当前位置:文档之家› 非接触式测量

非接触式测量

非接触式测量
非接触式测量

非接触式测量的定义

非接触测量是以光电、电磁等技术为基础,在不接触被测物体表面的情况下,得到物体表面参数信息的测量方法。典型的非接触测量方法如激光三角法、电涡流法、超声测量法、机器视觉测量等等。

概况

V-STARS(Video-Simultaneous Triangulation and Resection System)系统是美国GSI公司研制的工业数字近景摄影三坐标测量系统。该系统主要具有三维测量精度高(相对精度可达1/20万)、测量速度快和自动化程度高和能在恶劣环境中工作(如热真空)等优点,是目前国际上最成熟的商业化工业数字摄影测量产品。

该系统是基于数字摄影的大尺寸三坐标测量系统,也称为工业摄影测量系统(Industrial Photogrammetry System)、数字近景摄影测量系统、数字近景摄影视觉测量系统、数字摄影三维测量系统、三维光学图像测量系统(3D Industrial Measurement System)。

它通过V-STARS软件(如图3)处理采集好的照片来得到待测点的三维坐标,而这些照片是用一个高精度的专业相机(如美国GSI公司的INCA3相机),通过在不同的位置和方向,对同一物体进行拍摄所获取的,V-STARS软件会自动处理这些照片,通过图像匹配等处理及相关数学计算后得到待测点精确的三维坐标。一旦处理完毕,被测对象的三维数据将会进入到坐标系统中,就好像以前测量过或者处理过一样。如果需要的话,V-STARS 软件还内置了分析工具,三维数据可以被输出。这些被测量的物体一般是事先手动贴上回光反射标志,或者是通过投点器投射上点,或者是探测棒上的点。

技术特点

(1)高精度:单相机系统在10m范围内测量精度可以达到0.08mm,而双相机系统则可以达到0.17mm;

(2)非接触测量:光学摄影的测量方式,无需接触工件;

(3)测量速度快:单相机几分钟即可完成大量点云测量,双相机实时测量;

(4)可以在不稳定的环境中测量(温度,震动):测量时间短受温度影响小,双相机系统可以在不稳定环境中测量;

(5)特别适合狭小空间的测量:只要0.5m空间即可拍照、测量;

(6)数据率高,可以方便获取大量数据:像点由计算机软件自动提取并量测,测量1000个点的速度几乎与10个点的一样;

(7)适应性好:被测物尺寸从0.5m到100m均可用一套系统进行测量;

(8)便携性好:单相机系统1人即可携带到现场或外地开展测量工作。

V-STARS系统可采用脱机和联机二种测量方式,即单相机系统和双(多)相机系统,如图4。根据采用不同的相机又可以分为V-STARS/S(智能单相机系统)、V-STARS/E(经济型单相机系统)和V-STARS/M(智能多相机系统)

智能单相机系统V-STARS/S

智能单相机系统主要特点是,它不仅提供高精度的测量,而且便携。

目前的最新型号为V-STARS/S8,主要包括1台测量型数码相机INCA3、1台笔记本电脑(含系统软件)、1套基准尺、1根定向棒、1组人工特征标志点(定向反光标志),见图5。

(a)INCA3相机(b)软件与附件

图5 V-STARS/S8系统图6 单相机测量过程

INCA(INteligent CAmera)是GSI公司自主研制的测量型智能相机,它采用高分辨的CCD芯片获取图像,内置单片机可以实时对所拍摄的像片进行无损压缩、标志点识别等处理工作,稳固的整体机身专为工业现场而设计,表1是最新型号INCA3a的主要技术参数。

表1 INCA3a相机技术参数

该系统主要用于对静态物体的高精度三维坐标测量,测量时只需要手持相机距离被测物体一定距离从多个位置和角度拍摄一定数量的数字像片(图7),然后由计算机软件自动处理(标志点图像中心自动定位、自动匹配、自动拼接和自动平差计算)得到特征标志点的X、Y、Z坐标。

V-STARS/S8系统的典型测量精度(1倍sigma)由原来的5um+5um/m(采用INCA3相机)已提高到4um+4um/m(采用INCA3a相机),即10m范围的测量精度达到0.044mm。

需要重点提出的是,该系统的主要优势是其便携和高精度,整个系统(包括一个电脑,一个相机和其附件)可以被装在两个箱子中,你可以随身携带,为你的工作提供极大的方便。

经济型单相机系统V-STARS/E

V-STARS/E是GIS公司入门级的单相机系统。对测量精度要求不是很高,而又求比较经济的测量用户来说,该系统是比较好的选择。

经济型单相机系统目前最新型号为V-STARS/E4X,除相机采用尼康D2X之外,其余配置与V-STARS/S8完全一样,图7。但对于V-STARS/E4X系统,它不能升级为双相机系统。

V-STARS/E4X系统的测量精度为10um+10um/m。

图7 V-STARS/E4X系统

经济型单相机系统由于采用一般商用相机、测量精度相对较低,主要应用于对静态物体的中等精度测量工作。

该系统的主要特点是简单便携,而且相对于价格昂贵的V-STARS/S8系统来说,该系统具有绝对的价格优势,另外,用我们的尼康D2X相机拍摄的照片,V-STARS软件可以直接识别,不但方便而且精度高。

