伯尔测向体制

乌兰韦伯尔测向体制的测向原理:采用大基础测向天线阵,在圆周上架设多付测向天线,来波信号经过可旋转的角度计、移相电路、合差电路,形成合差方向图,而后将信号馈送给接收机。通过旋转角度计,旋转合差方向图,测找来波方向。

以40付测向天线阵元为例,角度计瞬间可与12付天线元耦合,而后分别经过移相补偿电路将信号相位对齐,形成可旋转的等效直线天线阵,12付天线分成两组,每组6付,两组间经过合差电路相加、减,形成合、差方向图。测向时以合、差方向图测找来波方向。在来波方向上,由于两组天线均处在来波的等相位面上,两组天线信号大小相等,差方向图时,输出相减为“零”,合方向图时,为一组天线信号输出的二倍。

由于乌兰韦伯尔测向是进行相位比较,人们常把它归类在比相式测向机。但是从使用者看,最终使用的是信号幅度比较,因此说它是幅度比较式测向机,也有道理。乌兰韦伯尔测向原理方框图如图(11)所示。

图11 乌兰韦伯尔测向原理框图

短波乌兰韦伯尔测向体制,是典型的大基础,测向天线阵直径是最低工作波长的1~5倍。天线阵直径尺寸,根据低端工作频率的不同,达到数百甚至上千米。测向天线单元,可以是宽频带直立天线,也可以是对数周期天线。为了提高天线接收效能,通常在天线阵内侧使用反射网。一付天线阵难于覆盖全部短波频段时,一般是采用内高频,外低频的双层阵。

乌兰韦伯尔测向体制的特点:由于采用大基础天线阵,测向灵敏度高,测向准确度高,测向分辨率高,抗波前失真、抗干扰性能好,可以提供监测综合利用。由于乌兰韦伯尔测向机要求数十根天线、馈线电特性完全一致,加之角度计设计、工艺要求高,以及需要大面积平坦开阔的天线架设场地,这无疑增加了造价和工程建设的难度。带来的问题是造价高,测向场地要求高。

六、到达时间差测向体制

到达时间差测向体制的测向原理:依据电波在行进中,通过测量电波到达测向天线阵各个测向天线单元时间上的差别,确定电波到来的方向。它类似于比相式测向,但是这里测量的参数是时间差,而不是相位差。该测向体制要求被测信号具有确定的调制方式。

到达时间差测向原理基本公式如公式(4)所示。设:垂直架设的测向天线单元A、B间距为2b,来波方向与AB连线的垂线的夹角为θ,来波仰角为β,电波传播速度为v,则天线B较天线A感应信号延迟时间为τ,

2b

于是有:τ=(——)SinθCosβ

v

则来波方向θ可求,为:

θ=arcSin[(———)Cosβ](4)

2b

在上式中,τ为实际测量时间差。短波的来波仰角β需要估计,而超短

波来波仰角β为“零”,即Cosβ=1。

测向原理方框图如图(12)所示。

实际使用中,为了覆盖360度方向,至少需要架设三付分立的测向天线。测向天线的间距有长、短基线之分,长基线的测向精度明显好于短基线。到达时间差测向体制基于时间标准和对时间的精确测量,以现在的技术水平而言,时间间隔的测量可达到1ns的精确度,当间距为10米时,测向的准确度可以达到1度。

图12到达时间差测向 原理框图

到达时间差测向体制的特点:测向准确度高,灵敏度高,测向速度快,极化误差不敏感,没有间距误差,测向场地环境要求低。但是抗干扰性能不好,载波必须有确定的调制,目前应用尚不普及。

七、空间谱估计测向体制

空间谱估计测向体制的测向原理:在已知座标的多元天线阵中,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大,得到矢量信号,将其采样量化为数字信号阵列,送给空间谱估计器,运用确定的算法求出各个电波的来波方向、仰角、极化等参数。

空间谱估计测向原理方框图见图(13)。

以四元天线阵为例,空间谱估计测向的基本公式,如公式(5)所示。空间谱估计测向是把每个天线的接收信号,与其他各个天线的信号都进行比较,这就是相关矩阵法,即协方差矩阵法,它完整地反映了空间电磁场的实际情况。具体地说就是构成如下的协方差矩阵:

X1X1H X1X2H X1X3H X1X4H

X2X1H X2X2H X2X3H X2X4H

R XX= X3X1H X3X2H X3X3H X3X4H (5)

X4X1H X4X2H X4X3H X4X4H

图13空间谱估计测向原理框图

在上式中:X n为n号天线的输出,H为共轭转置符号。空间谱估计四元天线阵的示意图如图(14)所示。

图14 空间谱估计 四元阵示意图由公式(5)可见,四元阵的协方差矩阵有16个元素,空间谱估计测向,充分利用了测向天线阵各个阵元从空间电磁场接收到的全部信息,而传统的测向方式仅仅利用了其中的一少部分信息(相位或者幅度),因此传统的测向方式不能在多波环境下发挥作用。空间谱估计测向,基于最新的阵列处理理论、算法与技术,具有超分辨测向能力。所谓超分辨测向,是指对同信道中,同时到达的、处于天线阵固有波束宽度以内的、两个以上的电波,能够同时测向。这在传统的测向方法中是无法实现的。构成协方差矩阵是空间谱估计测向的基本出发点,但是对协方差矩阵的处理,在不同的算法中是不相同的,其中典型的是多信号分类算法(MUSIC)。

空间谱估计测向体制的特点:空间谱估计测向技术可以实现对几个相干波同时测向;可以实现对同信道中、同时存在的多个信号,同时测向;可以实现超分辨测向;空间谱估计测向,仅需要很少的信号采样,就能精确测向,因而适用于对跳频信号测向;空间谱估计测向,可以实现高测向灵敏度和高测向准确度,其测向准确度要比传统测向体制高得多,即使信噪比下降至0db,仍然能够满意地工作(而传统测向体制,信噪比通常需要20db);测向场地环境要求不高,可以实现天线阵元方向特性选择及阵元位置选择的灵活性。以上空间谱估计测向的优点,正是传统测向方法长期以来存在的疑难问题。

空间谱估计同,尚在研究试验阶段。在这个系统中,要求具备宽带测向

天线,要求各个天线阵元之间和多信道接收机之间,电性能具有一致性。此外还需要简捷高精度的计算方法和高性能的运算处理器,以便解决实用化问题。

测向体制的比较。

测向体制的优劣通常是人们所共同关心的问题,但是无线电测向体制也象所有的事物一样,各自具有两重性。就使用者来说,每个用户的工作环境、工作方式、工作要求、工作对象等条件不尽相同,因此笼统地说优劣,有可能脱离实际。使用者在测向体制和测向体设备选用时,重要的是要透彻了解并仔细分析自身工作需求。测向体制与设备的优劣好坏,应当在满足工作需求的前提下,由使用者自已作出选择。应该说每一种测向体制都各具特点,站在用户的角度看,能够满足工作需求,价格又合适,就是好体制。在这里,我们着重讲讨论从哪些方面评价测向体制和测向设备,提出如下的技术指标,供读者参考