智能多相机系统V-STARS/M

该系统主要用于在不稳定的测量条件下提供实时测量。

智能多相机系统目前的最新型号为V-STARS/M8,它可以采用2台或2台以上的INCA 相机,其最为常用的是双相机系统,主要包括:2台测量型数码相机INCA3、1台笔记本电脑(含系统软件)、1套基准尺、1根定向工棒、1套辅助测棒、1组人工特征标志点和1套联机附件(相机脚架、电缆线和控制器)。如图8。

V-STARS/M8双相机测量时通过软件控制相机拍摄像片,可以同时测量被测物体上的特征标志点集、也可以通过辅助测量棒实现单点测量,尤其适合隐藏点测量。

V-STARS/M8系统配合投点器(图11)使用,则可以实现真正意义上的非接触式测量。

图11 双向+投点器实现非接触式大量点云测量

由于是通过控制器控制相机同步曝光,故该系统尤其适合动态物体的测量,包括变形测量。另外,采用了整体光线束法平差技术,当相机脚架处于不稳定环境(如振动)中时也可以实现高精度测量。在动态测量模式下,每移动一次相机,就对被测物体上的标志点拍摄一组照片,但是,这些点必须是在物体上一些稳定控制点,这样,相机的移动对测量产生的影响就可不计。而一般的,这个稳定的控制场是用单相机系统建立的。

V-STARS/M8(双相机)系统的典型测量精度为10um+10um/m

V-STARS系统在国外航空航天、天线制造,汽车、造船、核工业等诸多领域均有广泛应用。如图12。

该系统是基于数字摄影的大尺寸三坐标测量系统,也称为工业摄影测量系统、数字近景摄影测量系统、数字近景摄影视觉测量系统、数字摄影三维测量系统、三维光学图像测量系统。

非接触式测量

非接触式测量的定义 非接触测量是以光电、电磁等技术为基础,在不接触被测物体表面的情况下,得到物体表面参数信息的测量方法。典型的非接触测量方法如激光三角法、电涡流法、超声测量法、机器视觉测量等等。 概况 V-STARS(Video-Simultaneous Triangulation and Resection System)系统是美国GSI公司研制的工业数字近景摄影三坐标测量系统。该系统主要具有三维测量精度高(相对精度可达1/20万)、测量速度快和自动化程度高和能在恶劣环境中工作(如热真空)等优点,是目前国际上最成熟的商业化工业数字摄影测量产品。 该系统是基于数字摄影的大尺寸三坐标测量系统,也称为工业摄影测量系统(Industrial Photogrammetry System)、数字近景摄影测量系统、数字近景摄影视觉测量系统、数字摄影三维测量系统、三维光学图像测量系统(3D Industrial Measurement System)。 它通过V-STARS软件(如图3)处理采集好的照片来得到待测点的三维坐标,而这些照片是用一个高精度的专业相机(如美国GSI公司的INCA3相机),通过在不同的位置和方向,对同一物体进行拍摄所获取的,V-STARS软件会自动处理这些照片,通过图像匹配等处理及相关数学计算后得到待测点精确的三维坐标。一旦处理完毕,被测对象的三维数据将会进入到坐标系统中,就好像以前测量过或者处理过一样。如果需要的话,V-STARS 软件还内置了分析工具,三维数据可以被输出。这些被测量的物体一般是事先手动贴上回光反射标志,或者是通过投点器投射上点,或者是探测棒上的点。 技术特点 (1)高精度:单相机系统在10m范围内测量精度可以达到0.08mm,而双相机系统则可以达到0.17mm; (2)非接触测量:光学摄影的测量方式,无需接触工件; (3)测量速度快:单相机几分钟即可完成大量点云测量,双相机实时测量; (4)可以在不稳定的环境中测量(温度,震动):测量时间短受温度影响小,双相机系统可以在不稳定环境中测量; (5)特别适合狭小空间的测量:只要0.5m空间即可拍照、测量; (6)数据率高,可以方便获取大量数据:像点由计算机软件自动提取并量测,测量1000个点的速度几乎与10个点的一样;

基于热电堆红外探测器的非接触人体表面温度测量系统

基于热电堆红外探测器的非接触人体表 面温度测量系统 1 技术指标 设计一个非接触人体表面温度系统,要求: (1)通过热电堆TP337A来探测人体表面的温度; (2)由LED数码管显示测量的温度,要求显示温度精度能够达到0.1℃; (3)可以连续测量人体表面或环境温度。 其整体方案如图1所示: 图1 系统硬件设计原理图

2 设计方案及其比较 通过技术指标中的硬件设计的原理,及设计要求,提出了以下三种设计方案 2.1 方案一 采用TPS333热电堆设计电路,热反应堆和放大部分,如图2所示,由于热电堆直接 测量产生的电压范围只有几毫伏到几十毫伏,无法由A/D转换芯片PTCF8591直接处理,需要经过放大处理,又因为需要将电压信号放大一千倍,如果采用一级放大会出现零点 漂移等一系列的问题,且放大信号有很强的干扰,所以选择了两级放大。 图 2 方案一红外与放大模块的设计 2.2 方案二 在调试方案一时,电路仍然出现了不稳定的现象,零飘等现象仍然存在一些,说明电 路仍然不稳定,为此在方案一的基础的上提出了方案二,如图3,方案一与方案的二的区 别在于在两级放大电路的中间加了一个电容,其作用是消除零飘,滤波等一系列作用。