一、频率覆盖范围。这一项指标规范了测向机规定的性能指标和正常工作的频率范围,它是选择测向体制和测向设备时的基本要求。

二、测向灵敏度。它表征了测向体制和测向设备对小(弱)信号的测向能力。测向灵敏度主要依赖于测向天线元形式、天线阵的孔径(基础)和工作方式。它以电场强度度量,单位是微伏/米(μv/m)。

三、测向准确度。它表征了测向体制和测向设备在测向时的精确度,也就是测向时误差的大小。测向准确通常有仪器设备测向精度、标准场地测向精度和实用测向精度之分,三者的物理意义和测试条件有着根本的区别,使用者需要特别注意,不可混肴。

四、抗干扰能力。它表征了测向体制和测向设备遇到干扰信号时的测向能力和测向准确度,其中包括了对同信道干扰、临道干扰、带外干扰、多波干(波前失真)等干扰存在时的测向能力。

五、测向时效。它表征了测向体制和测向设备在测向时的时间开销,以及对空中持续短信号的测向能力。这其中包括了:测向系统的信道建立、方向信息的采样、数据运算处理(含积分)、示向度显示等环节所需要的时间,各时间段可以分别表示。但是一般在评价时,往往只看综合时效。

六、极化误差。极化误差是测向误差的一种,它表征了测向体制和测向设备,工作在非正常极化波条件下的测向能力。有时也称为极化敏感性,不敏感好。在短波频段,用标准斜极化波测试极化误差。

七、仰角测定。表明测向体制和设备可否测定来波仰角。短波测向,有的测向体制可以测量来波仰角,进而实现单站定位。

八、测向距离。在短波测向时,通常有远程测向、中距离测向和近距离测向之分,不同的测向距离对设备的要求也不相同。

九、测向天线基础(孔径)。表明测向天线阵尺寸相对工作波长的大小。测向天线基础(孔径)有大、中、小基础之分。测向天线基础(孔径)直接影响测向性能。

十、测向体制与测量参数。表明测向时所依据的测向原理以及所测定电波的参数。例如:测向时测定幅度、相位、时间差等参数,也可能是它们的组合,这与测向体制有关。

十一、系统机动性。表明系统的可移动性。通常有固定、移动、便携之分。移动又依载体分为车、船、机载。

十二、系统复杂程度与造价。表明测向体制和测向设备系统组成的复杂程度和研制时的技术难度,它与造价的高低是一致的。

结束语:

科学技术在不断进步,无线电监测和无线电测向技术也在不断进步,特别是近年来,随着无线电通信、网络通信的高速发展和计算机技术、微电子技术日新月异的变化,必将带动无线电监测技术和测向技术的高速发展,使之向着自动化、智能化、网络化和小型化方向前进;以前只是理论性的东西,正在变为现实;高度数字化、集成化和数字处理技术应用,正在提高无线电监测和无线电测向设备的性能;新技术、新器件、新工艺的开发和使用,正在改变着传统设备的面貌;同时新理论也会不断出现,无线电测向体制也会不断推陈出新。这一切变化永无止境。

附:各种测向方法性能的比较表

无线电测向原理

无线电测向原理 一、无线电波的发射 随着科学技术的不断发展,人们与“无线电”的关系越来越密切了。播送广播节目和电视节目的广播电台和电视台,是通过发射到空间的无线电波把声音和图象神奇地传诵到千家万户的,这个道理已成为人们的常识。让我们再来简单地回顾一下发射和接收过程:广播电台(电视台)首先把需要向外发射声音和图象变为随声音和图象变化的电信号,然后用一中频率很高、功率很强的交流电做为“运载工具”,将这种电信号带到发射天线上去。再通过天线的辐射作用,把载有电信号的高频交流电转变为同频率的无线电波(或称电磁波),推向空间,并象水波一样,不断向四周扩散传播,其传播的速度在大气中为每秒30 万公里。在电波所能到达的范围内,只要我们将收音机、电视机打开,通过接收天线将这种无线电波接收下来,再经过接收机大放大、解调等各种处理,把原来的电信号从“运载工具”中分离出来,逼真地还原成发射时的声音和图像,我们就能在远隔千里的地方收听(收看)到广播电台(电视台)播出的节目。 无线电测向也是利用类似的途径和方式实现的,只是它所发射的仅仅是一组固定重复的莫尔斯电报信号。电台的发射功率小,信号能到达的距离也极为有限。一般在10公里以内。下面,我们紧密结合无线电测向,介绍一些有关的无线电波的基础知识。 1. 无线电波的传播途径 无线电波按传播途径可分为以下四种:天波——由空间电离层反射而传播;地波——沿地球表面传播;直射波——由发射台到接收台直线传播;地面反射波——经地面反射而传播。 无线电测向竞赛的距离通常都在10公里以内,所以,除用于远距离通信的天波外,其它传播方式都与测向有关,160米和80米波段测向,主要使用地波;2米波段测向,主要使用直射波和地面发射波。 2. 无线电波在传播中的主要特性 无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,其传播的情况是非常复杂的。它虽具有一定的规律性,但对它产生影响的因素却很多。无线电波在传播中的主要特性如下:(1)直线传播均匀媒介质(如空气)中,电波沿直线传播。无线电测向就是利用这一特性来确定电台方位的。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。图2-1所示的射线由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射;另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向机误指反射体,给接近电台造成极大困难。 (3)绕射电波在传播途中,有力图饶过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。因此,测向点的选择就成为测向爱好者随时都要考虑的一大问题。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向机收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断电台距离造成错觉。2米波段测向中,这种现象比较常见。 另外,如图2-2所示,天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,距电台愈近,单位面积上获得的能量愈大。在距电台数十米以内,电场强度的变化十分剧烈,反映在测向机耳机中的音量变化也格外明显。这一特点有助于测向运动员在接近电台后判断电台的距离及其位置。 3.天线的架设与电波传播形式的关系 当发射天线垂直于地面时,天线辐射电磁波的电场也垂直于地面,我们称它“垂直极化波”;当天线平行于地面时,天线辐射电磁波的电场也平行于地面,我们叫它“水平极化波”。160米波段和80米波段,规定发射垂直极化波,因而要求发射天线必须垂直架设;2米波段规定发射水平极化波,因而要求发射天线必须水平架设。 二、无线电测向机的组成与特点 无线电测向机是测向运动员在训练与比赛中赖以测向隐蔽电台方位的工具,根据工作波段的不同,测向机的电路和外形结构也不尽相同。但一部测向机,无论是简是繁,是大是小,都是由测向天线、收信机和指示器三部分组成的。其方框图如图2-3所示。 1.测向天线 测向天线接收被测电台发出的无线电信号,并对来自不同方向的电波产生不同的感应电势。这是测向机不同于一般收音机的主要区别。目前测向运动中,160米波段测向机使用磁性天线以及与它相配合的直立天线;80米波段测向机多数也用磁性天线加直立天线(过去也有用环形天线加直立天线的,但因环形天线体积大,不易看准方向线,已很少使用);2米波段测向机使用八木天线。 2.收信机 收信机对测向天线送来的感应电势进行放大解调等一系列处理,最后把所需信号送入指示器。一般测向机的收信部分与普通收音机基本相似,但根据测向的特殊需要,它还应具备以下特点:

全国无线电监测技术题库-基础知识2

全国无线电监测技术题库-基础知识2 全国无线电监测技术题库-基础知识2 1.2 选择题 1,属于特高频(UHF)的频带范围是(D )。 A、400,2000MHz B、300,2000MHz C、400,3000MHz D、300,3000MHz 2,IMP缩写代表(B ) A、放大增益 B、互调产物 C、网间协议 D、互调截获点 3,10W功率可由dBm 表示为(D )。 A、10dBm B、20dBm C、30dBm D、40dBm 4,频率在(A )以下,在空中传播(不用人工波导)的电磁波叫无线电波。 A、3000GHz B、3000MHz C、300MHz D、300GHz 5,频率范围在30,300MHz的无线电波称为( A)。 A、米波 B、分米波 C、厘米波 D、毫米波 6,无线电监测中,常用一些单位有dBuv、dBm等,dBm是(C )单位。 A、电压B、带宽 C、功率 D、增益 7,目前中国移动的GSM系统采用的是以下哪种方式(B )。 A、FDMA B、TDMA C、CDMA D、SDMA 8,PHS个人移动系统信道带宽为( A)。 A、288kHz B、200kHz C、25kHz D、30kHz 9,CDMA移动系统信道带宽为( A)。 A、1.23MHz B、1.5MHz C、1.75MHz D、1.85MHz 10,0dBW=( C)dBm. 30 A、0 B、3 C、 11,比2.5W主波信号低50dB的杂波信号功率是( B)μW。 250 A、2.5 B、25 C、

12,频谱分析仪中的RBW称为(B)。 A、射频带宽 B、分辨率带宽 C、视频带宽 13,根据GB12046—89规定,必要带宽为1.5MHz的符号标识为(A )。 150M A、1M50 B、15M0 C、 14,发射频谱中90%能量所占频带宽度叫做(A )。 A、必要带宽 B、占用带宽 C、工作带宽 15,一发射机发射功率为10W,天线增益10dB,馈线损耗5dB,则有效辐射功率为( B)。 A、25dBW B、15dBW C、5dBW 16,电视伴音载频比图像载频( A)。 A、高 B、低 C、相等 17,在微波段中表述频段,字母代码S和C对应的频段是( C)。 A、1—2GHz 和4/6GHz B、18—40GHz和8/12GHz C、2.5GHz和4/6GHz D、4.8GHz和4/8GHz 18,联通CDMA下行与移动GSM上行频段之间只有(A )MHz保护带。 A、5 B、10 C、15 19,从广义来讲,产生莫尔斯码的调制方法是(A): A、ASK B、FSK C、PSK D、DAM 20,无线电频谱可以依据(A,B,C,D)来进行频率的复用。 C空间 D编码 A、时间 B频率 21,超高频(SHF)波长范围 ( C ) B、 10—1分米 C 10—1厘米 A、 10—1米 22,公众对讲机的有效发射功率不能大于(B)瓦 A、0.1 B、0.5 C、1 23, 圆锥天线是( B )。

无线电测向

无线电测向设备(系统)的基本技术指标 日期:2009年5月28日 根据无线电测向设备(系统)的应用目的和测向业务实践经验,基本技术要求有: (1)测向体制和天线孔径 测向设备(系统)所用体制和天线孔径,既体现了体制特点,也在很大程度上决定了设备的水平,在很大程度上影响着使用效能。同样重要的也影响着制造成本。所以研制者和使用者都关注所用的测向体制和约定的天线孔径。 (2)工作效率范围 是指各项技术性能都符合要求的最大工作频段。由于测向准确度和测向灵敏度两性能指标对频率更敏感,并且容易检验,因而常把满足这两项指标要求的工作频段叫工作频率范围。 工作频率范围是根据测向任务具体确定的,由于它常受到测向天线(阵)的工作频率范围的限制,多数在工作频段的两端性能下降,当要求更宽的工作频率范围时,常需分段设计天线阵。 (3)天线极化形式:天线极化形式须根据测向对象的极化形式确定。明 确天线极化形式既有利用于测向性能的发挥,也有利于减小极化误差。

(4)测向准确度 测向读值惯称示向度,示向度与到达波真实角度之差叫测向误差。测向误差的数值既与工作频率有关,也与到达波的方向有关,因而须用不同频率、不同方向来波测得的测向误差的统计值来表述测向准确度,这实际上是衡量示向度可信度的技术指标。 测向准确度分系统准确度和使用准确度。系统准确度用系统误差(仪器误差)来表述,它是由设计制造固有缺陷造成的,其误差是可重复的或者按一定规律变化的。实用准确度是反映的实际测向的误差状况,除系统误差和电波传播误差外,还有波前失真、同道干扰、信号调制以及极化不纯等误差。与使用效能有关的这些方面将通过抗扰度指标来表述,因而这里所讲的测向准确度专指系统误差。 (5)测向灵敏度 测向灵敏度是衡量系统作用距离大小或对较弱电场测向是否可靠的重要指标,用示向度离散或偏差符合规定要求时所需的最小场强来表述。 在实际测向中,获取的测向信息总会受到银河系噪声、大气噪声、系统自身的热噪声等扰动,当信噪比降低到某个门限时,示向度由离散或偏差变化到不可信甚至无使用意义。不同的测向体制,由于其采用的天线孔径、阵列形式和测向的具体算法以及设计水平不同,抑制这种高斯型噪声影响的能力相差很大,即测向灵敏度指标差别很大。

无线电管理工作总结(精选多篇)