图 3 方案二红外与放大模块的设计 2.3 方案三 为了更强劲的抑制零点漂移和抑噪声与干扰的能力,方案三在放大部分采用的是差分放大电路,如图4所示: 图4 方案三放大电路模块

3 实现方案 3.1电路原理 通过将三种方案进行对比,得出方案二电路的性能更加稳定,且电路简单,所以实 现方案采用方案二。实现的电路图如图3所示,对于热电堆部分,因为红外温度测量技术的最大的优点是测量速度快,1秒内就可测试完毕,由于它只接受人体对外发射的红外辐射,没有任何其他物理和化学因数作用于人体,所以对人体无任何伤害,在方案中采用 的是TPS333热电堆,由于热电堆直接测量产生的电压范围只有几毫伏到几十毫伏,无法 由A/D转换芯片PTCF8591直接处理,需要经过放大处理,又因为需要将电压信号放大 一千倍,如果采用一级放大会出现零点漂移等一系列的问题,且放大信号有很强的干扰,所以选择了两级放大。在两级放大电路的中间加入一个电容为了的使电路更加稳定,起 滤波的作用。其放大的倍数为R5 R4?R6 R7 。系统的硬件由单片机模块、TPS-333温度传感器模 块、LM358电压信号放大器模块、A/D转换模块、LED数码管显示模块,硬件的设计流 程是TPS-333红外温度传感器将红外信号转换为电压信号,由于输出的电压信号很微弱,所以采用LM358组成的运算放大器进行前置放大,然后将放大的电压信号发送到由 PCF8591组成的A/D转换电路,再将转换后得到的数字信号送至单片机进行处理,最后 将处理后的结果送至LCD数码管显示屏进行实时温度的显示, 3.2 电路元件的选择 表 1 实验所用器件

非接触式液位传感器使用说明分析

XCK-Y25-xxx智能型非接触式 (2016-04-12) 液 位 传 感 器 使 用 说 明 书 深圳市星科创科技有限公司 Shenzhen XingKeChuang Technology Co., Ltd. 电话:86-0755-******** 传真:86-0755-********

一、产品概述 智能型非接触式液位感应器(以下简称液位感应器)采用了先进的信号处理技术及高速信号处理芯片,突破了容器壁厚的影响,实现了对密闭容器内液位高度的真正非接触检测。液位传感器(探头)安装于被测容器外壁的上下方(液位的高位与低位),非金属容器无需对其开孔、安装简易、不影响生产。可实现对高压密闭容器内的各种有毒物质﹑强酸﹑强碱及各种液体的液位进行检测。液位感应器对液体介质和容器的材质无特殊要求,可广泛使用。 智能型非接触式液位感应器分四种信号输出接口,分别为高低电平输出接口、NPN输出接口、PNP输出接口和RS485通信接口;分别对应四种型号: 高低电平输出接口——型号:XKC-Y25-V NPN输出接口——型号:XKC-Y25-NPN PNP输出接口——型号:XKC-Y25-PNP RS485通信接口——型号:XKC-Y25-RS485 二、产品特性 ?非接触式液位传感器,适用于非金属容器外壁而无需与液体直接接触,不会受到强酸强 碱等腐蚀性液体的腐蚀,不受水垢或其他杂物影响。 ?智能化液位基准调整及液位记忆功能,液位状态显示方式,可实现多点串联接线;可支 持高低电平输出、NPN、PNP信号输出和RS485通信接口输出(选型时与厂家说明即可)。 ?检测准确稳定,可检测沸水液面。 ?纯电子电路结构,非机械工作方式,性能稳定寿命耐久。 ?高稳定性,高灵敏度,刚干扰能力强,不受外界电磁干扰,针对工频干扰及共模干扰有 做特殊处理,以兼容市面上所有的5~24V电源适配器。 ?强大兼容性,穿透各种非金属材质的容器,如塑料、玻璃、陶瓷等容器,感应距离可达 20mm;液体、粉末、颗粒物均可检测。 ?开集电极输出方式,电压范围宽(5~24V),适合连接各种电路及产品应用。 三、工作原理 智能型非接触式液位感应器是利用水的感应电容来检测是否有液体存在,在没有液体接近感应器时,感应器上由于分布电容的存在,因此感应器对地存在一定的静态电容,当液面慢慢升高接近感应器时,液体的寄生电容将耦合到这个静态电容上,使感应器的最终电容值变大,该变化的电容信号再输入到控制IC进行信号转换,将变化的电容量转换成某种电信号的变化量,再由一定的算法来检测和判断这个变化量的程度,当这个变化量超过一定的阈值时就认为液位到达感应点。 电话:86-0755-******** 传真:86-0755-********

储油罐液位测量技术比较

储油罐液位测量技术比较 作者姓名:张靓 作者单位:集输公司管道分公司 摘要:从目前集输公司原油储罐常用的液位测量仪表的测量原理和方法方面,分析了原油储罐液位测量技术的现状,主要归纳为以下几种:人工检尺、雷达液位测量仪表、浮子钢带式液位测量仪表等。对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状; 1.储油罐液位测量技术现状 液位测量主要是对储油罐中油品的液位、体积和重量等参数进行直接或间接测量。目前集输公司原油储罐液位测量技术方法存在较多的问题和弊端,有的原油储罐虽安装了自动化测量系统,但测量精度普遍不高,误差较大。针对储油罐的液位测量技术归纳起来主要有以下几种。 1.1人工检尺 油罐测量始于人工检尺,这种方法目前仍广泛采用,并且作为其它液位计性能校验的工具之一。即用带有重锤的米制钢带卷尺或带有刻度的标尺计量,手工记录读数,人工查表换算,最后得到油量数据。这种测量方法不仅劳动强度大,同时存在不安全因素。人工检尺的方法可参阅国际标准API2545。人工液位测量一般有±2 mm的人为误差。人工检尺又分为检实尺和检空尺。 1.1.1检实尺

利用浸入式刻度钢皮尺通过原油储罐的量油孔,自量油孔上沿至铜锤至液面以下止,此方法为检实尺。计算罐内原油液位,根据所测得的液位,查《立式金属罐容量表》,得到罐内原油的体积数。体积数乘以原油密度,最后得到罐内原油的质量数。 1.1.2检空尺 由于冬天天气寒冷,气温下降,量油孔内的上层原油凝结,故不能采用检实尺的方法。自原油储罐内壁最上沿下尺,至铜锤接触原油储罐浮顶止,即为检空尺。经计算得到罐内原油的液位,根据所测得的液位,查《立式金属罐容量表》,得到罐内原油的体积数。体积数乘以原油密度,最后得到罐内原油的质量数。 1.2浮体式液位测量仪表 浮体式液位测量仪表分为浮筒式与浮子式。 浮筒式液位仪是在滑轮组上用钢丝绳一端挂浮球,另一端挂重锤,通过浮球与重锤的运动距离达到液位测量的目的。其缺点是钢丝绳与滑轮间存在滑动摩擦力,回位误差较大,特别是在钢丝绳和滑轮生锈时,回位误差更大,甚至无法测量。在浮子式液位仪中钢带浮子式液位仪在原理及使用方面更为典型,钢带浮子式液位仪是一种最简单的液位测量装置,由一根不锈钢管和一个空心球组成。不锈钢管内部装有若干个干簧继电器,空心球内装有一块永久磁铁,当空心球随着液位上下运动时,空心球的运动被干簧继电器转换为相应的液位。20世纪60年代到80年代初期,开始研制和使用各种钢带浮子式液位仪。由于滑轮机械装置的摩擦力和钢带重量,这类液位仪的测量误

非接触测量心跳要点

非接触测量心跳 1 引言 心率是临床检测生命参数的重要指标,现行的方法主要采用接触式检测技术,生物医学信号的接触式检测是指利用电极或传感器直接或间接地接触人体,达到检测医学信息的目的,它可分为对人体固有信息的检测(如血压、心率测量等)和借助外能量的信息检测(如X射线、B超检测等),检测过程中对人体有一定的约束。 非接触式检测是指借助于外来能量(探测媒介),不接触人体,而且隔一定的距离,隔一定的介质,通过检测人体生理活动所引起的各种微动,进而获取各类生理信息。 非接触式生命检测技术,按照采用的媒质可以分为:红外检测技术、激光检测技术、微波检测技术和声波检测技术。 微波检测技术也即雷达式非接触生命检测技术,是以电磁波为媒质,采用雷达检测人体生理活动所引起的身体颤动,从而获得重要的生命参数的一种非接触式生命参数探测方法。电磁波照射人体时,会反射包含人体一些生理特征的信息,利用人体微动与回波幅度和相位之间的关系,可以从人体表面微动引起的回波信号变化中提取出重要的人体生命参数。 本文介绍采用微波作为探测媒介,以心跳作为研究信号,对雷达回波信号中的人体生命参数进行检测。检测原理为:雷达发射的电磁波穿透介质照射到人体时,产生反射信号,该信号是反映人体生理特征的调制信号,雷达天线接收到回波信号后,经混频后就可以得到输出信号。再通过实验测试和基带数字信号处理,得到人体心跳等生命特征信号。 由于心跳所引起的人体微动及其微弱,因此,研究的系统必须具有很高的微

动检测灵敏度,同时还必须有强的抗“动目标”干扰能力,而这两者是一对矛盾,必须很好解决。 2 心跳测量仪器的设计 非接触心跳检测系统硬件组成单元框图。 工作原理: 设振荡器产生的信号为: s(t)=Acosω0t 为发射角频率,为振幅。 式中ω 该信号经定向偶合器,一路通过环行器由天线发射出去,另一路去混频器。当发射信号碰到人体等目标,将产生散射,天线接受到散射信号,并通过环行器送入混频器。从人体散射的回波信号频率已被人体表面的微动所频移,设目标散射的回波信号为: s r(t)=KAcos(ω0t+ωd t+φ) 式中K为系数,ωd为多普勒角频移。根据多普勒效应,ωd=2Vω /C,其中V 为目标的相对径向运动速度,C为光速,φ为相对于发射信号的初相。 s(t)、s r(t)二路信号经混频解调后产生低频信号:

光学非接触式三维测量技术_图文

光学非接触式三维测量技术_图文 光学三维测量技术及应用 摘要:随着现代科学技术的发展,光学三维测量已经在越来越广泛的领域起到了重要作用。本文主要对接触式三维测量和非接触式三维测量进行了介绍。着重介绍了光学三维测量技术的各种实现方法及原理。最后对目前光学三维测量的应用进行了简单介绍。 随着科学技术和工业的发展,三维测量技术在自动化生产、质量控制、机器人视觉、反求工程、CAD/CAM以及生物医学工程等方面的应用日益重要。传统的接触式测量技术存在 测量时间长、需进行测头半径的补偿、不能测量弹性或脆性材料等局限性,因而不能满足现代工业发展的需要。。 光学测量是光电技术与机械测量结合的高科技。光学测量主要应用在现代工业检测。借用计算机技术,可以实现快速,准确的测量。方便记录,存储,打印,查询等等功能。 光学三维测量技术是集光、机、电和计算机技术于一体的智能化、可视化的高新技术,主要用于对物体空间外形和结构进行扫描,以得到物体的三维轮廓,获得物体表面点的三维空间坐标。随着现代检测技术的进步,特别是随着激光技术、计算机技术以及图像处理技术等高新技术的发展,三维测量技术逐步成为人们的研究重点。光学三维测量技术由于非接触、快速测量、精度高的优点在机械、汽车、航空航天等制造工业及服装、玩具、制鞋等民用工业得到广泛的应用。 2 三维测量技术方法及分类 三维测量技术是获取物体表面各点空间坐标的技术,主要包括接触式和非接触式测量两大类。如图1所示。 图1 三维测量技术分类 2.1 接触式测量 物体三维接触式测量的典型代表是坐标测量机(CMM,Coordinate Measuring Machine)。CMM是一种大型精密的三坐标测量仪器[1],它以精密机械为基础,综合应用电子、计算机、光学和数控等先进技术,能对三维复杂工件的尺寸、形状和相对位置进行高精度的测量。 三坐标测量机作为现代大型精密、综合测量仪器,有其显著的优点,包括: (1)灵活性强,可实现空间坐标点测量,方便地测量各种零件的三维轮廓尺寸及位置参数;(2)测量精度高且可靠;(3)可方便地进行数字运算与程序控制,有很高的智能 化程度。

20余种液位测量方法分析比较

20余种液位测量方法分析比较

20余种液位测量方法分析比较作者:发布时间:2009-5-5 11:34:14 阅读次数:985

物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1、玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,

从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2、吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH

非接触式雷达测流系统

多普勒电波流速仪河道流量测量 技术方案

目录 一、系统概述 二、总体方案设计 三、产品介绍 Decatur SVR 传感器 Flowstar 流量积算仪 ZMY-5超声波液位计 四、施工方案 五、报价表

一、系统概述 为了服务我国的水文事业,使面广量大的测验实现自动测量、自动存储。根据实际需要,我公司研制开发了非接触式多普勒电波测流系统。 本系统设计合理,计数准确,存储可靠,外形美观,操作使用方便,可以通过设置各种参数和接收数据。 二、总体方案设计 多普勒电波流量测量方案由四部分组成: 1)采用多普勒电波流速仪测量流速; 2)采用超声波液位计测量河道断面水位; 3)采用定制流量、断面面积积算仪根据水文流体学,运用速度面积法计算水流量,并进行累计运算,通过RS485端口远程传输数据到环保、水资源等上级部门。 4)水利系统无线采集软件(不在本报价中,预留端口供水 利系统采集总体设计方案图,如图1所示:

图1 非接触式雷达测流系统系统设计图 在本系统中,传感器所测得的流速数据首先存储在测控通信单元(水文信息采集仪),达到报警流速数值时(报警数值在水文信息采集仪上随时可改),测控通信单元通过GSM数据发送模块实时地发送到数据监测终端,从而达到对整个河流流速进行完全监控和实时测报,保证整河流场所防汛工作的安全调度、防汛抗洪科学有效进行。

三、产品介绍 1、Decatur SVR 传感器 1.1 简介: 美国Decatur公司是全球最大的 测速雷达制造厂。测速雷达在军事、警用、运动测速领域得到广泛应用,产品行销全球,在中国销量已近万台。Decatur SVR传感器由警用测速雷达升级改造,增加了水平角和垂直角改正、流速平均、信号强度检测、串口通信控制等功能,适合水面流速自动遥测应用。 Decatur SVR拥有多项世界领先的专利技术,包括微波收发强度自适应、高速多普勒DSP芯片。 SVR采用专门为水面流速测量开发的智能表面回波分析算法,可有效排除与水面流速无关的干扰信号,测量水面流速稳定可靠。 1.2 技术参数: * 测速范围:0.20~18.00米/秒; * 测速精度:±0.05米/秒; * 平均时间:0~99.9秒; * 数据接口:RS485; * 供电电压:9~16VDC; * 工作电流:最大400mA; * 波束宽度:12°; * 微波功率:50毫瓦;