无线电管理工作总结(精选多篇) 第一篇:2020年无线电管理工作总结今年以来,在县委、政府的重视和领导下,在市无线电管理部门的帮助和指导下,我县认真贯彻和执行《中华人民共和国无线电管理条例》、《云南省无线电管理条例》、《云南省无线电电磁环境保护条例》的规定,认真履职,扎实工作,切实加强无线电管理工作,热情为辖区设台单位及其它有关部门和群众服务,确保了无线电事业健康有序发展。 一、领导重视,机构健全为了开展好无线电管理工作, 维护我县无线电波秩序,合理规划、有效利用和保护无线电频谱资源,促进我县无线电事业的发展,根据省、市相关要求,我县成立了无线电管理委员会,由县委常委、副县长担任主任、县人民政府办公室主任担任无线电管理委员会办公室主任,并下设办公室在县电子政务网管中心。目前,县无线电管理办公室有专兼职管理人员3人。 二、认真学习,提高素质我县积极派员参加市无委办组 织的业务知识和法律法规知识的学习,另一方面注意在工作中自觉学习,边干边学,边学边干,通过各种形式的学习,强化对无线电管理法律法规和相关业务知识的掌握,无管人员的自身素质得到了极大的提高。 三、强化措施,确保奥运安全 一是我们根据上级文件和会议精神,结合县情,认真研究, 第一时间对奥运期间无线电安全管理作出安排部署。制定和下发了《**县人民政府办公室处置电子政务网络和无线电突发暴力恐怖事件应急预案》、《**县无线电管理委员会办公室关于

加强奥运期间无线电管理工作的通知》。工作安排体现一个“早”字。 二是扎实开展奥运期间值班及广播电视监测工作。我们抽调了专人值班,制定了值班制度,向公众公开值班电话,从而畅通信息报送渠道。对**广电局转播的“中央1”、“中央7”电视频道,“中央人民广播电台·中国之声”、和“昭通人民广播电台”广播频道随时监测监控,特别是奥运开幕的前后几天,每天向广电局和“三家”运营公司“早、中、晚”收集情况,详细登记值班记录和监测记录,每天向市无委上报值班和监测情况,周末也不例外。值班、监测中体现一个“勤”字。 三是认真开展广播电视行政执法专项检查。成立执法检查领导组,保障工作顺利开展,督促填写自查登记表,对**广播局新建广播电视台站存在问题,下达整改指令书,限期整改。另外还把这次执法检查拓宽到所有无线电设台单位,用同种方式、同样的要求开展了此项工作。在执法检查中体现了“面广”。 四、扎实开展xx年无线电执照年检工作。认真填写表册、收集台站执照,按时报市审核。通过年检一步摸清了家底,完善了台站数据库。xx年末,全县共有各类无线电台(站)389个,主要是公安、林业、广电等3家单位和移动、联通、电信三大运营公司。其中:电信**县分公司有phs基站118个;联通**县分公司有gsm基站35个,cdma基站30个;移动**县 分公司有gsm基站79个,微波站6个;县公安局集群系统机 站1个,移动台8个;县林业局移动台1个,中继台4个。 五、加大无线电法律法规宣传力度,营造遵纪守法的良好氛围。我县通过**县人民政府门户网站、电子政务办公网、溪洛渡电视台以及散发宣传单等多种方式,广泛向全社会宣传

无线电测向基本常识

无线电测向基本常识 1、无线电测向的特点 在景色宜人的公园、森林、丘陵、原野,手持测向机奋力奔跑着,跟踪搜寻“狡猾的狐狸”(隐蔽电台)。没有别人的帮助,完全凭借手中测向机的导引,凭借自己掌握的测向技术,经过独立的思考、判断,去揭开一层层神秘的面纱,揪出深藏的“狐狸”,去享受胜利的喜悦,这就是无线电测向活动。人们不甘落后,奋力向上的品质,使参加这项活动的人无不争先恐后,出于强烈的竞争意识,无线电测向运动又是一项竞技体育项目。 由“国防体育”、“军事体育”,到人们公认的“科技体育”,无线电测向运动始终以自己独特的魅力影响着广大群众。它集体育、科技、娱乐等为一体,使参加活动的人在锻炼体魄、掌握知识、休闲娱乐、培养品质、磨练意志等多方面得到收益。无论是十几岁的孩子,还是6、70岁的老人,都可以因时、因地、根据各种情况组织无线电测向活动和比赛。 2、如何组织无线电测向活动 开展无线电测向运动场地可繁可减、设台数可多可少、距离可长可短,可根据不同的情况进行变化。我国目前竞赛的形式主要有两种。一种是按照国际标准组织的“长距离测向”,一种是根据我国情况由我国无线电测向工作者自己创造的“短距离测向”。“长距离测向”的场地选择在面积为10平方公里左右,地形略有起伏(高、差在200米以内),树木较多,通透力较差的地形。“短距离测向”的场地可以选择在城市的公园、市郊和较大的校园。以下按照这两种测向的模式介绍开展无线电测向活动的方法。 (1)长距离测向

正式比赛设5部隐蔽电台,1—5号台的呼号是MOE、MOI、MOS、MOH、MO5,按照顺序循环发射,每次工作一分钟。终点信标台呼号为MO,均拍发摩尔斯电码。 各隐蔽台距起点的直线距离不小于750米,各台之间不小于400米。运动员自己确定找台顺序,最佳台序的直线距离为4—7公里。运动员实际跑的距离约6—10公里。 参加比赛的运动员统一到达起点,在预备区内准备和休息,测向机交裁判员集中保管。 每5分钟出发一批运动员,每人的出发批次在赛前抽签确定。出发前10分钟领取测向机、地图、竞赛卡片。听到“出发”口令后,离开出发圈,沿规定跑道进入比赛场地。 比赛在规定时间内完成,超时不计成绩。运动员每找一个台,须用该台准备的计时设备准确记录,这是裁判判定运动员成绩的凭证。 运动员到达终点,由裁判员记录通过时间,并计算出全场比赛时间。 评定成绩时,先比较每人的找台数,再比较实用时间,找台多、时间少名次列前。 (2)短距离测向 竞赛时设3—10部隐蔽电台。起点与各台及各台间的直线距离为30—200米,互相看不见。每个隐蔽台在不同的频率上连续用摩尔斯电码拍发本台呼号。电台标明台号,并设有计时设备。 运动员1—3分钟出发一批,按规定顺序找台,并准确作出记录。在规定时间内找到电台,到达终点成绩有效。 短距离测向比赛的方法有个人赛、接力赛、淘汰赛、团体赛等方式。 无线电测向活动历史