非接触式测量技术

目录 摘要 (1) 1 引言 (1) 2 非接触式测量技术简介 (1) 2.1 非接触式测量方法的定义 (1) 2.2 非接触式测量方法的分类 (2) 3 非接触测量技术发展的现状 (2) 3.1 光学法 (2) 3.1.1 结构光法 (2) 3.1.2 激光三角法 (3) 3.1.3 激光测距法 (4) 3.1.4 光学干涉法 (5) 3.1.5 图像分析法 (6) 3.2 非光学法 (7) 3.2.1 声学测量法 (7) 3.2.2 磁学测量法 (8) 3.2.3 X射线扫描法 (9) 3.2.4 电涡流测量法 (10) 3.3 非接触测量技术存在的不足和总结 (11) 4 非接触式机器人测量系统 (11) 5 非接触测量技术在船体分段测量中的应用 (14) 5.1 非接触测量技术在船厂的应用情况 (14) 5.2 船体分段测量方法介绍 (14) 5.2.1 传统测量方法系统 (14) 5.2.2 激光经纬仪测量系统 (14) 5.2.3 近景摄影测量系统 (15) 5.2.4 全站仪测量系统 (17) 5.2.5 三维扫描测量系统 (18) 5.3 测量方法的比较 (19) 6 非接触测量技术的发展趋势 (21) 7 结束语 (21) 参考文献 (22)

摘要 非接触测量方法以光电、电磁、超声波等技术为基础,在仪器的感受元件不与被测物体表面接触的情况下,即可获取被测物体的各种外表或内在的数据特征。详细阐述了部分常用的光学法和非光学法测量技术及相应的测量仪器,并结合船体分段测量方法说明了这些非接触测量方法的原理、优缺点、精度及适用范围,指出了未来非接触测量技术的发展趋势。 关键词:非接触测量; 光学法; 非光学法;船体分段 1 引言 开展船体分段测量技术研究的意义在于首先它是实现分段无余量对接的保证,可以大大缩短分段吊装搭接的船台占用时间,其次采用这项技术有助于实现船舶建造的信息流闭环,以及生产状态下的船体建造的“动态虚拟装配”。最后精确、快速、可靠的船体分段测量技术的突破有助于提升我国造船企业的国际竞争力[1]。 建造精度直接影响船舶建造的总周期,建造质量也将影响后道工序的质量,影响船舶的航运性能。船体建造的精度控制技术是以船体建造精度标准为基本准则,通过科学的管理方法与先进工艺手段,对船体零部件、分段和全船舰装件进行尺寸精度控制,最大限度的减少船台船坞修整工作量,并为提高预舶装率、降低涂装破损率创造有利条件。它对保证船体建造质量、缩短造船周期、提高生产效率等诸多方面都有不容置疑的作用,是船舶建造技术的重要组成部分。推进造船精度控制技术需要更加完善的管理体制与先进的测量手段。因此,对先进测量手段的研究具有重要意义。测量方法包括传统测量方法和非接触式测量方法。随着计算机科学的发展,非接触式测量技术逐渐成为研究热点。 2 非接触式测量技术简介 2.1 非接触式测量方法的定义 非接触测量[2]是以光电、电磁、超声波等技术为基础,在仪器的感受元件不与被测物体表面接触的情况下,得到物体表面参数信息的测量方法。

非接触式测温系统

附件3:毕业设计规格式 学号 年级 远程和继续教育学院 毕业设计 基于单片机的非接触式测温系统 专业 姓名

指导教师 评阅人 ⅩⅩⅩⅩ年Ⅹ月 中国 学术声明: 重声明 本人呈交的毕业设计,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料真实可靠。尽我所知,除文中已经注明引用的容外,本设计(论文)的研究成果不包含他人享有著作权的容。对本设计(论文)所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本设计(论文)的知识产权归属于培养单位。 本人签名:日期:

摘要 本设计根据设计任务和实际考察进行了方案设计和方案论证,并且设计了相应的硬件电路和软件系统,研制了非接触式测温系统。 该系统采用MLX90614红外温度传感器和80C51单片机为核心技术设计的非接触式测温系统,利用传感器自带的低噪放大器、A/D转换将传感器采集的温度电压信号经过处理输出给单片机,从而单片机控制显示温度和高温声音报警。对非接触式测温的实现技术进行了有意义的探索与研究,在快速、安全测温方面有一定参考价值。 关键词:80C51;MLX90614;非接触式测温;

ABSTRACT According to the design task and the actual investigation, the design and the scheme demonstration are carried out, and the corresponding hardware and software systems are designed, and the non-contact temperature measurement system is developed.The system uses the MLX90614 infrared temperature sensor and the 80C51 MCU as the non contact temperature measuring system. Using the low noise amplifier with the sensor and the A/D conversion, the temperature and voltage signals collected by the sensor are processed and output to the single chip microcomputer, and the microcontroller is controlled to display the temperature and the high temperature sound alarm. It has made a meaningful exploration and Research on the realization technology of non-contact temperature measurement, and has a certain reference value in fast and safe temperature measurement. Key words: 80C51; MLX90614;Non-contact temperature measurement;

液位测量方法分析课件

20余种液位测量方法分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。

差压法:该方法的工作原理如图2-2所示。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD-温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则 式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。 以上3种方法都是利用液体的压力差来测量液位的。 3浮子法、浮筒法、浮球法、伺服法、沉筒法 浮子法:该方法采用浮子作为液位测量元件,并驱动编码盘或编码带等显示装置,或连接电子变送器以便远距离传输测量信号。