无线电海洋遥感技术

听讲座《无线电海洋遥感技术》心得 讲座开始后,陈泽宗教授从海洋生态环境、无线电海洋观测原理、雷达监测技术及未来发展趋势等方面进行了讲解。陈教授以自身经历出发,讲述了我国海洋地理环境以及自己去沿海及岛屿的亲身感受。陈教授以海浪灾害给我国造成的巨大经济损失,说明了海洋观测的重要性;在无线电观测的讲解上,陈教授提及不同现场监测设备的造价及原理,分析了国内外不同产品的优劣,进而提出采用远程无线电海洋观测的必要意义。陈教授从1987年开始研究高频地波雷达,陈教授先后3次承担国家863计划课题,研制出了一代又一代的雷达产品。他表示,未来的海洋观测网络将更为全面,覆盖岸边、近海、大洋、极地,实现从海面到海底的立体观测,也将形成由简单要素到多要素综合的集成观测。 海洋覆盖着地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间。随着人口的增长和陆地非再生资源的大量消耗,开发利用海洋对人类生存与发展的意义日显重要。所以,必须利用先进的科学技术,全面而深入地认识和了解海洋,指导人们科学合理地开发海洋。在种种情况下,遥感技术应运而生。 海洋遥感技术,主要包括以光、电等信息载体和以声波为信息载体的两大遥感技术。海洋声学遥感技术是探测海洋的一种十分有效的手段。利用声学遥感技术,可以探测海底地形、进行海洋动力现象的观测、进行海底地层剖面探测,以及为潜水器提供导航、避碰、海底轮廓跟踪的信息。海洋遥感技术是海洋环境监测的重要手段。卫星遥感技术的突飞猛进,为人类提供了从空间观测大规模海洋现象的可能性。目前,美国、日本、俄罗斯、中国等国已发射了10多颗专用海洋卫星,为海洋遥感技术提供了坚实的支撑平台。海洋导航技术,主要包括无线电导航定位、惯性导航、卫星导航、水声定位和综合导航等。其中,无线电导航定位系统,包括近程高精度定位系统和中远程导航定位系统。最早的无线电导航定位系统是20世纪初发明的无线电测向系统。20世纪40年代起,人们研制了一系列双曲线无线电导航系统,如美国的“罗兰”和“欧米加”,英国的“台卡”等。卫星导航系统是发展潜力最大的导航系统。1964年,美国退出了世界上第一个卫星导航系统——海洋卫星导航系统,又称子午仪卫星导航系统,开辟了卫星导航的新纪元。 遥感技术是充分利用现有数据和信息资源的最佳途径,是实现海洋资源与环境可持续发展的关键技术和重要手段,在全球变化、资源调查、环境监测与预测中起着其它技术无法替代的作用。同时在维护海洋资源与环境可持续发展的过程中将极大地促进信息科学技术、空间科学技术、环境科学技术和地球科学的发展。随着科学技术的发展,海洋遥感卫星相继升空,海洋探测技术越来越先进,水下地形测量、重力测量仪器不断更新换代,为海洋基础数据获取提供了保障。

第十章 无线电测向体制概述

第十章无线电测向体制概述摘要:本文首先介绍了无线电测向的一般知识,说明了无线电测向机的分类方法和应用;着重从测向原理的角度说明了不同测向体制的特点和主要技术指标;最后从实际出发,提出选用建议。供读者参考。 无线电测向的一般知识。 随着无线电频谱资源的广泛应用和无线电通信的日益普及,为了有序和可靠地利用有限的频谱资源,以及确保无线电通信的畅通,无线电监测和无线电测向已经必不可少,其地位和作用还会与时俱进。 什么是无线电测向呢?无线电测向是依据电磁波传播特性,使用仪器设备测定无线电波来波方向的过程。测定无线电来波方向的专用仪器设备,称为无线电测向机。在测定过程中,根据天线系统从到达来波信号中获得信息以及对信息处理的方法,可以将测向系统分为两大类:标量测向系统和矢量测向系统。标量测向系统仅能获得和使用到达来波信号有关的标量信息数据;矢量测向系统可以获得和使用到达来波信号的矢量信息数据。标量测向系统仅能单独获得和使用电磁波的幅度或者相位信息,而矢量测向系统可以同时获得和使用电磁波的幅度和相位信息. 标量测向系统历史悠久,应用最为广泛。最简单的幅度比较式标量测向系统,是如图(1)所示的旋转环型测向机,该系统对垂直极化波的方向图成8字形。大多数幅度比较式的标量测向系统,其测向天线和方向图,都是采用了某种对称的形式,例如:阿德考克(Adcock)测向机和沃特森-瓦特(Watson-Watt)测向机,以及各种使用旋转角度计的圆形天线阵测向机;属于相位比较的标量测向系统,有如:干涉仪(Inteferometry)测向机和多普勒(Dopple)测向机等。在短波标量测向系统可以设计成只测量方位角,也可设计成测量方位角,同时测量来波的仰角。 矢量测向系统,具有从来波信号中获得和使用矢量信息数据的能力。例如:空间谱估计测向机。矢量系统的数据采集,前端需要使用多端口天线阵列和至少同时利用两部以上幅度、相位相同的接收机,后端根据相应的数学模型和算法,由计算机进行解算。矢量系统依据天线单元和接收机数量以及后续的处理能力,可以分辨两元以至多元波场和来波方向。矢量测向系统的提出还是近十几年的事,它的实现有赖于数字技术、微电子技术和数字处理技术的进步。目前尚未普及。

0027XX局2018年无线电宣传工作总结

XX县2018年度无线电管理宣传活动总结 州无线电管理办公室: 根据州工信委《XX州工业和信息化委关于印发2018年无线电管理宣传工作实施方案的通知》(XX工信发…2018?227号)文件精神,我局统一思想,提高认识,切实做好无线电管理宣传工作,现将宣传工作总结如下: 一、工作开展情况 (一)明确主题,把握宣传方向。以邓小平理论和“三个代表”重要思想为指导,全面贯彻党的十八大精神,深入学习实践科学发展观,围绕中心、服务大局,结合实际,从无线电管理工作事关政治社会稳定、事关经济社会发展、事关生命财产安全的高度来认识宣传工作,统一思想,凝聚力量,着力提升公众依法使用无线电频谱资源意识以及无线电管理工作在社会上的认知度和影响力,以宣传无线电管理法律法规、科普知识及无线电频谱资源和无线电管理工作的重要作用为重点,坚持正确的舆论导向,为无线电管理事业又好又快发展提供强有力的舆论支持。 (二)内容多样,扩宽知识面。XX县以“加强无线电管理,保障无线电通信安全”为主题,扎实开展了一系列丰富多彩的宣传活动。主要是在人员密集场所宣传无线电管理的法律法规,普及无线电科普知识,提高社会公众对无线电的

认知和了解,倡导全社会自觉遵守无线电管理法规,自觉维护空中电波秩序的良好社会风尚。 (三)注重实效,扎实做好宣传工作。目前,宣传活动已覆盖全县,走进千家万户,取得了很好的宣传效果和社会效应。宣传期间,工作人员耐心为群众介绍无线电管理相关法律法规、无线电科普知识、无线电干扰及危害等内容,使广大群众进一步了解了无线电管理的基本知识和无线电管理工作的重要意义,提高了设台单位及无线电工作人员的法律意识,增强了遵守无线电管理法律法规、维护空中电波秩序及与不法行为做斗争的自觉性,为加强我县的无线电管理创造了良好的社会舆论环境。据统计,活动期间共计发放了无线电核查专页110余份、解析《XX省无线电管理条例》80余本、漫画无线电管理科普宣传手册180余本,现场解答群众提出的问题21个,活动达到预期的效果。 二、存在的问题和困难 活动期间,在县工信局的积极努力和相关部门的配合下,我县无线电管理宣传月活动取得了预期效果。但也存在一些不足和问题,主要表现为:一是由于参与宣传的人员有限,致使没有把宣传工作纵向到底、横向到边,宣传深度不够,群众对无线电管理的认识还有待于进一步提高。二是少数使用频率单位对无线电管理的认识还不够到位,主动报备案意识不强。三是没有必要的检测工具或监测仪器,开展监

无线电监测站试卷试题.docx

沧州无线电监测站业务技术学习试 题第一期 一、基础知识 填空题 1.1864年,由着名的物理学家 _从理论上预言了电磁波的存在,后来又 通过一系列的实验验证了这一理论的正确性,并进一步完善了这一理论 2.1887年首先验证了电磁波的存在 3.在空中以一定速度传播的交变电磁场叫 4.电磁场场强标准单位为,磁场场强的单位 为,功率通量密度的标准单位为。 5.在国际频率划分中,中国属于第区 6.通常情况下,无线电波的频率越高,损耗越,反射能力越,绕射能力 越。 7.无线电波甚高频 (VHF) 的频率范围是从到 8.IS-95 标准的 CDMA 移动系统的信道带宽为 9.在 1800 ~ 1805MHz 有我国拥有自主知识产权的移动通信系统,这个系统是 10. 2006 年版《中华人民共和国无线电频率划分规定》中,频率规划到Hz 。 二、监测测向技术 填空 1.无线电监测包括和特殊监测。 2.磁偏角是线和线之间的夹角。 3.邻道干扰主要取决于接收机中频滤波器的和发信机在相邻频道通带内 的边带噪声。 4.接收机信噪比从20dB 下降到 14dB的干扰叫干扰。 5.当两个不同频率的已调载波同时加到一个时产生一个三阶失真产物 叫交调。 6.接收机互调是指多个信号同时进入接收机时,在接收机前端电 路作用下产生互调产物,互调产物落入接收机中频带内造成的干扰 7.输入滤波器允许希望接收的信号进入而限制其他信号,目的是排除高频放大器中 8.从互调的角度,衡量接收机的性能要看值,该值越高越好 9.某采用高本振方式工作的接收机,工作时,接收频率为,中频为,此时接收机本振 10.工作在MHz 频率。 测向天线基础 (孔径 )有基础之分,测向天线基础直接影

第七章 无线电监测在无线电管理中的地位和作用

第七章无线电监测在无线电管理中的地位和作用 一、无线电监测在无线电管理中的地位和作用 1、无线电监测是无线电管理不可分割的一部分 现代化的无线电频谱管理是将行政和科学技术管理手段相结合,对无线电频率和空间卫星轨道资源实施科学、有效地管理。随着无线电通信业务的快速发展,有效地使用频谱资源已成为人类关注的主要问题。为此,世界各国都成立了专门机构,对频谱资源进行计划、指配和管理,其主要目的是既要保障通信业务的安全,不受干扰侵害,又要合理使用和开发频谱资源,提高频率的使用效率。 无线电管理是国家通过专门机构对无线电波和卫星轨道资源研究、开发、使用所实施的,以实现合理有效利用无线电频谱和卫星轨道资源的行为。 无线电管理的概念,实际上表达了四层含义: *无线电管理是一种国家行为。它是由国家所授权和特许的机关来实施的活动。 *无线电管理的对象是研究、开发、使用无线电波的各种活动。由于开发、使用、研究电磁波的活动是由具体的人使用设备达到的,所以无线电管理必然要涉及到人和设备。 *对开发、使用、研究无线电波和卫星轨道的活动所实施的这种管理,是通过计划、规划、组织、控制、协调、监督、执行等手段和方法来实现的。它贯穿于无线电管理的全部过程中。这是无线电管理的职能,也是无线电管理工作的具体内容。表现为各级无线电管理机构对无线电台站的审批、频率指配、电波的监测、型号的核准、设备的管理、规章制度的制定和监督检查以及对用户的教育和服务等等。 *无线电管理的最终目的是保证合理、有效地利用无线电频谱和卫星轨道资源。要达到这一目标,就必须要用相应的管理机构和现代化的技术手段。 无线电管理的具体内容包括: *频率的划分、分配和指配、无线电台站的布局规划和设台电磁兼容分析及审批。 *无线电台站发射信号实施监测,对台站进行监督管理。 *无线电干扰的协调和处理。 *无线电管理法规和技术标准的制定。 *对无线电设备的测试和研制、生产、销售、进口的管理。 *代表国家参加无线电管理方面的双边和多边国际活动。 无线电监测在频率的规划、指配、电磁环境的测试、无线电台站的设置规划、无线电台站

无线电测向长80米知识

3.5MHz无线电测向技术 一、测向机各旋钮的功能 1.频率旋钮:用来寻找电台的信号。寻找电台时旋钮应调至被收测信号的音调清晰、悦耳(如小鸟叫)、而其它电台信号尽可能小的位置。 2、音量旋钮:用来控制音量大小。此旋钮在快速接近电台的途中,随着信号强度的不断增加而需经常旋动,每次旋转时,应放置在音量适中并略微偏小的位置,以获得较好的方向性。 3、单向开关:用来判断电台的方位。当需要判断单向时,按下此开关,将拉杆天线接入电路,其输出电势与磁性天线所感应的电势复合,克服了磁性天线的双向性,从而判断出单一正确的方向。当松开此开关,便会自动切断直立天线电路。 4、远近程开关:用来调整音量。距电台远时,接收信号强度不大,此时用远程则所接受信号的音量将得到放大,方便判断电台方位;近处电台声音会很大,小音线容易变得不明显,此时改用近程则方便继续利用小音线确定电台方位。 二、正确的持机方法 右手持机,拇指靠近单向开关,其它四指握测向机,掌心一面为大音面(天线所在面),松肩、垂肘,将测向机举起至胸前约25厘米,尽量保持测向机与地面垂直。 三、熟悉测向机的性能 1、电台信号:每一部隐蔽电台(或称信号源)均有自己的编号和呼号,并且有连续自动发出电报的功能,其电码是: MO号台 -- --- 1号台 -- --- 。 2号台 -- --- 。。 3号台 -- --- 。。。 4号台 -- --- 。。。。 5号台 -- --- 。。。。。 判断电台编号时,只需注意分辨长音后的短音数目或长短音数目的不同比例即可。电台发信时,重复循环上述电码符号。在语言中,通常用“嗒”表示长音,用“嘀”表示短音。以1号台为例,信号为“嗒嗒,嗒嗒嗒,嘀”。 长距离无线电测向的基本方法和基本技术,可归纳为下列几个方面: 1、收听电台信号 将音量旋至最大,边转动测向机,边调整频率旋钮,听到信号后,首先辨认台号是不是你现在需要寻找的电台呼号,然后缓慢的左右细调,使声音最大,音调悦耳。最后,将音量旋钮旋至适当位置,进行下一步。 2、测出电台方向线的基本方法 双向_单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出哑点线(即不调节音量的情况下,某一方向所在直线上电台声音最弱),获得电台所在直线,然后按住单向开关(不要松手)并转动测向机90度,在此