非接触式测温系统

附件3:毕业设计规范格式 学号 年级 远程和继续教育学院 毕业设计 基于单片机的非接触式测温系统 专业 姓名 指导教师 评阅人 ⅩⅩⅩⅩ年Ⅹ月 中国苏州

学术声明: 郑重声明 本人呈交的毕业设计,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料真实可靠。尽我所知,除文中已经注明引用的内容外,本设计(论文)的研究成果不包含他人享有著作权的内容。对本设计(论文)所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本设计(论文)的知识产权归属于培养单位。 本人签名:日期:

摘要 本设计根据设计任务和实际考察进行了方案设计和方案论证,并且设计了相应的硬件电路和软件系统,研制了非接触式测温系统。 该系统采用MLX90614红外温度传感器和80C51单片机为核心技术设计的非接触式测温系统,利用传感器自带的低噪放大器、A/D转换将传感器采集的温度电压信号经过处理输出给单片机,从而单片机控制显示温度和高温声音报警。对非接触式测温的实现技术进行了有意义的探索与研究,在快速、安全测温方面有一定参考价值。 关键词:80C51;MLX90614;非接触式测温;

ABSTRACT According to the design task and the actual investigation, the design and the scheme demonstration are carried out, and the corresponding hardware and software systems are designed, and the non-contact temperature measurement system is system uses the MLX90614 infrared temperature sensor and the 80C51 MCU as the non contact temperature measuring system. Using the low noise amplifier with the sensor and the A/D conversion, the temperature and voltage signals collected by the sensor are processed and output to the single chip microcomputer, and the microcontroller is controlled to display the temperature and the high temperature sound alarm. It has made a meaningful exploration and Research on the realization technology of non-contact temperature measurement, and has a certain reference value in fast and safe temperature measurement. Key words: 80C51; MLX90614;Non-contact temperature measurement;

光学非接触式三维测量技术

光学三维测量技术及应用 摘要:随着现代科学技术的发展,光学三维测量已经在越来越广泛的领域起到了重要作用。本文主要对接触式三维测量和非接触式三维测量进行了介绍。着重介绍了光学三维测量技术的各种实现方法及原理。最后对目前光学三维测量的应用进行了简单介绍。 1 引言 随着科学技术和工业的发展,三维测量技术在自动化生产、质量控制、机器人视觉、反求工程、CAD/CAM以及生物医学工程等方面的应用日益重要。传统的接触式测量技术存在测量时间长、需进行测头半径的补偿、不能测量弹性或脆性材料等局限性,因而不能满足现代工业发展的需要。。 光学测量是光电技术与机械测量结合的高科技。光学测量主要应用在现代工业检测。借用计算机技术,可以实现快速,准确的测量。方便记录,存储,打印,查询等等功能。 光学三维测量技术是集光、机、电和计算机技术于一体的智能化、可视化的高新技术,主要用于对物体空间外形和结构进行扫描,以得到物体的三维轮廓,获得物体表面点的三维空间坐标。随着现代检测技术的进步,特别是随着激光技术、计算机技术以及图像处理技术等高新技术的发展,三维测量技术逐步成为人们的研究重点。光学三维测量技术由于非接触、快速测量、精度高的优点在机械、汽车、航空航天等制造工业及服装、玩具、制鞋等民用工业得到广泛的应用。 2 三维测量技术方法及分类 三维测量技术是获取物体表面各点空间坐标的技术,主要包括接触式和非接触式测量两大类。如图1所示。 图1 三维测量技术分类

2.1 接触式测量 物体三维接触式测量的典型代表是坐标测量机(CMM,Coordinate Measuring Machine)。CMM是一种大型精密的三坐标测量仪器[1],它以精密机械为基础,综合应用电子、计算机、光学和数控等先进技术,能对三维复杂工件的尺寸、形状和相对位置进行高精度的测量。 三坐标测量机作为现代大型精密、综合测量仪器,有其显著的优点,包括:(1)灵活性强,可实现空间坐标点测量,方便地测量各种零件的三维轮廓尺寸及位置参数;(2)测量精度高且可靠;(3)可方便地进行数字运算与程序控制,有很高的智能化程度。 早期的坐标测量机大多使用固定刚性测头,它最为简单,缺点也很多[2]。主要为(1)测量时操作人员凭手的感觉来保证测头与工件的接触压力,这往往因人而异且与读数之间很难定量描述;(2)刚性测头为非反馈型测头,不能用于数控坐标测量机上;(3)必须对测头半径进行三维补偿才能得到真实的实物表面数据。针对上述缺陷,人们陆续开发出各种电感式、电容式反馈型微位移测头,解决了数控坐标测量机自动测量的难题,但测量时测头与被测物之间仍存在一定的接触压力,对柔软物体的测量必然导致测量误差。另外测头半径三维补偿问题依然存在。三维测头的出现可以相对容易地解决测头半径三维补偿的难题,但三维测头仍存在接触压力,对不可触及的表面(如软表面,精密的光滑表面等)无法测量,而且测头的扫描速度受到机械限制,测量效率很低,不适合大范围测量。 2.2 非接触式测量 非接触式测量技术是随着近年来光学和电子元件的广泛应用而发展起来的,其测量基于光学原理,具有高效率、无破坏性、工作距离大等特点,可以对物体进行静态或动态的测量。此类技术应用在产品质量检测和工艺控制中,可大大节约生产成本,缩短产品的研制周期,大大提高产品的质量,因而倍受人们的青睐。随着各种高性能器件如半导体激光器LD、电荷耦合器件CCD、CMOS图像传感器和位置敏感传感器PSD等的出现,新型三维传感器不断出现,其性能也大幅度提高,光学非接触测量技术得到迅猛的发展。 非接触式三维测量不需要与待测物体接触,可以远距离非破坏性地对待测物体进行测量。其中,光学非接触式测量是非接触式测量中主要采用的方法。 3 光学非接触式三维测量的概述 光学非接触式三维测量技术根据获取三维信息的基本方法可分为两大类:被动式与主动式。如图2所示[3]。 主动式是利用特殊的受控光源(称为主动光源)照射被测物,根据主动光源的已知结构信息(几何的、物体的、光学的)获取景物的三维信息。被动式是在自然光(包括室内可控照明光)条件下,通过摄像机等光学传感器摄取的二维灰度图像获取物体的三维信息。

液位测量

20余种液位测量方法分析比较 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1、玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2、吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH

差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD -温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则 式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。 以上3种方法都是利用液体的压力差来测量液位的。

【CN209863802U】一种基于雷达的非接触式生命体征测量系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920452118.6 (22)申请日 2019.04.03 (73)专利权人 湖南省顺鸿智能科技有限公司 地址 410205 湖南省长沙市高新开发区尖 山路39号长沙中电软件园有限公司总 部大楼G0224室 专利权人 长沙军民先进技术研究有限公司 (72)发明人 傅其祥 夏利锋 刘进 夏祖泉  张吉楠 吴茜 王绍丽  (74)专利代理机构 长沙市护航专利代理事务所 (特殊普通合伙) 43220 代理人 谢新苗 (51)Int.Cl. A61B 5/0205(2006.01) A61B 5/11(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称一种基于雷达的非接触式生命体征测量系统(57)摘要本实用新型公开了一种基于雷达的非接触式生命体征测量系统,所述系统包括依此连接的射频收发模块、信号采集装置、信号处理装置及显示装置:射频收发模块用于向生命体发射雷达信号,并接收经生命体反射后的雷达回波信号,以形成原始回波数据;信号采集装置用于采集原始回波数据,并将原始回波数据传输至信号处理装置;信号处理装置用于对接收的原始回波数据进行处理,形成生命体的生命体征信息;显示装置用于显示生命体的生命体征信息。本实用新型以微波雷达信号作为感应媒介,在实现了非接触式测量,提升生命体的舒适感的同时,可有效提取生命体的呼吸率、心率和体动,做到实时监测 和预警的目的。权利要求书1页 说明书4页 附图3页CN 209863802 U 2019.12.31 C N 209863802 U

非接触式液位计安装示例

迅创科技-非接触式液位计专用超声波处理技术为系统内核,实现了超高速的数字信号处理功能。它的安装,不穿孔、不动火、不损伤罐体,精度高,稳定可靠,今天为大家讲解一下实例安装。 一、卧罐安装 如:介质:液氯;粘度:0.07mpa·S;温度范围:-30~-10°C;易燃易爆;剧毒;容器:卧罐;直径:3000mm;壁厚:24mm;材质:16MnR;有保温层;工艺:进料速度缓慢,无大量气泡;液位变化范围:300~2700mm 安装步骤: 1、测量点选择 液位传感器安装首选位置为距进液口较远支座的内侧;校准传感器安装位一般选在距液位测量点最近的罐体半径高度处 2、主机固定位置:校准传感器下方 二、球罐安装 如:介质:聚乙烯;温度范围:0~30°C;压力:0.4MPA;易燃易爆;容器:球罐;直径:12300mm;壁厚:38mm;材质:16MnR;工艺:进料速度缓慢,无大量气泡;液位变化范文:1000~11000mm 安装步骤: 1、测量点选择 液位传感器安装首选位置为靠近罐底入孔旁边,校准传感器安装位置选在罐子赤道处 2、主机固定位置:校准传感器下方 三、立罐安装 如:介质:甲醇;粘度:0.47mpa·S;温度范围:0~40°C;常压、易燃易爆;容器:立罐;直径:9000mm;高度:12000mm;壁厚:6mm;材质:碳钢;工艺:进料速度缓慢,无大量气泡;液位变化范围:1000~10000mm 安装步骤: 1、测量点选择 液位传感器安装位置一般为距进液管口较远(大于90°)的安装槽内。校准传感器安装位置选在罐体外部侧壁外侧,距罐底0.5m~1m高处 2、主机安装位置:校准传感器下方

液位测量方法

[摘要]该文对磁致伸缩法、核辐射法、光纤传感器法和雷达法等20余种液位测量方法进行了分类归纳,并对各自的原理、特点等进行了较系统的比较分析。 [关键词]液位;测量方法;分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1 玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2 吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度电子变送器以便远距离传输测量信号。 浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪器|仪表根据磁铁的移动量计算出液位。 浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。浮球法有内浮球式和外浮球式两种,如图3—2所示。浮球法主要用于测量温度高、粘度大的液位,但量程较小。 伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。 沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。在图3-3a中[4],液位与浮筒位置的关系如下: 上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。

相关主题
文本预览
相关文档 最新文档