无线电管理工作总结

无线电管理工作总结 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】

2013年无线电管理工作总结 今年以来,在县委、政府的重视和领导下,在市无线电管理部门的帮助和指导下,我县认真贯彻和执行《中华人民共和国无线电管理条例》、《云南省无线电管理条例》、《云南省无线电电磁环境保护条例》的规定,认真履职,扎实工作,切实加强无线电管理工作,热情为辖区设台单位及其它有关部门和群众服务,确保了无线电事业健康有序发展。 一、领导重视,机构健全 为了开展好无线电管理工作,维护我县无线电波秩序,合理规划、有效利用和保护无线电频谱资源,促进我县无线电事业的发展,根据省、市相关要求,我县成立了无线电管理委员会,由县委常委、副县长担任主任、县人民政府办公室主任担任无线电管理委员会办公室主任,并下设办公室在县电子政务网管中心。目前,县无线电管理办公室有专兼职管理人员3人。 二、认真学习,提高素质 我县积极派员参加市无委办组织的业务知识和法律法规知识的学习,另一方面注意在工作中自觉学习,边干边学,边学边干,通过各种形式的学习,强化对无线电管理法律法规和相关业务知识的掌握,无管人员的自身素质得到了极大的提高。 三、强化措施,确保奥运安全 一是我们根据上级文件和会议精神,结合县情,认真研究,第一时间对奥运期间无线电安全管理作出安排部署。制定和下发了《**县人民政府办公室处置电子政务网络和无线电突发暴力恐怖事件应急预案》、《**县无线电管理委员会办公室关于加强奥运期间无线电管理工作的通知》。工作安排体现一个“早”字。 二是扎实开展奥运期间值班及广播电视监测工作。我们抽调了专人值班,制定了值班制度,向公众公开值班电话,从而畅通信息报送渠道。对**广电局转播的“中央1”、“中央7”电视频道,“中央人民广播电台·中国之声”、和“昭通人民广播电台”广播频道随时监测监控,特别是奥运开幕的前后几天,每天向广电局和“三家”运营公司“早、中、晚”收集情况,详细登记值班记录和监测记录,每天向市无委上报值班和监测情况,周末也不例外。值班、监测中体现一个“勤”字。 三是认真开展广播电视行政执法专项检查。成立执法检查领导组,保障工作顺利开展,督促填写自查登记表,对**广播局新建广播电视台站存在问题,下达整改指令书,限期整改。另外还把这次执法检查拓宽到所有无线电设台单位,用同种方式、同样的要求开展了此项工作。在执法检查中体现了“面广”。

无线电测向基本技巧

无线电测向基本技巧 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面: 一、收测电台信号 1、收听电台信号 当不了解被收听电台信号的强度时,如在起点收听首台或找到 某台后收测下号台(应迅速离开该台十余米),可将音量旋到最大,边转动测向机,边调整频率旋钮,听到信号后,首先辩认台号是不是你现在需要寻找的电台呼号,然后缓慢地左右细调,使声音最大,音调悦耳。最后,将音量旋钮旋至适当位置,进行测向。 2、测出电台方向线的基本方法: (1)80米波段测向的基本方法: 单向—双向法:按下单向开关,使本机大音面作环向扫动, 同时旋转频率钮,当耳机内出现需要测收的电台信号且声音最大时,测向机大音面所指方向即为电台方向。这一过程称测单向。由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测完后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁棒所指方向,即为电台的准确方向。后面的这个过程称为测双向。 双向—单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机90°,在此位置上,反复迅速的旋转测向机180°,比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。最后再用双向小音点瞄准。

(2)2米波段测向的基本方法: 单向法(也叫主瓣一次测向法): 当2米波段测向机收到电台信号后,转动天线360,依靠尖锐的主瓣方向图(此时引向器的前引伸方向声音最大),即可明确地测出电台方向线。若发现主瓣与后瓣难以分清(在前后两个方向上声音大小差不多),可将测向机音量关小,举过头顶,在主、后瓣两个方向上翻转天线(见图,应注意保持天线所在面与地面的平行),反复对比两边的音量大小,防止测反方向。此法多用于三元八木天线。 二、方向跟踪 沿测向机批示的电台方向,边跑边测,直接接近并找到电台的 方法叫方向跟踪。由于80米波段测向机双向小音点方向线清晰准确,因此跟踪时多使用此方向线。 因为短距离测向竞赛的信号源处于连续发信状态,因此该技术是最常用,最重要的基本技术。 在地形简单、障碍较少的情况下,方向跟踪时可快速奔跑,并在跑动中左右摆动测向机,不停的校正方向(注意随时调小音量)。 方向跟踪时,容易出现从电台附近越过而并未觉察的情况,这时运动员虽已跑过电台,但测向机磁性天线指示的方向线,由于变化不大而未能及时发现,造成反方向跟踪,越跑越远,直至耳机中音量明显减弱时才会发觉。避免的方法是在跟踪中打几次单向,判断大音面是否已转到后面。 宁跑勿走,宁过勿欠,这是迅速到位的最基本要求,切忌尚未到位便进行搜索,耽误时间。

第4章-美国无线电管和监测概况

第四章美国无线电管理和监测概况 前言 随着无线电通信业务的高速发展,无线电技术应用日益广泛,特别是移动业务的广泛应用,无线电移动通信时代已经到来。人们对无线电频谱的需求越来越高,有限的无线电频谱资源日趋紧张。因此加强无线电频谱管理,提高频谱利用率,满足社会和经济发展以及人们生活的需要是无线电管理部门的迫切任务。各国政府都非常重视无线电管理工作,不断投入大量人力和物力加强无线电管理机构的组织建设,技术设施建设和法规建设,使无线电管理工作更适应经济发展和通信全球化的趋势。我国加入WTO后,无线电管理面临新的挑战。为了适应新的形势,学习和借鉴国外的先进经验,加强我国无线电管理机构的建设和管理工作已是当务之急。现将有关国家的无线电管理机构的情况进行较详细的介绍。主要包括基本国情,组织机构,技术设施建设情况,法规建设和主要经验以及活动情况等供读者参考。 本文主要介绍美国的无线电管理和无线电监测的情况。 概况 美国电信事业非常发达,电信管理工作起步早,在1934年就发布了电信法(Communication Act of 1934),明确了管理的组织机构,职责和任务。 美国电信管理机构和其他国家不同,设立两个独立机构,美国联邦通信委员会(英文缩写为FCC)和美国商业部下设的国家电信和信息管

理总局(英文缩写为NTIA)分别负责非政府和政府机构的电信管理(包括无线电管理)。FCC直接对国会负责,而NTIA 直接对总统负责。美国基本国情: 人口: 两亿八千万。国民生产总值GDP 1998 年人均为34102美圆 国土面积:937万平方公里 电信业非常发达。2001年底移动电话用户超过1.4亿,互联网用户已超过1亿多。 FCC和NTIA的关系 美国将无线电频谱划分为FCC专用,NTIA 专用和FCC与NTIA 共用频段。专用频段由FCC和NTIA 分别单独管理,共用频段协调使用。为了解决FCC和NTIA以及各部门之间的协调问题,建立了部间顾问委员会,英文缩写为IRAC。IRAC共有23 个成员组成和参加会议。IRAC 建立一套完整协调程序,一切按照规则和程序进行工作。下设有十几个技术分会,负责技术和业务的具体协调工作。详见下图。 联邦通信委员会FCC和NTIA 以及IRAC的关系见下图(图1)。

广播发射台工作人员工作总结

广播发射台工作人员工作总结 一、近年来年工作情况 1、严格遵守上班准则,积极贯彻执行国家、内蒙、市无线电管理方针政策和有关法律法规。 2、通过几年的工作实践,对广播发射机器设备有了一定的了解,并能应对一些常见的故障,掌握了一些广播发射基本常识,业务水平有了一定提高。 3、认真完成转播中央、内蒙、市广播节目的无线发射任务,做到了无停播,无错播,并协助做好广播发射的运行、管理的技术工作。 4、协同单位领导保障所有发射设备的维护管理和安全运作,包括保证设备日常维护、维修并及时处理设备故障及各类突发事件,认真做好发射台机房的定期巡检、巡查以及发射机房的防火、防盗、防雷工作,定期检查存在的不安全隐患,近几年来没有发生事故。 5、在重要时期、重大活动、重大事件的安全保障播出期间,做好了安全播出的技术保障工作,确保安全优质播出。圆满地完成了播出任务。 6、积极参加单位组织的劳动和文体活动,在活动中与同事共同协作,增进了感情,与同事相处良好。并且也使自己得到了锻炼和提高。 二、今后工作计划

1、严格贯彻执行国家、内蒙、市无线电管理方针政策和有关法律法规。 2、继续学习专业知识,不断充实和提高自己,努力使自己的业务水平得到提高,并且运用到工作中去,更好的完成工作任务,安全高效的播出。 3、继续做好转播中央、内蒙、市广播电视节目的无线发射任务,保障所有播出发射设备的维护管理和安全运行;保证设备日常维护、维修并及时处理设备故障及各类突发事件。做好重要时期、重大活动、重大事件无线台广播电视安全播出的保障工作,确保安全优质播出。 5、继续做好发射台机房,天调室的定期巡检、巡查以及发射机房的防火、防盗、防雷工作,定期检查排除存在的不安全隐患。 6、在下半年党的十八大转播中,认真履行职责,保证安全播出,完成上级交给任务。 7、认真完成好台领导安排交办的其他工作任务。

无线电测向基本技术

无线电测向基本技术 无线电测向运动作为一项科技体育竞技项目,同其它竞技体育项目一样,具有鲜明的竞技特征。具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。无疑,技术训练是任何一项科技体育运动员训练的重要内容之一。 一、无线电测向技术的内容 无线电测向运动对参加者的运动素质的要求无疑是很高的。以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。在本课里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向大家介绍无线电测向的各种技术。第四讲再介绍技术训练的方法。 在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。 无线电测向技术如果以竞赛过程的先后分,可以划为以下三项: (1)起点测向包括起点前技术、起点测向、离开起点三部分。 (2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。 (3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。主要的有沿方向线跟踪、交叉定点、比音量、无信号找台、搜索等。 还有一些技术内容,例如指北针和地图使用、体力分配、复杂条件下对干扰、反射等特殊情况的处理等,难于划入上述三阶段中的某一阶段,但也必须掌握。 无线电测向技术如果以从易到难、先单项后综合的顺序划分,可视为包含以下内容: (1)使用和掌握测向机包括持机方法、收测电台信号技术的训练及掌握测向机性能。收测电台信号技术包括:信号的辨认、调谐和抗干扰接收、测出电台方向线的步骤等。掌握测向机性能包括:学会使用增益旋钮和衰减开关,了解测向机一般检查和简单故障的应急处理方法。 (2)基本技术包括测向技术、地图和指北针的使用和越野技术。测向技术的内容有:原地和移动中测记电台方向线;参照实地方位物按方向线前进;利用测向机的音量、指向、强度变化等判断关键距离(如近台区、一轮信号奔跑距离)和电台设置位置(如高低、向背);近台区技术(方向跟踪、交叉定点、比音量、无信号找台、搜索);测向点的选择:识别和排除环境等因素对方向的影响。地图与制北针的使用包括:地图的识读,分析、记背以及现地对照;指北针的安装、使用及利用指北针按方向线行进。 标绘电台方向线和地图上的远距离交叉。越野技术包括:越野奔跑技术和体力分配;选择道路的基本原则。 (3)专项技术包括确定首找台和找台顺序、到位技术、近台区测向和识图越野。 (4)综合技术包括综合运用各种技术的能力、体力和竞技状态的调整和心理控制及心理训练。 二、无线电测向原理 1、无线电波的发射 随着科学技术的不断发展,人们与“无线电”的关系越来越密切了。播送广播节目和电视节目的广播电台和电视台,是通过发射到空间的无线电波把声音和图像神奇地传诵到千家万户的,这个道理已成为人们的常识。让我们再来简单地回顾一下发射和接收过程:广播电台(电视台)首先把需要向外发射声音和图像变为随声音和图像变化的电信号,然后用一中频率很高、功率很强的交流电作为“运载工具”,将这种电信号带到发射天线上去。再通过天线的辐射作用,把载有电信号的高频交流电转变为同频率的无线电波(或称电磁波),推向空间,并像水波一样,不断向四周扩散传播,其传播的速度在大气中为每秒30万公里。在电波所能到达的范围内,只要我们将收音机、电视机打开,通过接收天线将这种无线电波接收下来,再经过接收机大放大、解调等各种处理,把原来的电信号从“运载工具”中分离出来,逼真地还原成发射时的声音和图像,我们就能在远隔千里的地方收听(收看)到广播电台(电视台)播出的节目。 无线电测向也是利用类似的途径和方式实现的,只是它所发射的仅仅是一组固定重复的莫尔斯电报信号。电

相关主题
文本预览
相关文档 最新文档